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Abstract

This paper presents our submission to the 2022
edition of the CASE 2021 shared task 1, sub-
task 4. The EventGraph system adapts an end-
to-end, graph-based semantic parser to the task
of Protest Event Extraction and more specifi-
cally subtask 4 on event trigger and argument
extraction. We experiment with various graphs,
encoding the events as either “labeled-edge” or
“node-centric” graphs. We show that the “node-
centric” approach yields best results overall,
performing well across the three languages of
the task, namely English, Spanish, and Por-
tuguese. EventGraph is ranked 3rd for English
and Portuguese, and 4th for Spanish. Our code
is available at: https://github.com/
huiling-y/eventgraph_at_case

1 Introduction

The automated extraction of socio-political event
information from text constitutes an important
NLP task, with a number of application areas for
social scientists, policy makers, etc. The task
involves analysis at different levels of granular-
ity: document-level, sentence-level, and the fine-
grained extraction of event triggers and arguments
within a sentence. The CASE 2022 Shared Task
1 on Multilingual Protest Event Detection extends
the 2021 shared task (Hürriyetoğlu et al., 2021a)
with additional data in the evaluation phase and
features four subtasks: (i) document classification,
(ii) sentence classification, (iii) event sentence co-
reference, and (iv) event extraction.

The task of event extraction involves the detec-
tion of explicit event triggers and corresponding
arguments in text. Current classification-based ap-
proaches to the task typically model the task as a
pipeline of classifiers (Ji and Grishman, 2008; Li
et al., 2013; Liu et al., 2020; Du and Cardie, 2020;
Li et al., 2020) or using joint modeling approaches
(Yang and Mitchell, 2016; Nguyen et al., 2016; Liu
et al., 2018; Wadden et al., 2019; Lin et al., 2020).

In this paper, we present the EventGraph sys-
tem and its application to Task 1 Subtask 4 in the
2022 edition of the CASE 2021 shared task. Event-
Graph is a joint framework for event extraction,
which encodes events as graphs and solves event
extraction as semantic graph parsing. We show
that it is beneficial to model the relation between
event triggers and arguments and approach event
extraction via structured prediction instead of se-
quence labelling. Our system performs well on the
three languages, achieving competitive results and
consistently ranked among the top four systems.

In the following, we briefly describe the data
supplied by the shared task organizers and present
Subtask 4 in some more detail. We then go on
to present an overview of the EventGraph system
focusing on the encoding of the data to semantic
graphs and the model architecture. We experiment
with several different graph encodings and provide
a more detailed analysis of the results.

2 Data and task

Our contribution is to subtask 4, which falls under
shared task 1 – the detection and extraction of socio-
political and crisis events. While most subtasks of
shared task 1 have sentence-level annotations, sub-
task 4 has been annotated at the token-level while
providing the annotators the document-level con-
texts. Subtask 4 focuses on the extraction of event
triggers and event arguments related to contentious
politics and riots (Hürriyetoğlu et al., 2021a). This
subtask has been previously approached as a se-
quence labeling problem combining various meth-
ods of fine-tuning pre-trained language models
(Hürriyetoğlu et al., 2021a).

The data supplied for Subtask 4 is identical to
that of the 2021 edition of the task, as presented
in Hürriyetoğlu et al. (2021a). The data is part of
the multilingual extension of the GLOCON dataset
(Hürriyetoğlu et al., 2021b) with data from En-
glish, Portuguese, and Spanish. The source of the
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Figure 1: Graph representations of sentence “Chale was allegedly chased by a group of about 30 people and was
hacked to death with pangas, axes and spears.”

data is protest event coverage in news articles from
specific countries: China and South Africa (En-
glish), Brazil (Portuguese), and Argentina (Span-
ish). The data has been doubly annotated by grad-
uate students in political science with token-level
information regarding event triggers and arguments.
Hürriyetoğlu et al. (2021a) reports the token level
inter-annotator agreement to be between 0.35 and
0.60. Disagreements between annotators were sub-
sequently resolved by an annotation supervisor. Ta-
ble 1 shows the number of news articles for each
of the languages in the task, distributed over the
training and test sets. This clearly shows that the
majority of the data is in English with only a frac-
tion of articles in Portuguese and Spanish.

Relevant statistics for the different event compo-
nent annotations for Subtask 4 are presented in Ta-
ble 1 detailing the number of triggers, participants,
and various other types of argument components,
such as place, target, organizer, etc. Once again,
the table also illustrates the comparative imbalance
in data across the three languages.

3 System overview

We use our system, EventGraph, that adapts an
end-to-end graph-based semantic parser to solve
the task of extracting socio-political events. In
what follows, we give more details about the graph
representation and the model architecture of our
system.

3.1 Graph representations

We represent each sentence as an event graph,
which contains event trigger(s) and arguments as
nodes. In an event graph, edges are constrained
between the trigger(s) and the corresponding ar-
guments. However, since our system can take as
input graphs in a general sense the precise graph
representation that works best for this task must

English Portuguese Spanish

train 732 (2,925) 29 (78) 29 (91)
dev 76 (323) 4 (9) 1 (15)
test 179 (311) 50 (190) 50 (192)

trigger 4,595 122 157
participant 2,663 73 88
place 1,570 61 15
target 1,470 32 64
organizer 1,261 19 25
etime 1,209 41 40
fname 1,201 48 49

Table 1: Top: Number of articles (sentences) for the
different languages in Subtask 4 (Hürriyetoğlu et al.,
2021a). About 10 percent (in terms of sentences) of the
official training data is used as the development split.
Bottom: Counts for the different event components in
Subtask 4 training data for English, Portuguese, and
Spanish (Hürriyetoğlu et al., 2021a).

be determined empirically. We here explore two
different graph encoding methods, where the labels
for triggers and arguments are represented either
as edge labels or node labels, namely “labeled-
edge” and “node-centric”. Since sentences in the
data may contain information about several events
with arguments shared across these, we also experi-
ment with a version of the “node-centric” approach
where multiple triggers give rise to separate nodes
in the graph. The intuition behind this is that it is
easier for the model to predict a node anchoring to
a single span than to several disjoint spans.

• Labeled-edge: labels for event trigger(s) and
arguments are represented as edge labels; mul-
tiple triggers are merged into one node, as
shown by the first graph of Figure 1.

• Node-centric: labels for event trigger(s) and
arguments are represented as node labels;
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Figure 2: EventGraph architecture. 1) the input gets a
contextualized representation from the sentence encoding
module, 2) graph nodes are decoded by the node prediction
module and 3) connected by the edge prediction module. The
given example is for “label-edge” event graph parsing.

there is always a single node for trigger(s),
as shown by the second graph of Figure 1.

• Node-centric-split: node labels denote trig-
ger(s) and argument roles; multiple triggers
are represented in different nodes, as shown
by the third graph of Figure 1.

3.2 Model architecture

Our model is built upon a winning framework
(Samuel and Straka, 2020) from a previous mean-
ing representation parsing shared task (Oepen et al.,
2020). The model contains customizable compo-
nents for predicting nodes and edges, thus generat-
ing event graphs for different graph representations.
We introduce each component of the model as fol-
lowing (Figure 2):

Sentence encoding Each token of an input sen-
tence obtains a contextualized embedding from a
pretrained language model, the large version of
XLM-R (Conneau et al., 2020) in our implemen-
tation. These embeddings are mapped onto latent
queries by a linear transformation layer, and pro-
cessed by a stack of Transformer layers (Vaswani
et al., 2017) to model the dependencies between
queries.

Node prediction A node-presence classifier pro-
cesses the queries and predicts nodes by classifying
each query. An anchor biaffine classifier (Dozat
and Manning, 2017) creates anchors from the nodes

to surface strings via deep biaffine attention be-
tween the queries and the contextual embeddings.

Edge prediction With predicted nodes, two bi-
affine classifiers are used to construct the edges
between nodes: one classifier predicts the presence
of edge between a pair of nodes and the other pre-
dicts the corresponding edge label.

The graph generated for each input sentence con-
tains the extracted event components. We then
convert the labels to BIO format.

4 Experimental setup

Data We use all the official training data to train
our final model, without using any additional data.
During development time, we set aside about 10
percent of the training data for development. A
breakdown of the number of articles and sentences
in train and dev are provided in Table 1.

Joint training We train our model on the training
data of all three languages and test on the official
test data. As shown in Table 1, the training data
for Portuguese and Spanish makes only a small
portion of all training data, which leads to few-shot
learning for these two languages.

Implementation details We use the large version
of XLM-R via HuggingFace transformers li-
brary (Wolf et al., 2020). All models were trained
with a single Nvidia RTX3090 GPU.

Evaluation metrics The evaluation metric is a
macro F1 score for individual languages. The pre-
dicted event-annotated texts are in BIO format, and
the scores are calculated with a python implemen-
tation1 of the conlleval evaluation script used
in CoNLL-2000 Shared Task (Tjong Kim Sang and
Buchholz, 2000), where precision, recall and F1

scores are calculated for predicted spans against
the gold spans and there is no dependency between
event arguments and triggers.

Submitted systems We submitted three models
as listed in Table 3.

5 Results and discussion

We summarize the results of our systems on the
official test data in Table 3. All scores are obtained
by submitting our test predictions to the shared

1https://github.com/sighsmile/
conlleval
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Language System trigger target Place Participant Organizer fname etime all

En

457 134 118 293 131 129 121
Label-edge 82.48 56.29 75.44 74.62 74.52 50.42 77.06 73.46
Node-centric 84.21 62.09 74.89 76.42 75.46 54.31 81.22 75.85
Node-centric-split 84.62 52.88 75.11 73.75 74.91 52.28 78.97 73.92

Es

28 5 5 7 4 7 5
Label-edge 66.67 60.00 100.00 100.00 66.67 71.43 80.00 73.85
Node-centric 65.62 72.73 100.00 100.00 80.00 76.92 80.00 75.76
Node-centric-split 71.19 54.55 100.00 100.00 66.67 85.71 60 75.59

Pr

11 7 3 5 2 2 5
Labeled-edge 83.33 71.43 75.00 90.91 66.67 100.00 66.67 78.87
Node-centric 88.00 61.54 66.67 90.91 100.00 100.00 66.67 79.45
Node-centric-split 91.67 71.43 50 90.91 100.00 66.67 100.00 83.78

Table 2: Detailed F1 scores of our systems on the development data with different graph representations. We also
add the number of each event component to better compare the distribution of components against the scores.

System Language Macro F1

Labeled-edge
English 73.12
Spanish 64.02
Portuguese 69.62

Node-centric
English 74.02
Spanish 64.16
Portuguese 70.73

Node-centric-split
English 74.763
Spanish 64.494
Portuguese 71.723

Winning systems
English 77.461
Spanish 69.871
Portuguese 74.571

Table 3: Results of our systems on the official test
data with different graph representations. We also in-
clude the winning system results from the shared task
leaderboard. Subscripts indicate the ranking on the
leaderboard, so we only add corresponding ranking to
our best-performing system.

task.2 Results show that “node-centric” systems
generate better results than “label-edge” systems,
and it is more beneficial to keep multiple event trig-
gers as separate nodes. In terms of languages, all
models perform best on English, which is unsur-
prising, since the training data consists mostly of
English. However, the results on Portuguese are
consistently better than those of Spanish, signal-
ing English might be a better transfer language for
Portuguese than for Spanish.

Compared with other participating systems, in
particular the winning systems,2 as shown in Ta-

2https://codalab.lisn.upsaclay.fr/
competitions/7126, accessed on September 29, 2022.

Argument System P R F1

fname
Labeled-edge 47.62 53.57 50.42
Node-centric 52.50 56.25 54.31
Node-centric-split 48.84 56.25 52.28

target
Labeled-edge 60.28 52.80 56.29
Node-centric 65.52 59.01 62.09
Node-centric-split 58.21 48.45 52.88

Table 4: Detailed Precision, Recall, and F1 scores of
fname and target arguments for English develop-
mentset.

ble 3, our results are still competitive. We rank 3rd
for English and Portuguese, and 4th for Spanish;
our best results are achieved by a single system.
For English and Portuguese, our results are very
close to the winning results, which are achieved by
different participating systems.

5.1 Error analysis on development data

Since the gold data for the test set is not available
to task participants, we are not able to perform
more detailed error analysis. Hence, to have more
insights into our models’ performance, we provide
some error analysis on the development data (as
described in Table 1). As previously mentioned,
during our model development phase, we did not
use all the official training data for training, but set
aside small set for validation (about 10%).

As shown in Table 2, over all event components,
target and fname arguments are more difficult
to extract than others, with the scores substantially
lower across different languages and models. In
general, our models perform best in trigger ex-
traction, partly because the number of triggers is
much larger than event arguments for all datasets.
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We further look at target and fname pre-
diction scores of the English development set.
As shown in Table 4, for fname, our systems
tend to over-predict, with consistently lower pre-
cision scores; by manually going through our sys-
tems’ predictions, we find many labeled chunks of
fname are actually non-event components. For
target, our systems tend to under-predict, with
consistently higher precision scores; we also find
that our systems would predict a longer span, for in-
stance “former diplomat” as opposed to “diplomat”,
which is the gold span, and sometimes our systems
confuse organizer and participant with
target, by wrongly labelling the corresponding
span as target.

6 Conclusion

In this paper we have presented the EventGraph
system for event extraction and its application to
the CASE 2022 shared task on Multilingual Protest
Event Detection. EventGraph solves the task as a
graph parsing problem hence we experiment with
different ways of encoding the event data as gen-
eral graphs, contrasting a so-called “labeled-edge”
and “node-centric” approach. Our results indicate
that the “node-centric” approach is beneficial for
this task and furthermore that the separation in the
graph of nodes belonging to different events in the
same sentence proves useful. A more detailed anal-
ysis of the development results indicates that our
system performs well in trigger identification, how-
ever struggles in the identification of target and
fname arguments.
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Ali Hürriyetoğlu, Osman Mutlu, Erdem Yörük,
Farhana Ferdousi Liza, Ritesh Kumar, and Shyam
Ratan. 2021a. Multilingual protest news detection -
shared task 1, CASE 2021. In Proceedings of the 4th
Workshop on Challenges and Applications of Auto-
mated Extraction of Socio-political Events from Text
(CASE 2021), pages 79–91, Online. Association for
Computational Linguistics. 1, 2
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