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Abstract

In this paper, we present our approach and
empirical observations for Cause-Effect Sig-
nal Span Detection—Subtask 2 of Shared task
3 (Tan et al., 2022a) at CASE 2022. The
shared task aims to extract the cause, effect,
and signal spans from a given causal sentence.
We model the task as a reading comprehen-
sion (RC) problem and apply a token-level
RC-based span prediction paradigm to the task
as the baseline. We explore different training
objectives to fine-tune the model, as well as
data augmentation (DA) tricks based on the lan-
guage model (LM) for performance improve-
ment. Additionally, we propose an efficient
beam-search post-processing strategy to due
with the drawbacks of span detection to ob-
tain a further performance gain. Our approach
achieves an average F1 score of 54.15 and
ranks 1st in the CASE competition. Our code
is available at https://github.com/
Gzhang-umich/1CademyTeamOfCASE.

1 Introduction

Event extraction has long been a challenging and
popular area for natural language processing (NLP)
researchers. There are known classic benchmarks,
including ACE-2005 (Christopher et al., 2005) and
ERE (Song et al., 2015). In recent years, more
and more interesting corpora about event detection
and extraction have emerged based on different
specific source corpora, including biomedical lit-
erature (Kim et al., 2003), scientific knowledge
resources (Jain et al., 2020), Wiki (Li et al., 2021),
and trade-related news (Zhou et al., 2021). In sharp
contrast, Cause-Effect Signal Span Detection aims
to extract the cause, effect, and signal spans from
sentences that have cause-effect relations. Cause-
Effect Signal Span Detection is an innovative and
important event detection/extraction task that as-
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sists in understanding causal relationships from
comprehensive sentence samples.

As a new corpus with great potential in event
extraction challenges, the Causal News Corpus
(CNC) (Tan et al., 2022b) contains socio-political
event (SPE) text data with annotated causal spans.
The CNC event extraction challenge1 is the first
Cause-Effect Signal Span Detection challenge on a
social political news corpus. The challenge itself
provides a limited number of annotated samples
for supervision, making it more difficult compared
to other challenging event extraction tasks. The
exploration of causality in news data and the detec-
tion of corresponding spans is helpful in reading
comprehensive language expressions, making CNC
attractive to NLP researchers.

In this paper, we describe our RC-based model
with a carefully designed post-processing strat-
egy. We also conduct ablation studies to analyze
the influence of both different training objectives
and different hyper-parameter settings of the post-
processing strategy on our model. In addition, we
apply an LM-based data augmentation strategy to
further better performance gains, given the low-
resource challenge. Our approach improves per-
formance by a large margin in Cause-Effect Signal
Span Detection compared to any other competitors.

The main contributions of our paper are as fol-
low:

• We propose an RC-based model with an origi-
nal post-processing strategy.

• We achieve state-of-the-art performance on
the new Cause-Effect Signal Span Detection
competition on the CNC.

• We apply an LM-based data augmentation
technique to the challenge and prove its posi-
tive effect on the challenge of low resources.

1https://github.com/tanfiona/
CausalNewsCorpus
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Table 1: Dataset statistics. Avg. Signal represents the
average number of Signal spans in each split of dataset.

Train Valid Test Total

# Sentences 160 15 89 264
# Relations 183 18 119 320
Avg. Signal 0.67 0.56 0.82 0.72

2 Causal News Corpus

The corpus we used in our model training and eval-
uation is the CNC dataset (Tan et al., 2022b). This
dataset is built on the extraction of social-political
events from News (AESPEN) (Hürriyetoğlu et al.,
2020) in 2020 and the CASE 2021 workshop @
ACL-IJCNLP (Hürriyetoğlu et al., 2021). Each
sample in the dataset is annotated with causal la-
bels, that is, whether a sentence contains a causal
event. Furthermore, some sentences are annotated
with the span of the specific Cause and Effect
of a causal event, as well as the signal markers
that imply the causality. The spans are labeled by
<ARG0>, <ARG1>, and <SIG> annotations to rep-
resent the cause, effect, and causal signal in the
sentence, respectively. Note that it is possible to
have multiple annotations for the same sentence in
the dataset if the sentence contains multiple casual
relationships of events. The dataset statistics are
shown in Table 1.

3 Methodology

In this section, we describe in detail the method-
ology we used in the task. To begin, we intro-
duce the baseline model established from a pre-
trained language model for the task. Next, a beam-
search-based post-processing method is introduced
to solve the overlap span detection problem in the
baseline model. To address the problem that not all
examples have signal markers within the sentence,
we propose training a signal classifier to determine
whether we need to find the signal span of the tar-
get test sample. Finally, a pre-trained paraphrasing
model is applied for data augmentation.

3.1 Baseline

To solve the task, we first fine-tune the pre-trained
language model based on the reading comprehen-
sion training fashion proposed by BERT (Devlin
et al., 2019). Specifically, assume that we need
to predict a span within sentence x = {t1, ..., tn},
where ti is the ith token of sentence x. We can ob-

Algorithm 1 beam-search-based span selector
Input: Psc , Pec , Psef , Peef , n, k,m.

Output: H = {(s1, e1, s2, e2, ti =
CBeforeE/CAfterE) : i ≤ m}
1: CBeforeE = {pisc + pjeef : 1 ≤ i, j ≤ n}.
2: CAfterE = {pisef + pjec : 1 ≤ i, j ≤ n}.
3: Find position pairs with Top-k largest score from both

CBeforeE and CAfterE.
4: Denote the gotten position pairs set as PS =

{(spi, epi, ti = CBeforeE/CAfterE) : spi ≤ epi}.
ti implies whether the pair is retrieved from CBeforeE or
CAfterE.

5: Initialize a min heap H .
6: for psp = (spp, epp, tp) in PS do
7: if tp = CBeforeE then
8: Find the position pair (i, j) with the largest piec +

pjsef , which satisfies spp ≤ i ≤ j ≤ epp.
9: Calculate sc(spp,i,j,epp) = p

spp
sc + piec + pjsef +

p
epp
eef .

10: else
11: Find the position pair (i, j) with the largest pieef +

pjsc , which satisfies spp ≤ i ≤ j ≤ epp.
12: Calculate sc(spp,i,j,epp) = p

spp
sef + pieef + pjsc +

p
epp
ec .

13: Push {(spp, i, j, epp), tp, sc(spp,i,j,epp)} into H .
14: if len(H) > m then
15: heappop(H) based on sc(spp,i,j,epp).
16: return H

tain a contextualized representation hi of ti using
the pre-trained language model:

H = {h1, ..., hn} = BERT (x) (1)

Next, we define two parameterized vectors:
vs, ve ∈ Rd to calculate the probability that the
ith token is the start / end position:

Ps = {p(1)s , ..., p(n)s } = Softmax(vTs H) (2)

Pe = {p(1)e , ..., p(n)e } = Softmax(vTe H) (3)

We select the positions with maximum probabil-
ity as the prediction of the model:

s = argmax
1≤i≤n

p(i)s , (4)

e = argmax
1≤j≤n

p(j)e , (5)

where s, e represent the predicted start/end position,
respectively.

The prediction of the spans of cause, effect, and
signal are all similar to the span prediction task
described above. For convenience, we will denote
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the start/end position of cause, effect, and signal
as sc, ec, sef , eef , ssig, esig, respectively, to spec-
ify which span we are detecting. Therefore, the
training objective is to maximize the probability of
ground-truth positions in the model.

3.2 Beam-search-based Span Selector

The proposed baseline model has two drawbacks.
First, it is possible that the end position is right be-
fore the start position. Second, it is possible to gen-
erate spans that overlap each other, which is not al-
lowed in the challenge. Thus, we need to introduce
constraints in post-processing to ensure that: 1) the
predicted end position must be after the start posi-
tion of the same span, and 2) the predicted spans
of cause and effect do not overlap with each other.
In this sub-section, we describe our modified beam
search-based algorithm to address the overlapping
issue. The beam search algorithm is widely used to
find the most possible output with tractable mem-
ory and time usage in text generation tasks (Xie,
2017). In reading comprehension or question an-
swering, it is also used to introduce constraint infor-
mation (Hu et al., 2019), and therefore encourage
more accurate predictions. Given a paragraph with
length n, we can calculate Psc = {p(1)sc , ..., p

(n)
sc }

based on the process introduced in § 3.1. Similarly,
we can calculate Pec , Psef , and Peef accordingly.
Formally, given the input probability vectors Psc ,
Pec , Psef , Peef , a hyper-parameter m denoting the
requested answer number, and a hyper-parameter
k denoting the beam search size, the span selec-
tor is expected to output position pairs sc, ec, sef
and eef . We describe the span selector in detail in
Algorithm 1. We denote the proposed span selec-
tor as BSS. It should be noted that the proposed
BSS post-processing algorithm can also generate
multiple predictions for cases containing multiple
causal relations. For example, we could change
the hyperparameter m to retrieve the prediction of
cause/effect spans combinations with the top-m
highest scores as our predictions of multiple causal
relations. For the signal span, we always use the
span with the highest score as our prediction (if it
presents).

3.3 Signal Classifier

We observe that some samples do not have signal
markers (spans) within the sentence even while the
baseline model predicts ssig, esig for each target
sample. Therefore, we propose to train a classifier

to address this issue. Specifically, we first automat-
ically annotate training samples based on whether
signal markers appear within the samples. Then,
we fine-tune the pre-trained language model to train
a binary classifier. Note that we can share the lan-
guage model parameters between signal classifier
and span detection, i.e. we optimize both train-
ing objectives during our fine-tuning process. In
addition, we can also train a signal classifier with
a separate language model. In our experiments,
we apply the two methods separately and compare
their effectiveness.

3.4 Data Augmentation with Pre-trained
Paraphrasing Model

Considering that only 183 training samples are
available for subtask 2, it is important to intro-
duce the data augmentation trick to increase the
size of the training dataset. Therefore, in this work,
we propose using language models to paraphrase
the existing data. Specifically, we use a PEGA-
SUS model (Zhang et al., 2020) fine-tuned for para-
phrasing 2 to re-write the phrases of Cause, Effect
in each sample. For example, for a training sam-
ple "<ARG1>The farmworkers ’ strike resumed on
Tuesday</ARG1> when <ARG0>their demands
were not met</ARG0>.", we paraphrase the cause
and effect spans within the sample, then obtain
the augmented sample "<ARG1>On Tuesday, the
farmworkers resumed their strike</ARG1> when
<ARG0>their demands weren’t met</ARG0>.". In
this case, the semantic meaning of the original sen-
tence is preserved. Hence, the annotation of the
original sample is still reasonable and can continue
to be used in the augmented sample. In our imple-
mentation, n new phrases were generated for each
span. Namely that each sample will end up with n2

augmented samples. We denote the trick as DA.

4 Experiments

In this section, we present the experimental details
of training the model and discuss the performance
of our proposed approach.

4.1 Experimental Details

In our experiment, we use Albert (Lan et al., 2019)
as our LM backbone. We perform hyper-parameter
searching to find the best hyper-parameter set-
ting. Specifically, we select the learning rate l

2We directly use fine-tuned checkpoint in
https://huggingface.co/tuner007/pegasus_paraphrase
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Table 2: Experimental results and related ablation study on subtask 2. The evaluation metric of all the results is F1.
Note that n represents the hyper-parameter of data augmentation described in § 3.4.

Methods Cause Effect Signal Overall

Baseline 77.8 66.7 53.5 68.2
Baseline-NER 57.8 57.4 10.8 47.4

Baseline + DA (n = 2) 72.2 77.8 60.9. 71.9
Baseline + BSS + DA (n = 2) 77.8 83.3 60.9 74.1
Baseline + ES + DA (n = 2) 72.2 77.8 76.7 75.4
Baseline + JS + DA (n = 2) 72.2 72.2 71.3 69.8
Baseline + BSS + ES + DA (n = 2) 77.8 83.3 76.7 77.5
Baseline + BSS + ES + DA (n = 3) 83.3 77.8 80.0 80.4

from {1e − 5, 2e − 5, 5e − 5}, batch size b from
{1, 2, 4, 8, 16, 32}. We fine-tune the pre-trained
model for 30 epochs, and select the checkpoint
with the best performance on the development set
to conduct evaluation on the test set. Our imple-
mentation is based on Huggingface (Wolf et al.,
2019).

In terms of the signal classifier, we consider two
settings: 1) We fine-tune the signal classifier in
conjunction with the main training objective as
described in § 3.3. We denote this approach as
Joint Sig. (JS); 2) We additionally fine-tune a
language model to specifically decide whether to
predict the span of Signal. We denote this approach
by Extra Sig. (ES)

We also include another implementation of the
baseline recommended by the organizers, where
the fine-tuning process is carried out in the end-to-
end fashion of Named Entity Recognition (NER).
We denote this baseline by Baseline-NER.

4.2 Main Results and Ablation Study

Here, we present and discuss the experimental re-
sults of our best-performing method for this task,
together with the corresponding ablation study.
Note that all results are evaluated on the dev set,
due to the inaccessibility of the test dataset. We
present the score of different approaches F1 on all
three span detection in Table 2.

The results clearly show that the reading compre-
hension style of the training significantly improves
the effectiveness of the approach. We can also ob-
serve that it is better to apply the reading compre-
hension training fashion than token-level tagging
for the causal span detection task. Regarding our
proposed approaches, the LM-based paraphrasing
data augmentation technique improves the perfor-

mance of the approach by a large margin compared
to the baseline. The improvement is consistent,
that is, there is an improvement in the prediction
of all types of spans. In addition, our proposed
BSS post-processing algorithm further improves
our approach. However, it can be seen that the im-
provement of the approach by BSS mainly comes
from the prediction of cause and effect. This is
reasonable because the algorithm does not post-
process the predictions of Signal. As for the signal
classifier, both ES and JS make an improvement,
which comes mainly from the better prediction of
Signal. However, note that the improvement in ES
is larger. We conjecture that it might be because of
a new training objective introduced by JS, which
is harmful to the proposed approach to learning to
predict the spans better. Finally, we mix all of the
approaches together with our approach and ended
up with the best performance. Here, we also com-
pared the impact of data augmentation at different
scales. Specifically, we compare the results when
n = 2 (4× dataset size) with n = 3 (9× dataset
size). We find that higher data augmentation sizes
lead to better results in the validation dataset.

4.3 Case Study of Data Augmentation

In this subsection, we provide a case study on the
effectiveness of data augmentation proposed in the
system. The comparisons between generated texts
and the original texts are shown in Table 3.

From the results, the expressions in the data-
augmented texts are more diverse while remaining
semantically consistent with the original sentence.
Furthermore, the data-augmented texts are com-
petitive with the original in terms of fluency and
grammatical correctness.
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Table 3: Case Study of Data Augmentation. Note that we generate two sentences for Cause and Effect, respectively.
Therefore, there are in total 4 outcomes sentences via combinations.

Ori. <ARG1>The farmworkers ’ strike resumed on Tuesday</ARG1>when <ARG0>their demands were not met</ARG0>

DA

<ARG1>On Tuesday, the farmworkers resumed their strike</ARG1>when <ARG0>their demands weren’t met</ARG0>.
<ARG1>On Tuesday, the farmworkers resumed their strike</ARG1>when <ARG0>their demands didn’t get met</ARG0>.
<ARG1>On Tuesday, the farmworkers went on strike</ARG1>when <ARG0>their demands weren’t met</ARG0>.
<ARG1>On Tuesday, the farmworkers went on strike</ARG1>when <ARG0>their demands didn’t get met</ARG0>.

Table 4: Overall performance of the proposed approach
on the test set. The numbers in parentheses represent
the rankings.

Final Competition Results

Recall 0.5387 (1)
Precision 0.5509 (2)
F1 0.5415 (1)
Accuracy 0.4315 (1)

4.4 Competition Result

We reveal and discuss the final results of our pro-
posed approach competition on a test set. The
results are shown in Table 4.

As shown in the table, our proposed approach
achieves state-of-the-art results in 3 out of 4 evalua-
tion metrics on subtask 2. This shows the excellent
performance of the proposed approach in solving
the task of causal spans detection.

5 Conclusion

This paper introduces a reading comprehension-
based method, an original post-processing strategy,
and an LM-based data augmentation trick for the
new Cause-Effect Signal Span Detection compe-
tition. We compare the RC-based method with
the NER-based one and prove that the RC-based
method gets an observing performance gain com-
pared to the NER-based one. We provide exper-
imental results and ablation studies of our beam-
search-based Span Selector and LM-based data
augmentation tricks to analyze their efficiency and
prove their compatibility with other tricks. Our
approach achieves state-of-the-art performance in
the new competition.
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