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Abstract

Learning sentence representation is a fundamental task in natural language processing and has
been studied extensively. Recently, many works have obtained high-quality sentence represen-
tation based on contrastive learning from pre-trained models. However, these works suffer the
inconsistency of input forms between the pre-training and fine-tuning stages. Also, they typically
encode a sentence independently and lack feature interaction between sentences. To conquer
these issues, we propose a novel Contrastive framework with Inter-sentence Interaction (Con-
IsI), which introduces a sentence-level objective to improve sentence representation based on
contrastive learning by fine-grained interaction between sentences. The sentence-level objective
guides the model to focus on fine-grained semantic information by feature interaction between
sentences, and we design three different sentence construction strategies to explore its effect.
We conduct experiments on seven Semantic Textual Similarity (STS) tasks. The experimental
results show that our ConIsI models based on BERTbase and RoBERTabase achieve state-of-
the-art performance, substantially outperforming previous best models SimCSE-BERTbase and
SimCSE-RoBERTabase by 2.05% and 0.77% respectively.

1 Introduction

Learning good universal sentence representation is a fundamental task and benefits a wide range of nat-
ural language processing tasks such as text classification and machine translation, especially for large-
scale semantic similarity computation and information retrieval. With the rise of pre-trained language
models (Devlin et al., 2019; Liu et al., 2019), many downstream tasks have achieved remarkable improve-
ments. However, the native sentence representation derived from pre-trained language models without
additional supervision are usually low-quality and can not be used directly (Reimers et al., 2019). Re-
cently, contrastive learning has become a popular approach to improve the quality of sentence represen-
tation in a self-supervised way.

Contrastive learning is an approach of learning effective feature representation by positive pairs and
negative pairs. It generally takes different views as positive or negative pairs for each sentence using var-
ious data augmentation ways. And it works by pulling semantically close positive instances together and
pushing negative instances away. However, current approaches based on contrastive learning mainly suf-
fer two problems: train-tuned bias and fine-grained interaction deficiency. Firstly, previous approaches
typically input a single sentence to the encoder at a time, which is inconsistent with the pre-training
stage of the language models. Most language models concatenate multiple sentences as the input form
at the pre-training stage. We argue that the inconsistency of input forms between the pre-training and
fine-tuning stages may harm the performance. Secondly, each sentence in a minibatch is encoded inde-
pendently while training, which lacks fine-grained interaction information between sentences. Accord-
ing to previous works in text matching (Li et al., 2021; Wang et al., 2021; Lu et al., 2022) , modeling a
proper interaction between input sentences can improve the performance of semantic feature embedding
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for representation-based models, but existing works on sentence representation ignore the importance of
this interaction.

Therefore, to conquer these drawbacks of current contrastive learning based methods, we propose
ConIsI, a Contrastive framework with Inter-sentences Interaction for self-supervised sentence represen-
tation. Firstly, we present to construct a sentence pair as positive instance for each sentence to alleviate
the train-tuned bias. By referring to an original sentence and a sentence pair as a positive pair, the model
can not only obtain effective representation of a single sentence, but also mitigate the train-tuned bias
between the pre-training and fine-tuning stages. Further, to solve the problem of lacking interaction be-
tween sentences, we propose a sentence-level objective to perform the inter-sentence interaction during
encoding. We pass a pair of sentences as a text sequence into the encoder and the target semantic cate-
gory of the two sentences is predicted. The sentence pair is sufficiently interacted through the internal
interaction mechanism in Transformer-based block (Vaswani et al., 2017) during encoding. Through the
inter-sentence interaction, the model can encode fine-grained semantic information and achieve further
improvement. Moreover, for a minibatch of n sentences, there are n ·(n−1)/2 interactive computations.
In order to ensure the training efficiency, we do not perform an interactive operation on all data due to
too many possible combinations. Instead, we artificially construct a sentence for each original sentence
to adjust the difficulty of the interactive objective, which only requires n interactive computations. We
propose several models based on three sentence construction strategies, named ConIsI-o1, ConIsI-o2,
and ConIsI-s, respectively. The overall model of our proposed ConIsI can be seen in Figure 1.

Our contributions can be summarized as follows:

• We propose to construct each positive pair with an original sentence and a sentence pair based
on contrastive learning, which not only learns effective representation by pulling semantically close
samples together but also mitigates the train-tuned bias between pre-training and fine-tuning phases.

• We propose a simple but effective sentence-level training objective based on inter-sentence interac-
tion. It alleviates the problem of interaction deficiency among sentences and enriches the semantic
information of sentence representation. We also present three sentence construction strategies for
interactive sentence pairs and analyze their effects.

• We conduct extensive experiments on seven standard Semantic Textual Similarity (STS) datasets.
The results show that our proposed ConIsI-s-BERTbase and ConIsI-s-RoBERTabase achieve
78.30% and 77.34% averaged Spearman’s correlation, a 2.05% and 0.77% improvement over
SimCSE-BERTbase and SimCSE-RoBERTabase respectively, which substantially outperforms the
previous state-of-the-art models.

2 Related Work

Sentence representation built upon the distributional hypothesis has been widely studied and improved
considerably. Early works (Kiros et al., 2015; Hill et al., 2016; Logeswaran and Lee, 2018) inspired by
word2vec (Mikolov et al., 2013) lead to strong results by predicting surrounding information of a given
sentence. The emergence of pre-trained models such as BERT (Devlin et al., 2019) shows much great
potential for sentence representation. Recently, many works have explored how to learn better sentence
embeddings from the pre-trained models.

Supervised Methods A common supervised step of learning a model is fine-tuning with labeled data
in downstream training sets. Several works build upon the success of using annotated natural language
inference (NLI) datasets (including Stanford NLI (Bowman et al., 2015) and Multi-Genre NLI (Williams
et al., 2018)) for sentence representation, which projects it as a 3-way classification task (entailment,
neutral, and contradiction) to get better sentence embeddings. Conneau et al. (2017) use a BiLSTM-
based model as encoder, and they train it on both Stanford NLI and Multi-Genre NLI datasets. Universal
Sentence Encoder (Cer et al., 2018) uses the Stanford NLI dataset to enhance the unsupervised training
by adopting a Transformer-based model. Sentence-BERT (Reimers et al., 2019) that adopts a Siamese
network (Chopra et al., 2005) with a shared BERT encoder is also trained on Stanford NLI and Multi-
Genre NLI datasets.
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Unsupervised Methods Some works focus on using the regularization method to improve the quality
of raw sentence representation generated by original BERT. Bert-flow (Li et al., 2020) puts forward a
flow-based approach to solving the problem that native embeddings of BERT occupy a narrow cone in
the vector space. Similarly, Bert-whitening (Su et al., 2021) maps BERT’s embeddings to a standard
Gaussian latent space by whitening the native embeddings. They all try to alleviate the representation
degeneration of pre-trained models and yield substantial improvement.

Self-supervised Methods The sentence-level training objective in language models like BERT in-
spires a line of work over self-supervised sentence representation learning. BERT includes the next
sentence prediction (NSP) task, which predicts whether two sentences are neighboring or not. How-
ever, Liu et al. (2019) prove that NSP has minimal effect on the final performance and even does harm
to the training model. Therefore, many works have proposed various self-supervised objectives for pre-
training sentence encoders. Cross-Thought (Wang et al., 2020) and CMLM (Yang et al., 2021) are two
similar approaches that present to predict surrounding tokens of given contextual sentences. And Lee et
al. (2020) propose to learn an objective that predicts the correct sentence ordering provided the input of
shuffled sentences.

As a self-supervised learning method, contrastive learning with no need for scarce labeled data attracts
much attention, and many excellent works have been proposed. Inspired by SimCLR (Chen et al., 2020)
which applies data augmentation techniques on the same anchor such as image rotating, scaling, and
random cropping to learn image representation in the computer vision community, some works pay
attention to getting effective positive pairs by using similar approaches. In the natural language process
community, many works apply textual augmentation techniques on the same sentence to obtain different
views as positive pairs based on the SimCLR framework. Zhang et al. (2020) extract global feature of a
sentence as positive pairs, Wu et al. (2020) and Yan et al. (2021) take some token-level transformation
ways such as word or subword deletion or replacement, and Gao et al. (2021) apply dropout mask of
Transformer-based encoder to get positive pairs. And Zhang et al. (2021) adopt BYOL (Grill et al.,
2020) framework using back-translation data.

3 Methodology

In this section, we present ConIsI, a contrastive framework with inter-sentence interaction for self-
supervised sentence representation, which contains two parts: (1) the ConIsI model of joint contrastive
learning objective and inter-sentence interactive objective (Section 3.1), and (2) the strategies of sentence
construction in the inter-sentence interactive objective (Section 3.2).

3.1 Model
The ConIsI model joints contrastive learning and inter-sentence interactive objectives. The inter-sentence
interactive objective is a binary classification task that performs fine-grained interaction between sen-
tences and predicts whether two sentences are in the same semantic category. The overall architecture is
shown in Figure 1.

3.1.1 Data Augmentation
To alleviate the train-tuned bias caused by different input forms, we perform sentence-level repetition
operation to construct positive instances. For each sentence, our approach proposes to take a sentence pair
as positive instance. Specifically, given a tokenized sentence x = {t1, t2, ..., tl} (l is the max sequence
length), we define the sentence pair as Y = {t1, t2, ..., tl, t1, t2, ..., tl}, which is the concatenation of two
original sentences. For each minibatch of sentences B = {xi}Ni=1 (N is the batch size), we perform data
augmentation operation on each sentence and then get the positive instances BAug = {Yi}Ni=1.

3.1.2 Sentence Pair Composition
To perform fine-grained interaction between sentences, we take a pair of sentences as a textual sequence
to input into the encoder. The input two sentences can get fine-grained interaction with each other through
Transformer-based block. Also, considering the training efficiency, we do not perform interaction on all
sentences as there are too many combinations of sentence pairs. Instead, we construct the composed
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Origin sentence xi

Composed pair 

Zi = { xi , ci }
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Figure 1: The overall structure of the ConIsI model. It mainly consists of five components: the data
augmentation operation (①), the text composition part (②), the encoder ψ(·) mapping the input data to
the sentence representation space, the CL Head g(·) and the Interaction Classifier f(·) applying for the
contrastive loss and the interactive loss respectively.

sentence pair Zi = {xi, ci} for each sentence xi in B. Specifically, we try to obtain a sentence ci which
belongs to a different semantic category from xi. Then we concatenate the sentence xi and the sentence
ci as a composed sentence pair Zi. We perform the sentence pair composition operation on each sentence
in minibatch B = {xi}Ni=1 and then get the composed pairs BCom = {Zi}Ni=1. We explore three different
sentence construction strategies to obtain ci in section 3.2.

3.1.3 Encoding

We take pre-trained checkpoints of BERT or RoBERTa as the encoder model to obtain sentence repre-
sentation. For BERT, there are two input forms to fine-tune downstream tasks: one is the single sentence
input, and the other is the sentence pair input. Previous works based on contrastive learning input a
single sentence to the pre-trained model to learn sentence embeddings, which is inconsistent with the
pre-training stage and suffers the train-tuned bias. To alleviate this problem and maintain the model’s
ability of encoding a single sentence meanwhile, we propose to adopt both two forms. The original sen-
tence xi is taken as a single sentence and input to the encoder 1. The augmented sentence pair Yi and the
composed sentence pair Zi are taken as sentence pairs and input to the encoder 2. And to ensure that the
augmented sentence pair has the same meaning as the original sentence, the max length of the tokenizer
for the former is set double for the latter. The encoder 1 and the encoder 2 share the same parameters.

For RoBERTa whose input forms are a single sentence or several concatenated sentences separated
by “</s>” token, we input the original sentence into the encoder 1. And The augmented sequence pair
and the composed sentence pair are taken as two concatenated sentences and input to the encoder 2.
Similarly, the max length of the tokenizer for encoder 2 is set double for that of encoder 1, and the two
encoders share the same parameters.

3.1.4 Contrastive Learning

Contrastive learning aims to learn effective representation by pulling semantically close objects and
pushing ones that are dissimilar away. We follow the SimCRL (Chen et al., 2020) contrastive framework
and take a cross-entropy objective (Chen et al., 2017) in our approach.

For each minibatch B = {xi}Ni=1, the contrastive loss is defined on B and the augmented instances
BAug = {Yi}Ni=1. Let i ∈ {1, .., N} denote the index of an arbitrary instance in augmented set BAug, and
let j ∈ {1, .., N} be the index of the other instance in BAug. We refer to (xi, Yi) as a positive pair, while
treating the other N − 1 examples Yj(j ̸= i) in BAug as negative instances for this positive pair. After
the positive pair is encoded, we obtain the last hidden state of the special “[CLS]” token as the contextual
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representation of the corresponding sample, denoted as h[CLS].

hx[CLS], h
x
1 , ..., h

x
l , h

x
[SEP] = ψ1(x)

hY[CLS], h
Y
1 , ..., h

Y
l , h

Y
[SEP], h

Y
′

1 , ..., hY
′

l , hY
′

[SEP] = ψ2(Y )
(1)

Then we add a predictor layer g(·) to map h[CLS] to the contrastive embedding space and obtain h ,
which is given as follows:

h = Elu(BN1(W1 · h[CLS] + b1)) (2)

where W1 ∈ Rd×d is the weight matrix, b1 ∈ Rd×1 is the bias vector, and d is the number of features in
hidden layers. Both W1 and b1 are trainable parameters. BN1 is the BatchNorm1d layer and Elu is the
activate function.

Let hxi , hYi and hYj be the corresponding outputs of the head g(·). Then for xi, we try to separate Yi
apart from all negative instances by minimizing the following,

ℓIi = −log esim(hx
i ,h

Y
i )/τ∑N

j=1e
sim(hx

i ,h
Y
j )/τ

(3)

where τ denotes the temperature parameter we set as 0.05. We choose cosine similarity sim(·) as the

similarity calculation function between a pair of normalized outputs, sim(h1, h2) =
hT
1 h2

||h1||·||h2|| .
The contrastive loss is then averaged over all pairs,

LContrastive =
N∑
i=1

ℓIi /N (4)

3.1.5 Interactive Classification
When applying a training objective after getting sentence embeddings in previous work, each sentence is
encoded independently and can not see other sentences while encoding. Therefore, the semantic infor-
mation contained in each sentence embeddings is insufficient. In contrast, modeling sentence pairs can
effectively alleviate this problem. While encoding a sentence pair through the model, the two sentences
can obtain fine-grained interaction information from each other. We propose to model an inter-sentence
interaction objective between input sentences to enrich semantic information for sentence embeddings.

We encode the sentence pairs into the semantic category space for self-supervised classification. Dif-
ferent from contrastive learning objective, the interactive objective learns fine-grained semantic informa-
tion through the interaction between sentences. The interactive loss is implemented on the augmented
instance Yi inBAug and the corresponding composed instance Zi in BCom. We refer to the two sentences
{xi, xi} in augmented pair Yi as being in the same category, and the sentences {xi, ci} in composed pair
Zi as being in different category. Our model passes Yi and Zi to the encoder 2 and obtains the last hidden
state of the special “[CLS]” token as their sentence pair embeddings, respectively.

hY[CLS], h
Y
1 , ..., h

Y
l , h

Y
[SEP], h

Y
′

1 , ..., hY
′

l , hY
′

[SEP] = ψ2(Y )

hZ[CLS], h
Z
1 , ..., h

Z
l , h

Z
[SEP], h

Z
′

1 , ..., hZ
′

l , hZ
′

[SEP] = ψ2(Z)
(5)

We use a predictor and linear layers to encode h[CLS] into the semantic category space to obtain r.
r ∈ Rd is the semantic category representation. The formulas are as follows:

h = Elu(BN2(W2 · h[CLS] + b2)) (6)

r =W3 · h+ b3 (7)

whereW2,W3 ∈ Rd×d are the weight matrixs, b2, b3 ∈ Rd×1 are the bias vectors, and d is the number of
features in the hidden layers. W2,W3 and b2, b3 are all learnable parameters, and W2, b2 share the same
parameters with W1 and b1 in g(·) respectively. BN2 share the same parameters with BN1 and Elu is
the activate function.

Let rYi and rZi denote the corresponding outputs of the head f(·). Then we predict whether each pair
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is in the same category by optimizing the following objective,

ℓIIi = −log er
Y
i

er
Y
i + er

Z
i

(8)

Then the interactive loss for a mini-batch with N sentence pairs is as follows:

LInteractive =
N∑
i=1

ℓIIi /N (9)

3.1.6 Overall objective

Finally, our overall objective is,

L = (1− λ) · LContrastive + λ · LInteractive

= (1− λ) ·
N∑
i=1

ℓIi /N + λ ·
N∑
i=1

ℓIIi /N
(10)

where ℓIi , ℓIIi are defined in Eq(3) and Eq(8), respectively. λ is the balanced parameter between the
contrastive loss and the interactive loss. During training, we jointly optimize a contrastive learning
objective and an inter-sentence interactive objective over the original sentences, the augmented sentence
pairs and composed sentence pairs. Then we fine-tune all the parameters using the joint objective.

3.2 Sentence Construction Techniques

Intuitively, two semantically opposite sentences are easier for the model to distinguish than two seman-
tically closer sentences. As a self-supervised classification task, the difficulty of the interactive objective
can significantly affect the performance of the model. Thus we propose different sentence construction
techniques to control the complexity of the inter-sentence interactive objective. We try to construct a
sentence ci that is not in the same semantic category as the original sentence xi in section 3.1.2. We
explore three sentence construction methods, two of which are constructing from the original sentence
as shown in section 3.2.1, and one is sampling from other sentences in section 3.2.2.

3.2.1 From Original Sentence

Since the bidirectional language models encode a word based on contextual information, sentences with
high textual similarity usually are in high semantic similarity in representation. However, the sentences
with high textual similarity may not actually be semantically similar. For example, “this is not a prob-
lem.” and “this is a big problem.” are two sentences with high textual similarity because of similar
wording, but they are not semantically similar because of opposite meanings. The models usually fail to
distinguish textual similarity and semantic similarity, which has been discussed deeply in the vision field
(Robinson et al., 2021; Chen et al., 2021). As a result, a model may overestimate the semantic similarity
of any pairs with similar wording regardless of the actual semantic difference between them. Therefore,
we propose to construct sentences that are semantically different but are textually similar to the original
sentence to improve the fine-grained semantic discrimination ability of the model.

Subword Replacement The subword replacement mechanism randomly substitutes some sub-words
in a sentence. Specifically, given a tokenized sub-word sequence x = {t1, t2, ..., tl} (l is the max se-
quence length) after processing by a sub-word tokenizer. Firstly, We mask a certain proportion of the
tokenized sequence x at random. If the i-th token is chosen, then we replace the masked token with a
random token 80% of the time, leaving the masked token unchanged 20% of the time.

Word Replacement The word replacement mechanism works on full words in a sentence. Different
from subword replacement, the word replacement mechanism randomly substitutes some full words with
antonyms. If a word is chosen, then we replace the word with its antonym. We use the WordNet (Miller,
1993) to obtain the antonym of a word.
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3.2.2 From Other Sentences

Different from constructing a new sentence from the original sentence, this method selects one other
sentence from the training data at random. Specifically, for a given sentence xi within the minibatch
B = {xi}Ni=1, we randomly select sentence xk (k ∈ [1, N ], k ̸= i) as ci for composed pair.

We apply the three sentence construction strategies to our ConIsI model, named ConIsI-o1, ConIsI-o2,
and ConIsI-s. Among them, ConIsI-o1 and ConIsI-o2 represent the joint contrastive objective and inter-
active objective under the subword replacement and word replacement, respectively. ConIsI-s represents
the jointing of contrastive learning and the interactive objective under the sampling from other sentences.

4 Experiments

4.1 Data

We train our model on the same one million sentences randomly sampled from English Wikipedia that
are provided by SimCSE0. All our experiments are fully self-supervised and note that no STS sets are
used for training.

We evaluate our approach on multiple Semantic Textual Similarity (STS) datasets: STS12-16 (STS12
- STS16) (Agirre et al., 2012; Agirre et al., 2013; Agirre et al., 2014; Agirre et al., 2015; Agirre et
al., 2016), STS Benchmark (STS-B) (Cer et al., 2017) and SICK-Relatedness (SICK-R) (Marelli et
al., 2014), which are seven standard STS benchmark datasets and are extensively used to measure the
sentence embeddings and the semantic similarity of sentence pairs. These datasets are composed of pairs
of sentences and one golden score between 0 and 5, where a higher score indicates a higher similarity
between two sentences in Table 1. The statistics is shown in Table 2.

Sentence1 Sentence2 Golden Score
a plane is taking off . an air plane is taking off . 5.000
a cat is playing a piano . a man is playing a guitar . 0.600
a man is playing a guitar . a man is playing a trumpet . 1.714

Table 1: The sentence samples of STS datasets.

STS12 STS13 STS14 STS15 STS16 STSb SICK-R Total
Number of train samples 0 0 0 0 0 5479 4500
Number of valid samples 0 0 0 0 0 1500 500
Number of test samples 3108 1500 3750 3000 1186 1379 4927
Number of Unlabeled Texts 6216 3000 7500 17000 18366 17256 19854 89192

Table 2: The statistics of STS datasets.

4.2 Evaluation Setup

Following previous work, we evaluate our method on STS tasks using the SentEval toolkit (Conneau and
Kiela, 2018). We take the “[CLS]” embedding generated by the last hidden layer of the encoder 1 in
Figure 1 as the sentence representation. To evaluate the sentence representation for a fair comparison,
we follow the settings of Sentence-BERT (Reimers et al., 2019) and SimCSE (Gao et al., 2021): (1) we
directly take cosine similarities for all STS tasks without training extra linear regressor on top of frozen
sentence embeddings for STS-B and SICK-R; (2) we report Spearman’s rank correlation coefficients
rather than Pearson’s; (3) and we take the “all” setting for STS12-STS16 which fuses data from different
topics together to make the evaluation closer to real-world scenarios.

0https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m for simcse.txt
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4.3 Training Details

We implement our ConIsI model with Huggingface’s transformers package1 4.2.1 based on Python 3.8.12
and Pytorch 1.8.0 and run the model on Nvidia 3090 GPU. We start our experiments from pre-trained
checkpoints of BERT or RoBERTa. All experiments use the Adam optimizer and the random seed is
set as 42. The temperature parameter τ is set as 0.05, and the dropout rate is set as 0.1. Furthermore,
the hyper-parameter settings of the models are shown in Table 3. Besides, We train our models for one
epoch and evaluate the model every 125 training steps.

Model Batch size Max sequence length Learning rate Hidden size λ

ConIsI-s-BERTbase 64 32 3e-5 768 0.8
ConIsI-s-RoBERTabase 64 32 3e-5 768 0.1
ConIsI-s-BERTlarge 64 28 3e-5 1024 0.1

Table 3: Hyper-parameters settings for ConIsI-s models.

4.4 Baselines

We compare our model with previous strong baseline models on STS tasks, including:
(1) Recent state-of-the-art self-supervised models using a contrastive objective: SimCSE (Gao et al.,
2021), IS-BERT (Zhang et al., 2020), ConSERT (Yan et al., 2021), Mirror-BERT (Liu et al., 2021),
DeCLUTR (Giorgi et al., 2021), CT-BERT (Carlsson et al., 2020), BSL (Zhang et al., 2021), SG-OPT
(Kim et al., 2021);
(2) Post-processing methods like BERT-flow (Li et al., 2020) and BERT-whitening (Su et al., 2021);
(3) And naive baselines like averaged GloVe embeddings (Pennington et al., 2014); averaged first and
last layer BERT embeddings.

4.5 Main Results

Table 4 shows the evaluation results on seven STS tasks. ConIsI-s-BERTbase can significantly out-
perform SimCSE-BERTbase and raise the averaged Spearman’s correlation from 76.25% to 78.30%,
which brings a 2.05% average improvement over the SimCSE-BERTbase model on seven tasks. For the
RoBERTa model, ConIsI-s-RoBERTabase can also improve upon SimCSE-RoBERTabase from 76.57%
to 77.34%, a 0.77% increase. And for the ConIsI-s-BERTlarge model, we also achieve better perfor-
mance, from 78.41% to 79.55%, a 1.14% increase. In general, our method achieves substantial improve-
ment on the seven STS datasets over baseline models.

4.6 Ablation Study

In this section, we discuss the effects of different components. In our model, both the contrastive learning
objective and the inter-sentence interactive objective are crucial because they are committed to obtain-
ing the ability of normal semantic encoding and fine-grained semantic information, respectively. If we
remove the inter-sentence interactive objective, the model becomes a SimCSE-like model with a differ-
ent positive instance construction way, causing a drop of 1.30%. If we remove the contrastive learning
objective, the performance of Avg. drops significantly by more than 10% (see Table 5). This results
show that it is important to have common and fine-grained attributes that exist together in the sentence
representation space. When compared with SimCSE-BERTbase, our proposed method of taking a sen-
tence pair as positive instance brings an improvement of 0.75%. The result shows that the problem of
train-tuned bias is alleviated by the input form of augmented sentence pair.

4.7 Analysis

In this section, we conduct a series of experiments to validate our model better. We use BERTbase or
RoBERTabase model and all reported results are evaluated on the seven STS tasks.

1https://github.com/huggingface/transformers
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
GloVe-embeddings(avg.)♣ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase(first-last avg.)3 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase-flow3 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening3 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERTbase

§ 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
BSL-BERTbase

† 67.83 71.40 66.88 79.97 73.97 73.74 70.40 72.03
CT-BERTbase

3 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
ConSERT-BERTbase

‡ 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
SG-OPT-BERTbase

♭ 66.84 80.13 71.23 81.56 77.17 77.23 68.16 74.62
Mirror-BERTbase

♮ 69.10 81.10 73.00 81.90 75.70 78.00 69.10 75.40
SimCSE-BERTbase

3 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
∗ConIsI-s-BERTbase 70.92 84.35 76.67 83.53 78.94 82.15 71.55 78.30
RoBERTabase(first-last avg.)3 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTabasewhitening3 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
DeCLUTR-RoBERTabase3 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99
SimCSE-RoBERTabase3 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
∗ ConIsI-s-RoBERTabase 71.21 83.31 75.11 81.13 80.73 80.50 69.39 77.34
SimCSE-BERTlarge

3 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
∗ ConIsI-s-BERTlarge 72.33 86.14 77.42 84.83 79.60 81.76 74.78 79.55

Table 4: Sentence embedding performance on STS tasks in terms of Spearman’s correlation and “all”
setting. ♣: results from (Reimers et al., 2019); §: results from (Zhang et al., 2020); †: results from
(Zhang et al., 2021); ‡: results from (Yan et al., 2021); ♭: results from (Kim et al., 2021); ♮: results from
(Liu et al., 2021); 3: results from (Gao et al., 2021); ∗: results from ours.

Model Avg.
SimCSE-BERTbase 76.25
ConIsI-s-BERTbase 78.30

w/o fine-grained classification loss 77.00 (-1.30)(+0.75)
w/o contrastive loss 67.68 (-10.62)

Table 5: Avg. results of seven STS tasks for ConIsI-s-BERTbase model variants.

4.7.1 Validation of Sentence Construction Strategies

We compare the three models ConIsI-o1, ConIsI-o2, and ConIsI-s to verify the effects of our proposed
sentence construction strategies for the inter-sentence interactive objective.

Table 6 shows that our proposed sentence construction techniques for the inter-sentence interac-
tive objective improve the performance of self-supervised sentence representation. Compared with
SimCSE-BERTbase and SimCSE-RoBERTabase, the Spearman’s correlation of ConIsI-o1-BERTbase

and ConIsI-o1-RoBERTabase on seven STS tasks have improved by 0.89% and 1.78% respectively, a
1.34% increase on average. The results of ConIsI-o2-BERTbase and ConIsI-o2-RoBERTabase on seven
STS tasks have improved by 1.10% and 1.56% respectively, a 1.33% increase on average. The results
of ConIsI-s-BERTbase and ConIsI-s-RoBERTabase have improved by 2.05% and 0.77% respectively, a
1.41% increase on average.

As the Table 6 shown, the ConIsI-o1-RoBERTabase and ConIsI-o2-RoBERTabase implemented
by the strategies of “from original sentence” bring more remarkable improvement to the SimCSE-
RoBERTa model, exceeding 1.5%. And the ConIsI-s models implemented by the strategy of “from
other sentences” gets a lower boost to the SimCSE-RoBERTa model, but a greater improvement to
the SimCSE-BERT model. That is, RoBERTa is more capable of encoding fine-grained features
and distinguishing textual similarity and semantic similarity than BERT. In contrast, BERT focuses
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Model Avg. Model Avg.
SimCSE-BERTbase 76.25 SimCSE-RoBERTabase 76.57
∗ConIsI-o1-BERTbase 77.14 ∗ConIsI-o1-RoBERTabase 78.35
∗ConIsI-o2-BERTbase 77.35 ∗ConIsI-o2-RoBERTabase 78.13
∗ConIsI-s-BERTbase 78.30 ∗ConIsI-s-RoBERTabase 77.34

Table 6: Validation results of sentence construction strategies.

more on encoding common features in the sentence representation space. We argue that the pre-trained
RoBERTa model pays more attention to fine-grained features because of the more refined optimiza-
tion techniques than BERT in the pre-training phase. So ConIsI-o1-RoBERTabase and ConIsI-o2-
RoBERTabase achieve better performance than ConIsI-s-RoBERTabase. While ConIsI-s-BERTbase

achieves better performance than ConIsI-o1-BERTbase and ConIsI-o2-BERTbase.
Overall, our proposed contrastive framework with inter-sentence interaction have improved perfor-

mance compared with the previous best model SimCSE. The experimental results show that the three
sentence construction strategies are effective for the ConIsI model. We take the ConIsI-s model’s results
as our final ConIsI model’s performance.

4.7.2 Effect of Coefficient λ
λ is the weighted hyperparameter for contrastive loss and inter-sentence interactive loss involved in the
final joint objective function Eq(10). A smaller λ means a larger contrastive loss weight, indicating that
the model pays more attention to common features. And a larger λmeans a larger interactive loss weight,
indicating that the model focuses more on fine-grained features. Our experiments find that λ plays an
essential role in the joint objective, and the experimental results are shown in Table 7. When λ = 0, the
model becomes a SimCSE-like model, and the result shows that our proposed method to take a sentence
pair as the positive instance is effective, which brings an improvement over SimCSE-BERTbase(Gao et
al., 2021) by 0.75%. The results prove that the interactive objective is helpful to enhance the performance
of the model under different λ. And when λ = 0.8, it achieves the best performance on the STS datasets
and gets substantial improvement over that when λ = 0.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Avg. 77.00 77.97 77.42 77.78 77.81 78.03 77.76 77.93 78.30 77.58

Table 7: Avg. results of seven STS tasks under different λ for ConIsI-s-BERTbase model.

5 Conclusion

In this paper, we propose the ConIsI model, which joints contrastive learning and inter-sentence interac-
tive training objective for optimization. We propose to perform a sentence repetition operation on each
sentence and then take the augmented pair as a positive instance based on contrastive learning, which alle-
viates the train-tuned bias of language models. We also propose the inter-sentence interactive objective,
which guides the model to focus on fine-grained semantic information by feature interaction between
sentences. Moreover, we design three sentence construction strategies in the inter-sentence interactive
objective. Experimental results show our proposed ConIsI achieves substantial improvement over the
previous state-of-the-art models. In the future, we will further explore more effective inter-sentence
interactive way to enrich semantic information in sentence representation, and we hope to apply our
approach to other downstream tasks such as machine translation.
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