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Abstract

Zero-shot relation extraction is an important method for dealing with the newly emerging relations
in the real world which lacks labeled data. However, the mainstream two-tower zero-shot methods
usually rely on large-scale and in-domain labeled data of predefined relations. In this work,
we view zero-shot relation extraction as a semantic matching task optimized by prompt-tuning,
which still maintains superior generalization performance when the labeled data of predefined
relations are extremely scarce. To maximize the efficiency of data exploitation, instead of directly
fine-tuning, we introduce a prompt-tuning technique to elicit the existing relational knowledge in
pre-trained language model (PLMs). In addition, very few relation descriptions are exposed to
the model during training, which we argue is the performance bottleneck of two-tower methods.
To break through the bottleneck, we model the semantic interaction between relational instances
and their descriptions directly during encoding. Experiment results on two academic datasets
show that (1) our method outperforms the previous state-of-the-art method by a large margin
with different samples of predefined relations; (2) this advantage will be further amplified in the
low-resource scenario.

1 Introduction

Relation extraction (RE) aims to extract the relation between entity pairs from unstructured text. The
extracted relation facts can benefit various downstream applications such as knowledge graph completion
(Wang et al., 2014), web search (Xiong et al., 2017) and dialog systems (Madotto et al., 2018). However,
many effective RE methods (Wu and He, 2019; Du et al., 2018) work within predefined relation sets.
They failed to deal with a real-world environment where new relations will emerge after the training phase.
These fast-growing new relations make it impossible for us to gather labeled training data for all of them.
To recognize the newly emerging relations lacking labeled data, zero-shot RE is of the utmost practical
interest.

Despite the great potential of zero-shot RE in real-world applications, there have been relatively few
studies focusing on this challenging task. To enable models to predict unseen relations, previous works
usually model zero-shot relation extraction as a well-designed task form. Levy et al. (2017) consider
relation extraction as a machine reading comprehension. They first associate a few question templates
for each relation and then determine which relation satisfies the given sentence and question by model
prediction. However, a reasonable and effective question template usually needs careful design, which
cannot meet the extraction needs of rapidly growing new relations (Chen and Li, 2021). Therefore, instead
of manually constructing question templates, subsequent works (Obamuyide and Vlachos, 2018; Chen
and Li, 2021) take advantage of the readily available textual description to represent the new relations,
and formulate zero-shot RE as a semantic matching task achieving superior results.

However, current methods usually require a large number of in-domain labeled data of predefined
relations to train the model parameters. The learned relational knowledge is mainly from labeled data
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Figure 1: When shifting to some special domains (e.g. medicine, finance) where large-scale labeled
data are not available, the performance of these methods on new relations decreases significantly. By
inducing the knowledge in the pre-trained language model, our method can approach the results of
previous state-of-the-art method ZS-BERT (Chen and Li, 2021) using only 200 labeled data. When using
all data, our method improves the F1 score by 8.83%.

itself. As a result, when shifting to some special domains where large-scale labeled data are not available,
the performance of these methods on new relations decreases significantly. An experimental illustration is
shown in Figure 1. Fortunately, pre-trained language models (PLMs) such as BERT (Devlin et al., 2018)
and GPT (Radford et al., 2018), can learn a wealth of linguistic (Peters et al., 2018), local syntactic
(Hewitt and Manning, 2019) and long-range semantic (Jawahar et al., 2019) from large-scale corpora by
self-supervised learning. An interesting question is whether we can reduce the dependence on labeled
data of predefined relations with the help of knowledge in PLMs?

To answer this question, in this work, we propose a prompt-based zero-shot RE method. Different
from previous methods, in which the learned relational knowledge mainly comes from the labeled data of
predefined relations, we leverage prompt to stimulate the rich knowledge distributed in PLMs to reduce
dependence on these labeled data. Specifically, we model zero-shot RE as a semantic matching task
between relational instance and description. In order to induce the knowledge in PLMs, we fuse the
original input with the prompt template to formulate a cloze-style task. Then, we count the probability
distribution of the model output and take the words with significant differences between classes as
label words. In addition, each predefined relation corresponds to many instances and one description.
The significant quantity gap makes the two-tower methods unable to effectively model the semantics
of relation description. Therefore, we directly model the semantic interaction between instances and
descriptions during training. Based on the reformulated input and these selected label words, we optimize
a semantic matching model, which predicts whether the relation and the textual description match.
Experimental results show that our method has very significant advantages when the large-scale labeled
data of predefined relations are not available.

To summarize, the main contributions of our work are as follows: (1) We propose a prompt-based
zero-shot relation extraction method, which maintains high generalization ability when using even one
labeled data per predefined relations. (2) We design comprehensive experiments to analyze the impact
of predefined relations and prompt composition on the generalization performance of the model in the
low-resource scenario, which may enlighten the following work. (3) Experiment results on two academic
datasets show that our method outperforms the previous state-of-the-art method by a large margin and this
advantage will be further amplified in low resource scenarios.
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2 Related Work

2.1 Knowledge in Pretrained Language Model
Contextual word representations derived from pre-trained language models have recently been shown
to provide significant improvements to the state of the art for a wide range of NLP tasks, motivating
a growing body of research investigating what aspects of linguistic knowledge they are able to learn
from unlabeled data. Peters et al. (2018) showed that different neural architectures (e.g., LSTM, CNN,
and Transformers) can hierarchically structure linguistic information that varies with network depth.
(Jawahar et al., 2019; Clark et al., 2019; Goldberg, 2019) show that such hierarchy exists as well for
BERT models that are not trained using the standard language modeling objective. More recently, many
studies (Tenney et al., 2019; Hewitt and Manning, 2019) probe the knowledge within PLMs from various
perspectives and find that the existing models trained on language modeling and translation produce strong
representations for syntactic phenomena. Together, these results suggest that pre-trained language models
entail comprehensive linguistic knowledge, which accounts for its great performance on downstream tasks
and proves its potential to represent the samples of zero-shot relation extraction tasks, which has limited
training data.

2.2 Prompt-Based Optimization
Since the advent of prompt tuning, it has soon become the prevailing paradigm of natural language
processing. Prompt tuning is based on language models that estimate the probability of text. It modifies
the original input of downstream tasks to a prompt with unfilled positions, and predicts the output based
on the slot-filling result by language models (Liu et al., 2021). This method has been proven to be helpful
on various NLP tasks, including text classification (Han et al., 2021), entity typing (Ding et al., 2021),
text generation (Li and Liang, 2021), and also multi-modal tasks (Tsimpoukelli et al., 2021). Current
studies have made some attempts to derive knowledge from PLMs with prompts. Jiang et al. (2020)
proposed mining-based and paraphrasing-based methods to automatically generate high-quality prompts,
which boosted the performance of knowledge-driven tasks. Zhong et al. (2021) conducted a set of control
experiments to disentangle the efforts of training data and pre-trained knowledge. Inspired by these works,
compared with direct fine-tuning, using the limited labeled data to derive the existing relational knowledge
in the pretrained model is a better choice.

3 Method

We reformulate the task of zero-shot relation extraction as a semantic matching task optimized by prompt-
tuning. In this section, we will introduce our proposed method in detail. We start by defining the problem
we will tackle. Then we introduce how we reformulate zero-shot relation extraction, our prompt design
and the selection of label tokens. Finally, we introduce the strategy of making predictions with our model.

3.1 Problem Definition
For the zero-shot relation extraction task, we expect the model M to predict the right relation of two
annotated entities within the text, where the candidate relations are unseen during training.

Formally, let Rs = {r1s , . . . , rns } denotes the set of predefined relations. Each relation in Rs has
a corresponding textual description, composing the set of relation descriptions Ds = {d1s, . . . , dns }.
In the train set Ss = {S1

s , . . . , S
N
s }, each sample Si

s = (xi, ris) consists of a relational instance xi

and its relation label ris ∈ Rs, in which the relational instance xi is a piece of text si with annotated
entities ei1 and ei2, namely xi =

〈
si, ei1, e

i
2

〉
. Similarly, the set of unseen relations for testing is denoted

as Ru = {r1u, . . . , rmu }, together with the corresponding description set Du = {d1u, . . . , dmu }. Note
that all relations in Ru are unseen during training, i.e. Rs ∩ Ru = ∅. The test set is denoted as
Su = {S1

s , . . . , S
M
u }, in which each test sample Sj

u = (xj , rju).

3.2 Task Reformulation
In our work, we model zero-shot relation extraction as a semantic matching task where we need to
recognize the semantic equivalence relations between relational instances and the description of their
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Input Label
Original Sample Prompt
Cloud Nothings was formed in Cleveland . [CLS] [CT] Premise : input text [SEP] [CT] Hypothesis : relation description . Answer : [MASK] [SEP] Place of Foundation

Reformulated Samples
[CLS] [CT] Premise : Cloud Nothings was formed in Cleveland [SEP] [CT] Hypothesis : location where a group or organization was formed . Answer : [MASK] [SEP] match

[CLS] [CT] Premise : Cloud Nothings was formed in Cleveland [SEP] [CT] Hypothesis : musical instrument that a person plays . Answer : [MASK][SEP] not_match

[CLS] [CT] Premise : Cloud Nothings was formed in Cleveland [SEP] [CT] Hypothesis : league in which team or player plays or has played in . Answer : [MASK] [SEP] not_match

[CLS] [CT] Premise : Cloud Nothings was formed in Cleveland [SEP] [CT] Hypothesis : heritage designation of a historical site . Answer : [MASK] [SEP] not_match

Table 1: An example of the reformulation of zero-shot relation extraction task. Each original sample is
paired with various descriptions to form new samples.

corresponding relation labels. Specifically, we pair each test sample with the description of every candidate
relation, and label them with match/not_match to form semantic matching samples. And we set it to
have half the probability of pairing the training sample with the non-corresponding relation description
and half the probability of pairing it with the corresponding relation description. Therefore, the number of
positive and negative semantic examples in the training set is roughly equal. As shown in Table 1, the pair
is labeled as match only when the description matches the corresponding relation label of the relational
instance.

Formally, taking the training sample Si
s = (xi, ris) for example, we can derive a semantic matching

sample {(xi, dks , yk)} from it, where

yk =

{
match ris = rks

not_match otherwise,
(1)

We denote the newly derived train set for semantic matching as S′
s = {(xi, dks , yik)}i=1...N . Note

that from each test sample we will derive m semantic matching samples. The test set is denoted as
S′
u = {(xj , dlu, yjl)}j=1...M,l=1...m. In summary, the above efforts convert the original problem to a

semantic matching task, which is basically a 2-classification task that we could handle.
Is the two-tower architecture suitable for this task? The state-of-the-art zero-shot methods (Obamuyide
and Vlachos, 2018; Chen and Li, 2021) adopt a two-tower architecture to implement the above semantic
matching model. However, encoding instances and descriptions in isolation is not a good choice. Assuming
that we use 10 relations and 100 instances of each relation to train a two-tower model, there are 1000
different inputs for instance encoder and only 10 inputs for the description encoder. This significant
gap makes it difficult for description encoder to learn semantics effectively. Different from the two-
tower architecture, the proposed method directly models the semantic interaction between instances and
description during encoding. We will show the significant improvement brought by this change in the
experiments.

3.3 Model with Prompt Tuning

To model the semantic matching between relational instances and descriptions, we take advantage of
pre-trained language models together with prompt tuning. Noticeably, for zero-shot relation extraction,
the most critical issue during training is that very few relation descriptions are exposed to the model.
Furthermore, all of the descriptions in the test set are unseen in training. Thus, the rich linguistic
knowledge of PLM is necessary to ensure that the model understands the descriptions with limited training.
Additionally, to tackle the discrepancy of PLM between the pre-training and fine-tuning stage, prompt
tuning is necessary to reformulate downstream tasks as cloze-style tasks that BERT is good at. We believe
that prompt tuning provides an effective way to fully export knowledge from pre-trained language models
and also enables few-shot learning of the task. Due to the discussions, we build our model based on BERT,
which learns the objectives by prompt tuning.

Prompt Design For each reformulated sample (x, d, y), we fill the original text of relational instance and
the description into a prompt. We define the prompt x′ for relational instance x and relation description d
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[CLS] [CT] Premise : Cloud  … [SEP] [CT] Hypothesis : musical … Answer :  [MASK]  [SEP]

[CLS] [CT] Premise : Cloud …[SEP] [CT] Hypothesis : league in … Answer :  [MASK]  [SEP]

[CLS] [CT] Premise : Cloud …[SEP] [CT] Hypothesis : heritage … Answer :  [MASK]  [SEP]

[CLS] [CT] Premise : Cloud …[SEP] [CT] Hypothesis : location … Answer :  [MASK]  [SEP]

Figure 2: An overview of the process of relation prediction. The [MASK]ed positions within input
prompts are firstly filled by language model, then the logits of label tokens are collected to predict the
matching probability of input text and description. Lastly, we collect the matching probabilities for each
pair and estimate the distribution of relational labels based on them.

as
x′ =[CLS][CT] s′ [SEP][CT] d′

[MASK][SEP]

where s′ =Premise: s

d′ =Hypothesis: d Answer:,

(2)

where s is the input text, which is the original text of x; s′ and d′ denotes the prompt-formulated input
text and description respectively; [CT] denotes T different continuous tokens that make up the template.
Examples of input prompts could be seen in Table 1. The design of prompt aims to fully utilize the ability
of BERT as a rich knowledge base, and the introduction of continuous tokens in template aims to enhance
the representation ability of the prompt, since these tokens could be optimized in the whole embedding
space.

Label Token Selection Following the common settings of prompt tuning on classification task, we
also determine label tokens for each category (namely match or not_match) for consequential prompt
tuning. Basically, for the two categories, the probability distributions of masked language modeling
should be different and distinguishable. Thus, retrieving label tokens is the process of capturing features
that indicate the distribution associated with a certain category. We solve the problem by estimating
the distributions and retrieving tokens that have the most significant difference of probability among
distributions.

Formally, we partition the reformulated train set S′
s by category of label y. The matched and un-

matched samples are denoted as Ssm = {(x, d, y) ∈ S′
s|y = match} and Ssn = {(x, d, y) ∈ S′

s|y =
not_match}, respectively. The prompts of samples are then fed to BERT. For sample (x, d, y), the
estimated distribution of the [MASK] token is calculated as

P (w|x, d) = softmax(W (MLM(x′)) + b), (3)

where w denotes every token in vocabulary, P (w|x, d) indicates the estimated MLM distribution of the
sample, MLM denotes the output embedding of [MASK] token, W and b denote trainable weights of
linear projection.

The MLM distribution of categories is estimated by averaging the predicted distributions among samples
in the category:

Pm(w) =
1

|Ssm|

Ssm∑
(x,d,y)

P (w|x, d), (4)

Pn(w) =
1

|Ssn|

Ssn∑
(x,d,y)

P (w|x, d), (5)
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where Pm(w) and Pn(w) indicate the estimated MLM distribution of the category match and
not_match, |Ssm| and |Ssn| denote the number of matched and unmatched samples, respectively.

Finally, for each category, the tokens with top-K possibility difference between the MLM distribution
within and without the category are selected as the label tokens. The possibility difference of each word is
divided by their estimated occurrence possibility to ensure fair comparison.

{w1
m, . . . , wK

m} = topK
w

Pm(w)− Pn(w)

Pm(w) + Pn(w)
, (6)

{w1
n, . . . , w

K
n } = topK

w

Pn(w)− Pm(w)

Pm(w) + Pn(w)
. (7)

In Eq.6 and 7, K is the number of tokens selected for each category, {w1
m, . . . , wK

m} and {w1
n, . . . , w

K
n }

denote the selected label tokens of the category of {match and not_match} respectively.

3.4 Training and Inference
In this part, we introduce our strategy to derive relation predictions from the semantic matching model,
along with the training objectives.

Similar to other prompt-based methods, the output possibilities of label tokens are collected to perform
a 2-classification on label y. The possibility of categories is proportional to the production possibility of
label words. As shown in Eq.8, in implementation, we achieve this by adding the output logits of label
tokens and applying softmax on them:

P (y = c|x, d) = softmax

(
K∑
k=1

logP (wk
c |x, d)

)
, (8)

where c ∈ {match,not_match}.
The prediction of relation label for relational instance xi is done by collecting the possibilities of

match between xi and the descriptions of every candidate relation Rk ∈ R. As in Eq. 9, the matching
possibilities of xi and all candidate relations are collected as logits and are put to a softmax function to
predict the distribution of the relation label.

pik = P (yik = match|xi, Dk), (9)

P (rk|xi) = exp(pik)∑
rk∈R

exp(pik)
. (10)

Lastly, the model is trained on cross-entropy loss LCE to maximize the log-likelihood of all training
samples.

LCE =

N∑
i=1

CrossEntropy(ris, {piks }nk=1). (11)

As for making prediction on unseen samples, i. e. evaluating model on test sets, for each test sample
Sj
u, the predicted relation distribution of relational instance xj is illustrated in Eq. 12 and 13. We pick the

relation with the highest possibility as the predicted result.

pjl = P (yjl = match|xj , dlu), (12)

P (Rl
u|xj) =

exp(pjl)∑
rju∈Ru

exp(pik)
, (13)

r̂ju = argmax
l

P (Rl
u|xj). (14)
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Dataset # Inst. # relations % N/A

FewRel 56000 80 -
TACRED 106264 42 79.5%

Table 2: Original statistics of datasets FewRel and TACRED. %N/A is the proption of label "no_relation"
and "-" represents there is no N/A instances.

4 Experimental Setup

In this section, we describe the datasets for training and evaluating the proposed method. We also detail
the baseline models for comparison. Finally, we clarify the implementation details and hyperparameter
configuration of our method.

4.1 Datasets

Our main experiments are conducted on two relation extraction datasets: FewRel and TACRED. The
original statistics of the two datasets are listed in Table 2.
FewRel (Han et al., 2018a). There are 80 relations included in FewRel, a high-quality RE dataset with
56,000 instances from Wikipedia. To be consistent with the previous state-of-the-art method, we rearrange
the dataset. To be specific, we choose 65 relations as labeled set with predefined relation and select 15
relations as the unlabeled set with unseen relations.
TACRED (Zhang et al., 2017). TACRED is a human-annotated relation extraction dataset that contains
106,264 examples with 42 kinds of relations(including “no_relation”). The instances of special class
"no_relation" is removed, and we use the remaining 21,773 instances for training and evaluation.

We also add a low-resource setting, which means the size of training data is small. Under the setting,
the development set is provided, with about 5 examples per relation. As shown in Table 3 and Table
4, the three different values of n represents the number of data used for training are only 20, 100 and
200 respectively. For the setting, We randomly sample training data from each relation category roughly
evenly. Note that when sampling 20 training data, the number of relation categories in the training set of
both datasets is also reduced to 20. For both of the two datasets, we use the Macro-F1 score as the main
metric to evaluate the model’s performance.

4.2 Compared Methods

To verify the effectiveness of our proposed method, we select the following models for comparison. The
state-of-the-art method ZS-BERT (Chen and Li, 2021) adopted the two-tower architecture, this method
encodes sentences and relation descriptions separately and uses nearest neighbor search as the matching
function to obtain the prediction of unseen relations. When comparing with R-BERT (Wu and He, 2019)
and Attentional Bi-LSTM (Zhou et al., 2016), two supervised relation extraction (SRE) models, we take
the same way as ZS-BERT (Chen and Li, 2021) so that SRE models can carry out zero-shot prediction.
Specifically, we change the last layer to a fully-connected layer with tanh activation function. Based on
the input instance embedding and relation description’s embedding, the nearest neighbor search will be
applied to generate the zero-shot prediction. We also compare our method with ESIM (Chen et al., 2017),
a semantic matching model. To have a fair comparison, the strategy to generate relation predictions from
the semantic matching model is the same as ours. Finally, we introduce BERT(CLS) (Devlin et al., 2019)
to intuitively show the performance improvement brought by modeling the semantic interaction between
instances and descriptions during encoding.

4.3 Implementation Details

We adopt BERT-base-cased as the encoder and all experiments are conducted using a NVIDIA GeForce
RTX 3090 with 24GB memory. The number of continuous tokens is t = 4. We use AdamW for
optimization, in which the initial learning rate is 3e-5. Taking into account the randomness of network
initialization and random selection of n training instances, we run our experiment 5 times and the results
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FewRel(m=15)

Method n=20 n=100 n=200 n=all
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Att Bi-LSTM (Zhou et al., 2016) 14.19 13.88 14.03 15.75 19.8 17.55 20.83 26.00 23.13 38.13 32.05 34.82
ESIM (Chen et al., 2017) 0.60 5.45 1.08 0.90 6.56 1.58 7.66 7.38 7.52 36.97 32.51 34.60
R-BERT (Wu and He, 2019) 8.40 8.38 8.39 13.61 15.90 14.67 16.05 18.58 17.22 32.25 25.58 28.53
ZS-BERT (Chen and Li, 2021) 6.04 6.36 6.20 6.34 7.93 7.05 8.35 9.59 8.93 35.54 38.19 36.82
BERT(CLS) (Devlin et al., 2019) 44.95 33.65 38.49 49.99 47.20 48.55 53.14 52.13 52.62 67.62 59.12 63.09

Ours 44.94 45.72 45.33 50.21 51.72 50.96 52.49 53.98 53.23 64.48 62.45 63.45

Table 3: Main results on FewRel. The best results are bold. n is the number of provided training data and
m represents unseen relations’ number.

TACRED(m=11)

Method n=20 n=100 n=200 n=all
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Att Bi-LSTM (Zhou et al., 2016) 14.33 11.38 12.68 13.73 10.64 11.99 15.68 21.70 18.20 25.20 20.17 22.41
ESIM (Chen et al., 2017) 9.09 0.15 0.29 8.54 9.41 8.96 1.52 9.15 2.61 26.99 18.38 21.87
R-BERT (Wu and He, 2019) 14.59 7.27 9.70 18.93 12.12 14.78 23.62 19.67 21.47 44.66 45.86 45.25
ZS-BERT (Chen and Li, 2021) 10.79 9.35 10.02 12.53 9.25 10.64 14.98 15.79 15.38 38.08 42.72 40.27
BERT(CLS) (Devlin et al., 2019) 25.53 19.78 22.29 9.34 10.55 9.91 37.97 34.43 36.11 51.90 44.71 48.03

Ours 32.40 30.54 31.44 38.12 22.75 28.50 34.56 33.73 34.14 51.85 46.63 49.10

Table 4: Main results on TACRED. The best results are bold. n is the number of provided training data
and m represents unseen relations’ number.

we report are the average results. Other results of compared methods are gotten when the parameters
remain the same as its own published source code. We follow Soares et al. (2019) to augment each
instance with four reserved word pieces to mark the begin and end of each entity. The relation descriptions
of FewRel are obtained from (Han et al., 2018b) and TACRED’s are obtained from the TAC-KBP relation
ontology guidelines2.

5 Results and Discussion

5.1 Main Results

The main results of our experiments on FewRel and TACRED are listed in Table 3 and Table 4. First, as
can be seen, the method we propose steadily outperforms compared methods, and even the previous state-
of-the-art method (Chen and Li, 2021) performs much worse than our method when targeting at different
number of training instances. The reason is that the two-tower model which the previous state-of-the-art
method (Chen and Li, 2021) encodes the input instances and candidate relations with large quantitative
differences separately, and we argue that this modeling choice is insufficiently expressive for modeling the
semantic matching between instances and relation descriptions. What’s more, the simple matching function
(ZS-BERT uses nearest neighbor search) is incapable of capturing the complicated interactions between
input sentences and relation descriptions. Our proposed method yields rich interactions between the input
instance and candidate relation description, as they are jointly encoded to obtain a final representation.
At the layers of transformer, every word in the candidate relation description can attend to every word
in the input instance, and vice-versa, so our proposed method can produce a candidate-sensitive input
representation, which the ZS-BERT cannot. Second, it can be apparently found that the baseline’s
performance decreases significantly when the number of labeled data decreases, which indicates that large
number of in-domain labeled data of predefined relations is a prerequisite for their good performance.
While our method manage to derive the original knowledge in PLMs with prompt so that our method
still performs well when the labeled data is scarce. For FewRel, our MACRO-F1 score reaches 45.33%
training with 20 instances, which is better than the result of previous state-of-the-art using the complete

2https://tac.nist.gov/2015/KBP/ColdStart/guidelines/ TAC_KBP_2015_Slot_Descriptions_V1.0.pdf

CC
L 
20
22

Proceedings of the 21st China National Conference on Computational Linguistics, pages 786-797, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

793



Computational Linguistics

FewRel_TACRED TACRED_FewRel

Method n=all n=all
Prec. Rec. F1 Prec. Rec. F1

Att Bi-LSTM (Zhou et al., 2016) 21.86 27.72 24.44 31.27 39.26 34.82
ESIM (Chen et al., 2017) 22.67 18.91 20.62 19.38 11.93 14.77
R-BERT (Wu and He, 2019) 23.10 28.49 23.98 15.31 14.70 15.00
ZS-BERT (Chen and Li, 2021) 35.90 29.78 32.55 17.69 11.81 14.16

Ours 41.26 37.62 39.36 60.01 50.74 54.99

Table 5: Results on two constructed cross-domain tasks.

Prompt FewRel TACRED

[PRE] Question : [HYP] . true or false ? Answer : [MASK] 63.11 47.19
[PRE] Question : [HYP] ? [MASK] 61.09 48.79
[PRE] Is [HYP] true ? Answer : [MASK] 63.58 47.72
Does [HYP] agree with [PRE] ? [MASK] 62.44 45.73
Ours 63.45 49.10

Table 6: Results on different prompts.

train dataset. Such results verify the strong ability of low-resource learning for our proposed method.

5.2 Cross Domain Analysis

Through the analysis of main results, we have concluded that large-scale labeled data of predefined
relations is a prerequisite for the existing model to achieve good generalization performance on unseen
relations. An ensuing question is: when we deal with the problem of a field that lacks labeled data,
can we solve this problem by using labeled data with existing relations in common fields? To answer
this question, we conducted experiments on two constructed cross-domain zero-shot relation extraction
tasks.i.e.,: FewRel to TACRED and TACRED to FewRel. Specifically, pre-defined relations and their
labeled instances come from the source domain training dataset, and we evaluate performance on the
target domain testing dataset.
Table 5 shows the results. By comparing with the in-domain experimental results in the main experiment,
we can find: the change of domain does increase the semantic gap between the pre-defined and unseen
relations. As a result of that: For FewRel to TACRED, the experimental result of our method is reduced
from 49.10% to 39.36%, and for TACRED to FewRel, the result is reduced from 63.45% to 54.99%. But
our performance still outperforms compared methods, which shows the proposed method’s generalization
on unseen relations.

5.3 Influence of Pre-defined Relation Number

In this subsection, we study the effect of the number of seen predefined relations in the train dataset. And
we conduct the experiment on FewRel. For FewRel, the original number of predefined relations is 65, we
sample 33,17,9,5 classes from the original train dataset in turn, which correspond to 50%, 25%, 12.5%,
6.25% of the original classes represented by the scale on the horizontal axis in the figure. The results
of Figure 3 prove that the number of pre-defined relations does matter. As the number decreases, the
knowledge learned from the training set also decreases, which can weaken the model’s generalization of
unseen relations. So the performance of our proposed method also gets worse. Nevertheless, our method
can still be said to perform well. For FewRel, When we reduce the number of predefined relation types to
5, our performance still outperforms the previous state-of-the-art, which can validate the effectiveness of
our proposed method.
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Figure 3: Model results with different number of predifined training relations on FewRel.

5.4 Analysis on Different Prompt Forms
To explore the impact of different forms of prompt on the performance of the proposed method, we
conducted experiments on two datasets based on different prompts. Because the continuous tokens’
position relative to [HYP] and [PRE] doesn’t change, it is omitted from the table. As is shown in Table
6, inappropriate forms may lead to worse results, but on the other hand, a suitable prompt form can also
improve model performance since it can help elicit the existing knowledge in PLMs. Among all the
prompt forms, the form we have chosen is relatively well-behaved. Moreover, the prompt’s performance
is not necessarily the same as our intuition, in other words, the prompt we think good is not necessarily
good for PLMs and we think the automatic generation of prompts is a promising research direction.

6 Conclusions

In this work, we introduce a prompt-based zero-shot relation extraction method, which still maintains
superior generalization performance under low-resource settings. We clarify the limitations of the
two-tower architecture in previous state-of-the-art methods, and directly model the interaction between
instances and descriptions during encoding, which breaks the performance bottleneck of the previous
model. The introduce of prompt-tuning effectively elicit the knowledge in PLMs and significantly reduces
the dependence on predefined relations. We believe that these are the reasons why our method achieves
excellent results. Experiment results on two academic datasets show that our method outperforms the
previous state-of-the-art method by a large margin and this advantage will be further amplified in low
resource scenarios.
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