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Abstract

Language models (LM) have played crucial
roles in automatic speech recognition (ASR)
to enhance end-to-end (E2E) ASR systems’
performance. There are two categories of ap-
proaches: finding better ways to integrate LMs
into ASR systems and adapting on LMs to
the task domain. This article will start with
a reflection of interpolationbased integration
methods of E2E ASR’s scores and LM’s scores.
Then we will focus on LM augmentation ap-
proaches based on the noisy channel model,
which is intrigued by insights obtained from the
above reflection. The experiments show that
we can enhance an ASR E2E model based on
encoder-decoder architecture by pre-training
the decoder with text data. This implies the
decoder of an E2E model can be treated as an
LM and reveals the possibility of enhancing the
E2E model without an external LM. Based on
those ideas, we proposed the implicit language
model canceling method and then did more
discussion about the decoder part of an E2E
ASR model. The experimental results on the
TED-LIUM2 dataset show that our approach
achieves a 3.4% relative WER reduction com-
pared with the baseline system, and more ana-
lytic experiments provide concrete experimen-
tal supports for our assumption.

1 Introduction

In the 1980s, a significant step was achieved by
introducing the acoustic model (AM) and language
model (LM) into ASR framework. From that time,
the methodology of ASR shifted from the more in-
tuitive template-based approach (a straightforward
pattern recognition paradigm) towards a more rig-
orous statistical modeling framework (Juang and
Rabiner, 2005). Moreover, those two concepts of
AM and LM became the foundation of ASR that
we are familiar with nowadays. Relying solely on
acoustic observations proved to be insufficient to
achieve human-like performance.

With the rapid development of deep learning
techniques, many powerful neural network-based
systems were invented in the new century. Among
them, various end-to-end (E2E) systems become
prevail (Battenberg et al., 2017; Chan et al., 2016;
Kim et al., 2017; Watanabe et al., 2018; Vaswani
et al., 2017), which are benefited from sufficient
computing power and data sets. From this stage,
E2E ASR becomes the mainstream of modern ASR
techniques. We have emphasized the importance
of LMs in ASR, but how an independent LM can
be utilized in an E2E system? The answers are LM
integration, and LM adaptation (Zhao et al., 2019;
Shan et al., 2019; Sriram et al., 2018). LM integra-
tion increases accuracies of E2E ASR systems in
practical indeed. However, intuitively, if an E2E
ASR model is powerful enough, there is no need
for an extra LM. So, the question becomes how an
LM can benefit an E2E ASR system. To be more
specific, we need to figure out what happens when
we try to integrate the E2E ASR model with an LM
and how to adapt an LM to an ASR domain. Fur-
thermore, can we reveal the capability of language
modeling in an E2E ASR model?

In this paper, we try to answer those questions
theoretically and experimentally. Firstly, we an-
alyzed shallow fusion of LM integration mathe-
matically using LM adaptation framework (McDer-
mott et al., 2019). Then, we proposed an implicit
LM canceling method to fully control the language
modeling functionality of an E2E ASR system. Fi-
nally, we discussed the feasibility that a decoder
of an E2E ASR model could be treated as an LM
by experiments. To the best of our knowledge,
we are the first to analyze the language modeling
functionality of the decoder part in an E2E ASR
model.

The rest of this paper is structured as follows.
Section 2 discusses the most common LM inte-
gration approach (shallow fusion) to explore its
essence from the perspective of probability models.
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Then we try to figure out a way to compose LM
integration and LM adaptation tasks into a single
method in Section 3 and 4. In Section 5, we ana-
lyze the result and reveal crucial insights about a
decoder’s characteristics in an E2E ASR system
from several experiments. We conclude the paper
in Section 6.

2 Related Work

2.1 LM Integration
In conventional ASR systems, whether or not based
on deep learning, an LM is an essential part of the
whole system. While in E2E models, an LM is
not necessary since they can decode the interme-
diate representations of input features into a word
sequence independently. For an E2E model, it is
still beneficial to introduce an LM into the model.
an LM is helpful for introducing extra corpora in-
formation. The main LM integration approaches in
the previous work (Zhao et al., 2019; Shan et al.,
2019; Sriram et al., 2018) are referred to as shallow,
deep, and cold fusions. In the following section, we
focus on investigating the details of shallow fusion.

In Eq. 1 of shallow fusion, s(y|x) is the final
score of output tokens based on input features x.
The βPenalty(|y|) is a penalty item, and it is a
function of the output sequence length |y| aiming
at suppressing longer candidates. Since a longer
sequence tend to produce more meaningless words,
such as ah, em, its length should be suppressed.
Moreover, α, β are hyper-parameters weighted to
determine each item’s importance in this equation.

s(y|x) = log(PE2E(y|x))
+ α log(PLM (y)) + βPenalty(|y|)

(1)

where PE2E(y|x) and PLM (y) represent the con-
ditional probabilities of a specific output sequence
given input features to an E2E ASR model and an
LM.

2.2 LM Adaptation
LM integration is just the first step to introduce
LMs into ASR framework. To make an LM fit
into a speech domain, we need to introduce LM
adaptation. Then, we show how this method can
be applied to LM integration analysis.

In previous work (McDermott et al., 2019), the
density ratio approach is proposed as a transfer
learning method based on Bayes’ rule. This pre-
vious work studied LM representations in an E2E

model. Moreover, this approach makes the follow-
ing assumptions:

Table 1: List of key variables and their descriptions.

Variable Description

Pϕ(W,X)

The source domain ϕ has
some true joint distribution
Pϕ(W,X) over text (W) and

audio (X)

Pτ (W,X)
The target domain τ has

another true joint distribution
Pτ (W,X)

Pϕ(W |X)

A source domain E2E model
(e.g., RNN-T (Battenberg

et al., 2017)) captures
Pϕ(W |X) reasonably well

Pϕ(W ) and
Pτ (W )

Separately trained LMs (e.g.,
RNN-LMs) capture Pϕ(W )
and Pτ (W ) reasonably well

pϕ(X|W )
and

pτ (X|W )

pϕ(X|W ) as an acoustic
model is roughly equal to
pτ (X|W ), i.e. the two

domains are acoustically
consistent

According to Bayes’s rule, we have:

pϕ(X|W ) = pϕ(X)Pϕ(W |X)/Pϕ(W ) (2)

Similarly, for the target domain:

pτ (X|W ) = pτ (X)Pτ (W |X)/Pτ (W ) (3)

Since these two acoustic models roughly are the
same:

P̂τ (W |X) = k(X)
Pτ (W )

Pϕ(W )
Pϕ(W |X) (4)

With k(X) = pϕ(X)/pτ (X) shared by all hy-
potheses W , and density ratio method is named
after the ratio Pτ (W )/Pϕ(W ). Based on Eq. 4 we
can give the score function of decoding process:

Score(W |X) = logPϕ(W |X) + λτ logPτ (W )

−λϕ logPϕ(W ) + β

(5)

where Score(W |X) is our decoding logits score
during beam search.
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3 Implicit LM Canceling Method

Inspired by the density ratio approach, we propose
to restructure the shallow fusion of Eq.1 in a more
general way:

Prescoring(W |X) = βPE2E(W |X)1−λPLM (W )λ

= β

(
PE2E(X|W )PE2E(W )

PE2E(X)

)1−λ

PLM (W )λ

= β

(
PE2E(X|W )PE2E(W )PLM (W )λ/1−λ

PE2E(X)

)1−λ

where Prescoring(W |X) is the score for a word se-
quence W given an observation X . PE2E(W |X)
stands for our E2E model which gives the proba-
bility score of a word sequence given an observa-
tion X , and PLM (W ) stands for an independent
LM. PE2E(X|W ) stands for an implicit pronuncia-
tion model inside the E2E model, while PE2E(W )
represents the implicit LM inside the E2E model
which we focus on. Since PE2E(X) is same for
different word sequence candidate, this term should
be omitted during scoring.

Then we have a probability score,

exp(score(W |X)) = (6)

PE2E(X|W )PE2E(W )PLM (W )λ̂,

where λ̂ = λ/1− λ

As we can see from Eq.6, the LM of an ASR
system including an E2E model and an actual LM
is PE2E(W )PLM (W )λ̂. That means by shallow
fusion we can modify the final LM during rescor-
ing. Moreover, it gives us the ability to change the
implicit LM in an E2E model.

P (W |X) = PE2E(W |X)PLM (W )/PE2E(W )

=

(
PE2E(X|W )PE2E(W )

PE2E(X)

)
PLM (W )

PE2E(W )

=
PE2E(X|W )PLM (W )

PE2E(X)

(7)

where P (W |X) is the probability model of the
whole E2E ASR system which includes an E2E
ASR model and an LM.

It should be noticed that we have no direct con-
trol (modify this model) over this implicit LM (as
the probability density function PE2E(W )) during
decoding. One way to take control of the final LM

is to cancel the E2E model’s implicit LM and re-
place it with our external LM. This can be achieved
by Eq.7. Just like what has been done in the density
ratio approach, we train an E2E ASR model and a
LM on audio and transcripts of the source domain
speech corpus, and then another LM is pre-trained
on extra gigantic corpora and fine-tuned on source
domain text to approximate the true distribution of
source domain. During decoding, the score func-
tion is Eq.8.

score(W |X) = logPE2E(W |X)

+ logPLM (W )− logPE2E(W )
(8)

where score(W |X) is the score for beam searching
We propose it as implicit LM canceling method.

This kind of approach has no requirements for the
E2E model (e.g., RNN-T in density ratio approach)
and does not require hyper-parameters to tune the
importance of two LMs. Thus, we can build an
experimental ASR system based on the state-of-
the-art transformer-encoder decoder model plus
CTC loss (Kim et al., 2017) function in Fig. 1. The
detailed settings can be found in Section 5.2.

Figure 1: Transformer-based E2E ASR model jointly
trained with CTC loss.



45

4 The Implicit LM of An E2E ASR
System

We can check the assumption that the decoder of
an E2E model can be treated as an LM from two
aspects:

1. Is there a structure supporting the function of
an LM in the E2E model?

2. Does it behave like an LM?

The decoder of this E2E model should poten-
tially be an LM because it is an auto-regression
model, just like a normal language model, which
receives a token sequence and outputs the next to-
ken. It has transformer layers for memorizing infor-
mation from the training set. And from Fig. 1 the
multi-head attention layers which receive a word
sequence and hidden states from the encoder are
built relatively independent. So, we can assume the
layers which did not receive hidden states directly
from the encoder would be dominated by outputs
(subword). Those characteristics above fulfill the
first aspect. We can check the second statement
by sampling token sequences in an auto-regression
manner or calculate its perplexity about an LM’s
behaviors. Moreover, the above clarification leads
to our new proposal: the decoder of an E2E model
can be treated as an LM and be pre-trained on text
data before E2E training to improve the E2E model.
We will validate this in the following experiments.

5 Experiments

5.1 Task Descriptions

The experiments contain two parts: to validate our
LM canceling method’s performance and test a de-
coder’s potential as an LM with more experiments.

Figure 2: The Workflow of training implicit language
model for E2E ASR model.

1. The first part is the same as a standard shallow
fusion method. We calculate output logits
of three models and apply Eq.7 during beam
searching in the testing stage.

2. The second part in Fig. 2 is to train a decoder
in an E2E ASR model as an LM. We imple-
ment this idea in a straightforward way. We
set the intermediate vectors from the encoder
to zeros and feed the decoder text corpus to
output embedding in Fig. 1 just as if we are
training a norm LM while completely omit
the encoder. And then, several different ex-
periments are conducted based on a decoder
we trained in this manner. The decoders’ per-
plexities and word error rate (WER) of the
E2E ASR model with a different decoder are
calculated as results.

5.2 Experimental Settings

We adopt a Transformer-based ASR system com-
prised of 6 encoder blocks and 6 decoder blocks
with the feed-forward inner dimension of 2048,
the model dimension of 256, and the attention
head number 4, which are unchanged in all exper-
iments. The input features were 240-dimensional
log Mel-filterbank energy features (80-dim static,
+∆, and +∆∆). The feature is extracted with a
10-ms frameshift of a 25-ms window. Each feature
was mean- and variance-normalized per speaker,
and every four frames were spliced (three left, one
current, and zero right). The low and high cutoff
frequencies were set to 20 Hz and 8,000 Hz, re-
spectively. Speed perturbation was not used in the
fine-tuning stage. We then subsampled the input
features every three frames. The model was jointly
trained with CTC (weight α = 0.2). The “noam"
optimizer was used with 25,000 warmup steps and
an initial learning rate of 5. The model was trained
with ESPnet toolkit (Watanabe et al., 2018) using
batch-size 32 for 30 epochs on an 11-GB GTX1080
TI GPU.

The experiment is conducted on TED-LIUM2
(Rousseau et al., 2012), and the LMs are trained
on text data offered by this corpus. Moreover, the
LMs are four-layer transformer models.

5.3 Results and Discussions

The performances of the proposed LM canceling
method are shown in Table 2 ( +Transcripts LM
means shallow fusion of the baseline model and
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Table 2: Word Error Rate (WER) Results of E2E ASR with different LM settings

E2E baseline +Transcripts LM (A) +Text LM (B) -A+B
11.7 11.6 10.5 11.3

Figure 3: WER of decoder pretrained E2E model and
E2E model trained from scratch.

Figure 4: Perplexity of the decoder trained on tran-
scripts, the E2E baseline model trained on paired audio
and transcripts and an independent LM trained on tran-
scripts.

an LM trained on transcripts from the baseline cor-
pus; +Text LM means shallow fusion of baseline
model and an LM trained on extra text corpus; -
A+B means applying the method in Eq.8). We
have to admit that results are not good as expected.
One main reason is that we have made a strong
assumption that the implicit LM PE2E(W ) of an
E2E model can be represented by an independent
explicit LM. In the following section, we investi-
gate why this assumption works not well.

To check the potential that a decoder can be
treated as an LM further, we did more analytic
experiments. We pre-trained the decoder (C) by
feeding it transcripts from the source domain and
set the hidden states to be zero vectors. Those
hidden states are supposed to be passed from the

Figure 5: Perplexity of pre-trained E2E model during
E2E training.

encoder to the decoder of the same E2E model.
This method can ensure that no acoustic related
weights will change during training of the decoder.
After this decoder pre-training process, the E2E
model (D) with the pre-trained decoder will be
trained in the speech corpus. A baseline model (E)
of the same structure as the previous one will be
trained from scratch.

Several experiments are also conducted on the
corpus TED-LIUM2, and all the LM training (in-
cluding an independent LM (F) and the decoder
(D)) are done on transcripts data of the speech cor-
pus. All the E2E models are built on the same struc-
ture of transformer-based sequence-to-sequence
model.

The results in Fig. 3 show that pre-training the
decoder (C) as a language model does improve the
performance of this E2E model (D). Fig. 4 shows
the perplexity results for the decoder (C) and the
LM (F) trained on transcripts and the E2E model
(E) trained on the same transcripts with paired au-
dio data.

As we can see in Fig. 4, the decoder’s (C) per-
plexity effectively decreased during training and
even decreased more rapidly than the LM (F),
which may be related to more layers in the decoder.
This can prove that the decoder (C) can be trained
like an LM effectively. Moreover, the perplexity of
the E2E model (E) trained from scratch decreased
slowly. This phenomenon can explain why the im-
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plicit LM in the E2E model (in Table 2) should not
be canceled by an external LM (A) trained even
on the same transcripts. Because the LM perfor-
mances of them are not even close. Fig. 5 gives
the perplexity tendency of the decoder (C) in E2E
training shown in Fig. 3.

The most interesting observation from it is that
even the whole E2E model (D) becomes more ac-
curate during training, but the decoder (C) part of
it becomes worse as an LM, which implies the E2E
training may harm the implicitly language model-
ing in the decoder (C). This phenomenon alerts all
of the developers working on E2E models, and we
will make an in-depth investigation to cope with it.

6 Conclusions

This article reflected why we introduced LMs into
E2E ASR systems and discussed how LM integra-
tion benefits an E2E ASR system by generalizing
shallow fusion by probability density function in-
spired by LM adaptation in ASR. In the general
version of shallow fusion, insights about whether
there is an implicit LM and how to modify it are
obtained. This work reveals the decoder’s potential
to be trained and improve E2E models by training
the decoder independently without external LMs.
Moreover, we proposed the implicit LM canceling
method. In the ordinary design of this transformer-
based system, the decoder needs hidden states from
an encoder, but we set these hidden states to zeros
vectors to avoid acoustic feature-related weights
changing in the decoder during pre-training. In the
future, we will find a more sophisticated way to
pre-train the decoder, alter the structure, modify
the loss function, or change the training sched-
ule. Moreover, we will try to figure out a way
to suppress the degeneration phenomenon of the
decoder’s LM function (C) during E2E training.

In the next step, we plan to find a more sophisti-
cated way to pre-train the decoder, alter the struc-
ture, modify the loss function, as well as change
the training schedule. Moreover, we will try to
figure out a way to suppress the degeneration phe-
nomenon of the decoder’s LM function (C) during
E2E training.
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