Low-Resource Named Entity Recognition Based on Multi-hop
Dependency Trigger

Jiangxu Wu* Peiqi Yan*
wujx27@mail2sysu.edu.cn yanpeigiswu@l63.com

Abstract

This paper introduces DepTrigger, a simple and effective model in low-resource named entity
recognition (NER) based on multi-hop dependency triggers. Dependency triggers refer to salient
nodes relative to an entity in the dependency graph of a context sentence. Our main observa-
tion is that triggers generally play an important role in recognizing the location and the type of
entity in a sentence. Instead of exploiting the manual labeling of triggers, we use the syntac-
tic parser to annotate triggers automatically. We train DepTrigger using an independent model
architectures which are Match Network encoder and Entity Recognition Network encoder. Com-
pared to the previous model TriggerNER, DepTrigger outperforms for long sentences, while still
maintain good performance for short sentences as usual. Our framework is significantly more
cost-effective in real business.

1 Introduction

Named Entity Recognition (NER) aims to detect the span from text belonging to the semantic category
such as person, location, organization, etc. NER plays a core component in many NLP tasks and is
widely employed in downstream applications, such as knowledge graph (Ji, 2021), question answering
(Molla, 2004) and dialogue system (Peng, 2020). The deep-learning based approaches have shown
remarkable success in NER, while it requires large corpora annotated with named entities. Moreover, in
many practical settings, we wish to apply NER to domains with a very limited amount of labeled data
since annotating data is a labor-intensive and time-consuming task. Therefore, it is an emergency to
improve the performance of the deep-learning based NER model with limited labeled data.

Previous work in low-resource NER mainly focused on meta-learning (Snell, 2017), distantly super-
vision (Yang, 2018), transfer learning (Lin, 2017),et al. Recently, (CLin, 2020) proposed an approach
based on entity trigger called TriggerNER. The key idea is that an entity trigger is a group of words that
can help explain the recognition process of an entity in a sentence. Considering the sentence “Biden
is the president of _”, we are able to infer that there is a country entity on the underline according to
“the president of”’. In this case, “the president of” is a group of triggers. Experiments reveal that the
performance of utilizing 20% of the trigger-annotated sentences is comparable to that of exploiting 70%
of conventional annotated sentences. However, crowd-sourced entity trigger annotations, which suffer
from the same problem as traditional annotation, require labor costs and expert experience.

Inspired by attribute triggers in Attribute Extraction (Huang2, 2017), this paper presents an alternative
approach to automatically annotate the trigger in a sentence by utilizing the syntactic parse. Fig. 1 is the
dependency parse result of the sentence “Alice was born in Beijing”, the relation “nsubj:pass” shows
that the subject of “born” is “Alice”. According to the meaning of “born”, we are capable of inferring
that “Alice” is a person entity. Inspired by this fact, we propose a novel model, namley DepTrigger,
which explore the structures of dependency trees and utilize the syntactic parser to annotate trigger in a
sentence.

* Equal contribution

©2022 China National Conference on Computational Linguistics
Published under Creative Commons Attribution 4.0 International License

Proceedings of the 21st China National Conference on Computational Linguistics, pages 966-972, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

966

Computational Linguistics

nsubj:pass obj

case

VBD <+auxpass— VBN

— — —
Allce was born in Beijing
S-PER T-Trigger T-Trigger (0) T-Trigger

Figure 1: The dependency parse results of ”Alice was born in Beijing”, ”S-PER” is entity label, ”T-
Trigger” is trigger label, ”O” denotes others.

Naturally, we propose a simple yet effective framework for low-resource NER, namely DepTrig-
gerNER. It includes a trigger semantic matching module (Trigger Match Network) and a sequence anno-
tation module (Entity Recognition Network). The DepTriggerNER adopts two-steps pipeline mode: 1)
we first trains the Trigger Match Network module for learning trigger representation; and 2) we combine
trigger representation to train the Entity Recognition Network module. Our main contribution includes
the new proposed “DepTrigger” model, which reduces the cost and complexity by using a syntactic
parser to automatically annotate trigger.

We evaluate DepTrigger on CoNLL2003 (Erik, 2003) and BC5CDR (Li, 2016), where DepTrigger
outperforms the TriggerNER model on BC5CDR but slightly under-performs on CoNLL2003. Com-
pared to TriggerNER, DepTrigger is particularly useful in its ability to automatically produce annotated
triggers. Besides, the independent model architectures have a better performance. Our results suggest
that DepTrigger is a promising alternative to the TriggerNER in low-resource NER tasks.

Decoder

l—
g !
}
Es Match
Network
]gSJ g! I
— Self-Attention g Trigger-Attention
t
trigger vector T
Trigger Match Entity Recognition
Network Encoder Network Encoder
T T
Words Embedding
Alice was boTrn iIT’l Beijing

Figure 2: The framework of DepTriggerNER. The left is the Trigger Match Network. The right is the
Entity Recognition Network. The circle in the upper left corner is Trigger Pattern Prototype, it is a look-
up table generated by Trigger Match Network after training.

Proceedings of the 21st China National Conference on Computational Linguistics, pages 966-972, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

967

Computational Linguistics

2 Model

In this section, we present the framework of DepTriggerNER in Fig. 2. Compared to TriggerNER, there
are three main differences: (1) instead of crowd-sourced, we harness the syntactic parser to annotate
trigger automatically; (2) we omit the trigger classification network; and (3) the Trigger Match Network
encoder and the Entity Recognition Network encoder are independent of each other.

This section is organized as follows. We first describe how to use the syntactic parser to annotate
dependency trigger in section 2.1. We then introduce Trigger Match Network and Entity Recognition
Network in section 2.2 and section 2.3, respectively.

2.1 DepTrigger

DepTrigger are prominent nodes relative to an entity in the context sentence dependency graph. We apply
Stanford CoreNLP to the sentences to obtain dependency paths. The dependency paths is a directed
graph with words as nodes and dependencies as edges. Fig. 1 shows the dependency parse results of the
sentence “Alice was born in Beijing”. In Fig. 1, “born” is connected with the entity “Alice” by relation
“nsubj:pass”, so that “born” is a DepTrigger. Words have a one-hop relationship with entities are called
primary triggers, and words have a two-hop relationship with entities are called secondary triggers.

2.2 Trigger Match Network

Each entity contains a group of DepTrigger, which form a trigger pattern. We assume that each sentence
has an entity and contains a trigger pattern. In the training stage, the Trigger Match Network aims
to learn the representation of trigger patterns and sentences. In the inference stage, the trigger pattern
representation with similar semantics to the sentence representation will be selected from the Trigger
Pattern Prototype.

In Fig. 2, each sentence is first transformed into a vector by the Words Embedding module. Then, the
hidden state matrix is obtained through the Trigger Match Network Encoder. The self-attention layer is
used to obtain sentence representation gs and trigger pattern representation gy, (Lin, 2017) defined as

follows:
as = Softmazx (Wa x tanh (W; x H)) (1)
gs =asH (2)
ay = Softmax (Wy x tanh (Wq x M)) 3)
gr = arM “4)

W7 and Wy are the trainable parameters. H and M represent the hidden state matrix of the sentence
and the hidden state matrix of DepTrigger, respectively.
The Match Network calculates the distance between trigger pattern representation and sentence repre-
sentation. The matching loss function (CLin, 2020) is defined as follows:
L_ ’|§S_§t|’%7tes 5
- = - 112 ()
maz (0,m — ||§s — Gi||3) ,t & s

|| - ||2 is L2-norm distances, m is margin. ¢ € s indicates trigger pattern representation and sentence
representation matches well while ¢ ¢ s is on the contrary. We create negative samples by randomly
matching trigger pattern representation and sentence representation in a batch.

2.3 Entity Recognition Network

Entity Recognition Network is similar to most deep-learning based NER models and consists of encoder
and decoder. However, the Entity Recognition Network has been added a trigger-attention layer. Note
that the parameters of Trigger Match Network are frozen when training Entity Recognition Network.

In training, each sentence passes through the Trigger Match Network Encoder and the Entity Recog-
nition Network Encoder, respectively. Then, g; is obtained from the self-attention layer. In the trigger-
attention layer, g; is used to calculate the weight of each vector in the Entity Recognition Network

Proceedings of the 21st China National Conference on Computational Linguistics, pages 966-972, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

968

Computational Linguistics

Encoder’s outputs as follows (Luong, 2015):

a = Softmaz (U x tanh (Uy x H + Uy X Gy)) (6)
H' =dH ()

Uy, Uy, U are model parameters, and H is the Entity Recognition Network Encoder’s outputs matrix.
Finally, we concatenate the matrix H with the trigger-enhanced matrix H as the input ([H; H']) fed into
the decoder.

2.4 Inference

After training, each sentence in the training set is re-input into Trigger Match Network to obtain trigger
pattern representation. We then save these representations in memory, shows as the Trigger Pattern
Prototype in Fig. 2. In the inference stage, We first obtain sentence representations g through Trigger
Match Network and then retrieve the semantic similarity vector g; from Trigger Pattern Prototype. Vector
gt is used as the attention query in Entity Recognition Network.

3 Experiments

3.1 Experiments Setup

Dataset #Class #Sent #Entity
CoNLL’03 4 14986 23499
BC5CDR 2 4560 9385

Table 1: Data statistics.

CoNLL2003 (Erik, 2003) and BC5CDR (Li, 2016) are used to evaluate our model. The statistics of
these datasets are shown in Table. 1. We choose BiLSTM-CRF (Ma, 2016) and TriggerNER (CLin,
2020) as baseline models. TriggerNER is the first trigger-based NER model. We choose BiLSTM as
encoder and CRF as decoder in our model. To ensure a fair comparison, we use the same codebase
and words embedding from GloVE (Pennington, 2014), which used in baseline model. The hyper-
parameters of the model are also the same. Our code and data are released °.

We choose BIOES tagging schema for non-triggers, and triggers are all labeled with “T-trigger”. In
order to make the model learn the relation between entity and its trigger better, we repeat a sentence N
times, and N is the number of entities in the sentence. Each sentence retains one entity and its trigger,
other entities are marked as non-entities.

CoNLL 2003 BC5CDR
#sent BiLSTM- | #trig Trigger- Ours | #sent BiLSTM- | #trig Trigger- Ours
CRF NER CRF NER

5% 69.04 3% 75.33 7742 | 5% 71.87 3% 61.44 63.37
10% 76.83 5% 80.2 80.26 | 10% 72.71 5% 66.11 66.92
20% 81.3 7% 82.02 81.3 20% 69.92 7% 67.22 69.27
30% 83.23 10% 83.53 82.96 | 30% 73.71 10% 70.71 71.42
40% 84.18 13% 84.22 83.26 | 40% 72.71 13% 71.87 73.17
50% 84.27 15% 85.03 83.86 | 50% 75.84 15% 71.89 74.35
60% 85.24 17% 85.36 84.32 | 60% 75.84 17% 73.05 75.08
70% 86.08 20% 86.01 84.53 | 70% 76.12 20% 73.97 76.44

Table 2: F1 score results. “#sent” denotes the percentage of the sentences labeled only with entity label,
“#trig” denotes the percentage of the sentences labeled with both entity label and trigger label.

Ohttps://github.com/wjx-git/DepTriggerNER

Proceedings of the 21st China National Conference on Computational Linguistics, pages 966-972, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

969

Computational Linguistics

3.2 Results

As shown in Tabel. 2, Our model achieves a similar performance as TriggerNER. More detailed, our
model performs better on BCSCDR than TriggerNER, but slightly worse on CoNLL2003. We explain
this phenomenon in terms of the number of triggers each entity has. Fig. 3 shows the ratio of the number
of sentences with the number of triggers an entity has in each dataset. The two yellow curves are very
close when the abscissa value is greater than 3, and the yellow dotted line is larger than the solid line
when the abscissa value is less than 3. This fact demonstrates that on CoNLL2003 the number of triggers
annotated by our method is less than TriggerNER. In the two blue curves, the solid blue line is larger than
the dashed line when the abscissa value is greater than 4, and the opposite is true when the abscissa value
is less than 4. This shows that the number of triggers annotated by our method is more than TriggerNER
on BCSCDR. We believe that an entity is easier to recognize when it has more triggers, which would
explain why our model performs better on BCSCDR and slightly worse on CoNLL2003.

0.25
~—@— CoNLL-ours

~# = CoNLL-TriggerNER
—@— BC5CDR-ours
—# = BC5CDR-TriggerNER

Percentage

Y T T T T T T
N N v S ™ 9 © A 2
Triggers per entity has

Figure 3: Ratio of the number of sentences with the number of triggers each entity has in the dataset.
The X-axis is the number of triggers of a entity has, and the Y-axis is the percentage. The solid lines
represent the trigger of ours. The yellow line represents CoNLL datasets.

We analyzed the sentence length distribution in the two datasets to further understand why we annotate
fewer triggers in CoNLL and more in BCSCDR than in TriggerNER. The statistical results of sentence
length distribution in Table 3, show that sentences are shorter in the CoNLL dataset and longer in
the BC5CDR dataset. From Table 3 and Figure 3, it can be concluded that our method can label
more triggers in long sentences but fewer triggers in short sentences compared to manual marking in
TriggerNER. Therefore, our method is more suitable for datasets with longer sentences.

Datasets | 1710 10725 | 25750 | 507
CoNLL | 52.32%| 27.33%| 19.93%| 0.42%
BC5CDR| 5.7% | 50.64%| 37.54%| 6.51%

Table 3: Statistical results of sentence length distribution

In our model, Trigger Match Network encoder and Entity Recognition Network encoder are indepen-
dent, which is different from the TriggerNer. The main purpose of Trigger Match Network is to learn
the representation of trigger patterns, and Entity Recognition Network is to learn entity representation.
So we think we can not get an advantage by combining Trigger Match Network and Entity Recognition
Network because they need to capture specific information. That is inspired by (Zexuan, 2021), and they
observe that the contextual representations for the entity and relation models essentially capture specific
information, so sharing their representations hurts performance.

Proceedings of the 21st China National Conference on Computational Linguistics, pages 966-972, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

970

Computational Linguistics

#trig CoNLL 2003 BC5CDR
merge separate | merge separate
3% 76.36 77.42 61.3 63.37
5% 79.38 80.26 66.15 66.92
7% 80.37 81.3 68.02 69.27
10% 81.58 82.96 70.93 7142
13% 82.55 83.26 72.7 73.17
15% 83.03 83.86 73.25 74.35
17% 83.51 84.32 7495 75.08
20% 83.81 84.53 75.08 76.44

Table 4: Comparative experiment F1 score results. merge means to merge Trigger Match Network
encoder and Entity Recognition Network encoder. separate means to separate Trigger Match Network
encoder and Entity Recognition Network encoder. The best results are in bold.

We do a comparative experiment to test the performance of our model for merging and separating,
respectively, while leaving everything else unchanged. The experimental results are shown in Table. 4,
merge means to merge Trigger Match Network encoder and Entity Recognition Network encoder. Sep-
arate means to separate Trigger Match Network encoder and Entity Recognition Network encoder. It
shows that the performance is better when the Trigger Match Network encoder and Entity Recognition
Network encoder are independent.

In order to compare the influence of primary and secondary trigger words on the model, we backup
two datasets of CoNLL, and only the primary triggers are labeled in one dataset, and only the secondary
trigger words are labeled in the other dataset, do the same for BC5SCDR. Table. 5 shows the F1 score on
these datasets. Compared primary and secondary trigger, there is no evident show that one is better than
the other. Combined with table 1 and table 4, the effect of using the primary trigger and the secondary
trigger at the same time is significantly better than that of using them alone. .

#trig CoNLL 2003 BCS5CDR
primary secondary| primary secondary
3% 63.4 62.35 52.3 50.92

5% 66.3 66.3 54.17 55.84

7% 70.37 69.44 58.92 57.33
10% | 74.02 73.44 60.32 60.24
13% | 74.86 7491 61.35 62.01
15% | 76.2 75.46 64.26 64.25
17% | 771.36 76.33 64.51 064.26
20% | 71.55 7753 65.94 66.69

Table 5: Comparative experiment of primary and secondary trigger

4 Conclusion and Future Work

We have introduced dependency trigger to incorporate trigger information into NER method. The core
of our method is using syntactic parser to automatically label the trigger of entities. Our model performs
well for long sentences, while maintain similar performance as TriggerNER for short sentences. Thanks
to automatically annotate trigger of entities, our framework is more practical in the real business. Future
work with DepTrigger includes: 1) adjusting our model to encoder based on language model; 2) making a
further analysis of trigger type; 3) developing models for improving the performance on short sentences.

Proceedings of the 21st China National Conference on Computational Linguistics, pages 966-972, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

971

Computational Linguistics

References

Ji. Shaoxiong, Pan. Shirui, Cambria. Erik, Marttinen. Pekka and Yu. Philip. 2021. A Survey on Knowledge Graphs:
Representation, Acquisition and Applications. IEEE Transactions on Neural Networks and Learning Systems.

Diego. Moll4, Menno. van. Zaanen, Daniel. Smith. 2004. named entity recognition for question-answering system.
Proceedings of INTERSPEECH 2004 - ICSLP, Jeju Island, Korea.

Baolin. Peng, Chunyuan. Li, Jinchao. Li, Shahin. Shayan-deh, Lars. Liden, Jianfeng. Gao. SOLOIST: Few-shot
Task-Oriented Dialog with A Single Pre-trained Auto-regressive Model. arxiv.

B. Yuchen. Lin, DH. Lee, M. Shen, R. Moreno, X. Huang, P. Shiralkar, X. Ren. few-Shot Named Entity Recogni-
tion: A Comprehensive Study. arxiv.

B. Yuchen. Lin, DH. Lee, M. Shen, R. Moreno, X. Huang, P. Shiralkar, X. Ren. TriggerNER: Learning with
Entity Triggers as Explanations for Named Entity Recognition. Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics.

Jake. Snell, Kevin. Swersky, Richard. Zemel. Prototypical networks for few-shot learning. arxiv.

Yaosheng. Yang, Wenliang. Chen, Zhenghua. Li, Zhengqiu. He, Min Zhang. Distantly supervised NER with
partial annotation learning and reinforcement learning. Proceedings of the 27th International Conference on
Computational Linguistics, Santa Fe. New Mexico, USA.

Lifu. Huang, Avirup. Sil, Heng. Ji, Radu. Florian. Improving Slot Filling Performance with Attentive Neural
Networks on Dependency Structures. Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, Copenhagen, Denmark.

Dian. Yu, Heng. Ji. Unsupervised Person Slot Filling based on Graph Mining. Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, Berlin, Germany.

Feifei. Zhai, Saloni. Potdar, Bing. Xiang, Bowen. Zhou. Neural Models for Sequence Chunking. Proceedings of
Thirty-First AAAI Conference on Artificial Intelligence.

Sang. Erik, Meulder. Fien. Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity
Recognition. Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL.

Jiao. Li, Yueping. Sun, Robin. J. Johnson, Daniela. Sciaky, Chih-Hsuan. Wei, Robert. Biocreative v cdr task
corpus: a resource for chemical disease relation extraction. Database.

Thang. Luong, Hieu. Pham, Christopher. D. Manning. Effective approaches to attention-based neural machine
translation. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lis-
bon, Portugal.

Jeffrey. Pennington, Richard. Socher, Christopher. Manning. Glove: Global vectors for word representation.
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha,
Qatar.

Xuezhe. Ma, Eduard. Hovy. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany.

Zhouhan. Lin, Minwei. Feng, Cicero. Nogueira. dos Santos, Mo. Yu, Bing. Xiang, Bowen. Zhou, Yoshua. Bengio.
A structured self-attentive sentence embedding. Proceedings of the 5th International Conference on Learning
Representations.

Zexuan. Zhong, Danqi. Chen. A Frustratingly Easy Approach for Entity and Relation Extraction. NAACL.

Proceedings of the 21st China National Conference on Computational Linguistics, pages 966-972, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

972

