
Proceedings of the 2nd Workshop on When Creative AI Meets Conversational AI (CAI2), COLING 2022, pages 9–15
October 12–17, 2022.

9

Abstract

Despite rapid advancement in the field of

Constrained Natural Language Generation,

little time has been spent on exploring the

potential of language models which have

had their vocabularies lexically,

semantically, and/or phonetically

constrained. We find that most language

models generate compelling text even

under significant constraints. We present a

simple and universally applicable

technique for modifying the output of a

language model by compositionally

applying filter functions to the language

models vocabulary before a unit of text is

generated. This approach is plug-and-play

and requires no modification to the model.

To showcase the value of this technique, we

present an easy to use AI writing assistant

called “Constrained Text Generation

Studio” (CTGS). CTGS allows users to

generate or choose from text with any

combination of a wide variety of

constraints, such as banning a particular

letter, forcing the generated words to have

a certain number of syllables, and/or

forcing the words to be partial anagrams of

another word. We introduce a novel dataset

of prose that omits the letter “e”. We show

that our method results in strictly superior

performance compared to fine-tuning alone

on this dataset. We also present a

Huggingface “space” web-app presenting

this technique called Gadsby. The code is

available to the public here:

https://github.com/Hellisotherpeople/Cons

trained-Text-Generation-Studio

1 Introduction

Constrained writing is a literary approach in which

the writer decides to impose patterns, constraints,

or conditions on their text. The most obvious

example of this application is within poetry – but

many other communities of writers also find

imposing constraints on themselves to be

enjoyable. We can divide constraints into two

types, soft-constraints and hard-constraints.

 Soft constraints are the kind that are fuzzy, e.g.

deciding to write in a certain style. Soft constraints

are almost exclusively applied at the sequence

level, rather than being applied directly on each

token. Hard constraints are concrete lexical,

semantic, or phonetic requirements about the

contents of a token or sequence. In this paper, we

are presenting a system that applied token level

hard-constraints to large-scale language models.

 One notable group who create hard-constrained

texts are the Oulipo (short for Ouvroir de littérature

potentielle; roughly translated as the “workshop of

potential literature”) writing collective. Oulipo

affiliated writers have produced a prolific amount

of constrained literature since the 1960s. Oulipos

founder has described the writers within the

collective as "rats who construct the labyrinth from

which they plan to escape".

 One does not need to be a rodent to find

“recreational linguistics” useful. Any suitor who

has pledged their affection in print can attest to how

difficult it can be to write good love poetry; and

being able to generate rhyming text that also has

the lengths of consecutive words matching the

digits of pi is sure to swoon all but the most frigid

of mathematicians.

 Natural Language Generation has advanced at a

breakneck pace. As models have scaled up, their

Most Language Models can be Poets too: An AI Writing Assistant

and Constrained Text Generation Studio

 Allen Roush Sanjay Basu Akshay Moorthy Dmitry Dubovoy

Oracle Corporation Oracle Corporation University of Oregon University of Oregon
allen.roush@oracle.com, sanjay.basu@oracle.com,

AkshayMoorthy123@gmail.com, ddubovoy@protonmail.com

10

performance on a wide variety of tasks has

improved. More recent work shows that

sufficiently large models such as the “Pathways

Language Model” (Chowdhery et al., 2022) unlock

new capabilities for common sense reasoning. The

probabilistic nature of language models makes

their impressive performance particularly

intriguing.

 Ultimately, all language models involve some

form of sampling from their vocabulary of all

possible tokens that they could generate. In this

paper, we explore the idea of adding arbitrarily

compositional lexical, semantic, and/or phonetic

filters to the crucial step of a language model

sampling from its vocabulary during its decoding

phase. Among other things, we observe that

language models can remain coherent even with a

remarkable amount of filters applied to their

vocabulary. We thus find that it is perfectly

appropriate to expect coherent output from a model

like GPT-2 (Radford et al., 2019), when, for

instance, its vocabulary is filtered to ban any word

with the letter “e”, the letter “a” is forced to appear,

and the length of the token must be longer than 3.

 In this paper, we introduce two systems which

take advantage of this constrained vocabulary

technique: An AI writing assistant called

Constrained Text Generation Studio (CTGS) and a

Huggingface “space” web-app called “Gadsby”1.

 Constrained Text Generation Studio is a GUI tool

for recreational linguists, poets, creative writers,

and/or researchers to use and study the ability of

large-scale language models to recommend

relevant text in nearly any situation. After

1 Available here:
https://huggingface.co/spaces/Hellisotherpeople/Ga
dsby

specifying and downloading one of the thousands

of language models made available on the

Huggingface model hub, users can use CTGS to

specify a list of constraints or “filters” that the

vocabulary of the language model must pass

through before it can be sampled from. After any

combination of the filters are specified, users can

either use traditional decoding methods to generate

tokens from the constrained vocabulary

automatically, or they can manually select their

continuation from the list of valid tokens. CTGS

was created with the idea of being “like Photoshop

but for Constrained Text Generation”.

 Gadsby is a Huggingface hosted webapp which

demonstrates the ability for language models to

generate coherent text with several different pre-

selected combinations of filters. Gadsby was

named after one the most famous constrained

works of fiction, which is a 270 page book written

without the letter E. Gadsby is missing features that

CTGS has, including composability of filters,

optional human selection of continuations, and text

transforms – but it includes filter pre-sets to

showcase the robustness of language models to

constraints. The most notable of these pre-sets is

called “E-Prime” 2 , which filters the specified

language models vocabulary to avoid any form of

the verb “to be”.

2 Prior Work

We are not the first to explore Constrained Natural

Language Generation with Language Models.

Probably the closest prior work to our own comes

2 The wikipedia article about this is fascinating:
https://en.wikipedia.org/wiki/E-Prime

Figure 1: A use-case diagram of the algorithm

11

from Pascual et al. (2021). They propose a single

plug-and-play semantic filter which shifts the

sampling probabilities of a language models

vocabulary towards a user defined keyword or set

of keywords. CTGS instead offers a rich array of

compositional lexical, phonetic, and semantic

filters, and it preserves the original language

models sampling probabilities with the exception

of the filtered out tokens, which are banned.

 Swanson et al. (2014) show that language

models using Constrained Beam Search can

effectively generate text with the constraint of

either banning or requiring certain words to appear

in a sequence. Notably, the transformers library

from Huggingface recently integrated this

functionality 3 . Constrained Beam Search is

effective for translation and other sequence-to-

sequence tasks, but it makes it impossible for the

language model to assist humans on a per-token

basis. CTGS adopts an optional human-in-the-loop

approach where the user can decide which token to

choose following the listed constraints at each step,

rather than necessarily relying on sampling. Given

the inherit creativity required for Constrained

Writing, using language models for inspiration

rather than blindly generating with them is

uniquely helpful for recreational linguists.

 Kumar et al. (2021) propose a method for

Controlled Text Generation by formulating it as an

optimization problem given a list of constraints and

using gradient descent to maximize the log

probability of the language model as well as the

constraint objectives. The constraints that they

provide are exclusively sequence level. By

contrast, CTGS’s filters are at the token level and

are correspondingly much more appropriate for

Oulipo or Poetry. Their method also requires a

potentially lengthy optimization process.

 Lu et al. (2021) propose a reinforcement learning

based technique for generating sequences with

conceptual constraints. This method requires

training and is not applicable for hard lexical or

phonetic constraints.

 Zhang et al. (2020) developed a technique for

solving the problem of hard-constraint generation.

They propose to pre-train a model by progressively

inserting tokens between existing tokens in a

parallel manner. They introduce a large scale

3 An excellent blog post about this can be found here:
https://huggingface.co/blog/constrained-beam-
search

language model pre-trained this way and which is

fine-tuned on hard-constrained tasks called

POINTER. Their work only looks at the constraint

of requiring certain words to appear in a sequence.

Our work explores a wide variety of constraints and

requires no training.

 Other work related to constrained text generation

which explores the potential of global constraint

satisfaction at the sequence level comes from

Mireshghallah et al. (2022). Surrogate models,

such as BertScore, enforce these global constraints.

Our writing assistant enforces constraints at the

local level, and allows human intervention at any

point.

 Some intriguing work from the Task Oriented

Dialogue community has parallels with our work.

Balakrishnan et al. (2019) showcase how

constrained decoding can be obtained by controlled

modification of the model representation. They

find that this technique improves semantic

correctness as measured on the weather dataset.

3 Implementation Details

In this section, we explore the quirks, caveats, and

details of the implementation of our technique

within CTGS.

3.1 Filters

To enable a filter, a user checks the corresponding

box, which will cause a larger group of settings to

become visible. These settings are specific to each

individual filter. After the relevant settings are

specified, the button at the bottom of the settings

enables the filter, and a list of filters which are

enabled is shown at the top of the filters window.

 CTGS at the time of writing includes 21 filters.

Many of these filters are lexical, such as constraints

which ban or force particular letters. Other filters

are distance based, such as the semantic filter,

which uses an auxiliary fasttext (Bojanowski, et al.,

2016) model to remove language model

vocabulary tokens which don’t meet or exceed the

specified semantic similarity threshold with a user

supplied word.

Probably the most interesting of the included

filters are phonetic in nature. CTGS includes filters

for syllable count, meter, rhyme, and phonetic

matching. CTGS achieves this feat by using the the

12

Carnegie Mellon Pronouncing Dictionary

(CMUdict) 4 . The “double metaphone” phonetic

algorithm is used for direct phonetic matching.

These sorts of filters unlock the potential for poetry

generation by large-scale language models since

the rhyme, syllable, or meter constraints inherit to

poetry are directly forced within the language

models vocabulary.

3.2 Tokenization

Most of the constraints have the additional

unpleasant side-effect of subverting the intention

and value of subword tokenization schemes. This

is because the filters assume that a language model

generates its words all in one-step. Subword

tokenization became the de facto default for large

language models because increasing the

vocabulary size of a language model dramatically

increases the computational and memory footprint

of the model. As the size and sophistication of

language models has gone up, their vocabulary

sizes have stayed constant5. This is frustrating for

our technique, which naively assumes that a filter

can be applied to a subword – an assumption which

is often not true.

Unfortunately, most Language Models don’t

“signpost” as to whether they are generating a full

word or a subword, requiring heuristic techniques

to be used if one wanted to construct a “subword

4 Available here:
https://github.com/cmusphinx/cmudict

aware” filter. Even more startlingly, we observe

that language models occasionally generate

functionally the same continuation with subwords

that they could have generated with direct words

found within the vocabulary. Many of the filters in

CTGS will absolutely cripple a language models

ability to generate rare words which would be

vectorized into subwords by the language models

tokenizer. CTGS in its current form thrives when it

is using a language model with a huge vocabulary.

Luckily, modern language models with huge

vocabularies exists. One of these is “Transformer-

XL”, which showcased the value of using a word-

tokenizer and an autoregressive architecture for

generating coherent text (Dai et al., 2019). Its

word-tokenizer doesn’t leverage sub words, and

thus these models do not succumb into the

previously discussed issues. The default pre-

trained models that Dai et al made available have a

vocabulary size of 267735 tokens. That’s a 5.32x

increase in size over GPT-3! Unfortunately, one

must also incur a significant penalty in memory and

compute costs for this privilege.

4 Dataset without the “e”

One of the issues that large language models

present for constrained writers is that even when

heavily fine-tuned on a particular dataset, they

5 E.g. GPT, GPT-2, and GPT-3 all have a vocab size of
50257 words.

Figure 2: CTGS with the "Distilled-GPT2” (distilgpt2) model loaded. Users can right click within the

textbox for a list of all possible continuations matching the currently selected filters

Users can right click anywhere within the text box to get a

13

frequently ignore their constraints. For example,

poetry models that were fine-tuned on the works of

William Shakespeare frequently stumble and fail to

maintain rhyme or meter.6 We show that language

models, which are fine-tuned even on the simple

lexical constraint of omitting the letter “e”, still

occasionally ignore their constraints. In fact, even

when these models are overtrained to an absurd

degree, complete adherence to these constraints is

unlikely.

Such behavior motivates the creation of datasets

which include some forms of hard lexical,

semantic, or phonetic constraints. By doing so, we

can measure how often language models ignore

them, and more importantly, we can show that this

method of filtering out these tokens before the

generation step leads to strictly better performance

and eliminates these kinds of errors.

We present a dataset, called “Lipogram-e”,

which consists of all known complete book-length

English works which do not use the letter “e”. This

dataset includes all of Gadsby by Ernest Vincent

Wright, all of A Void by Georges Perec, and almost

all of Eunoia by Christian Bok 7 . We name it

“Lipogram-e” because a lipogram is a text where

the author omits one or more letters from the

alphabet.

While it may be possible to produce a dataset

without the letter “e” by simply computationally

looking through an existing large scale dataset for

sentences which match that constraint, doing so

would result in jumbled and incoherent training

examples, with little relation to each other. By

contrast, books and prose written with constraints

have clear, coherent narratives. We chose the

constraint of banning “e” because it is extremely

easy to computationally verify and because there is

no potential for error from the filter function.

5 Experiment

We design the experiment to measure how often a

language model makes constraint-based mistakes

on the Lipogram-e dataset. We look at the

perplexity and the ignored constraint error rate of

GPT-2-medium. We choose GPT-2-medium

because of its relatively well-understood fine-

tunability. We compare the untrained GPT-2 model

to the regularly fine-tuned model, and the over-

fine-tuned model. We show that in all instances,

6 An observation that has also been made by others:
see here: https://www.gwern.net/GPT-2

applying the constraint to ban the letter “e” from

the vocabulary of these models results in both

improved perplexity, as well as zero ignored

constraint errors.

6 Discussion and Observations

Language models that have had their vocabularies

filtered act significantly differently from unaltered

models. Because the filters remove significant

amounts of entries with high probability of being

generated, models are more likely to behave

undesirably. Some of the undesirable behavior

observed included models generating total

gibberish, generating repetitive text, generating

potentially personally identifying information,

generating profanity, and generating computer

code. The more tokens which are filtered, and the

higher their probability, the more likely it is that

models will end up in these degenerate states. We

hope that this paper motivates further and more

exhaustive analysis of the vocabularies of language

models and in particular, what properties they have

when altered.

Filtering the vocabularies of language models

opens up unique possibilities for adversarial

machine learning. Any model which is exposing its

full probability distribution before decoding could

potentially be “attacked” by a sophisticated actor

who has figured out what they “don’t want” the

7 Eunoia is a work where each chapter only uses one
vowel. We omit the chapter that uses the vowel “e”

Model Perplexity

on test split

Ignored

Constraint

Error %

GPT-2 237.37

28.2

GPT-2 with

constraint filter

211.53 0

GPT-2 fine-tuned

for 5 epochs

78.24

0.5

GPT-2 fine-tuned

for 5 epochs with

constraint filter

77.99 0

GPT-2 fine-tuned

for 20 epochs
75.58

0.3

GPT-2 fine-tuned

for 20 epochs

with constraint

filter

75.10 0

Table 1: Results of the experiment on the

Lipogram-e dataset

14

model to generate. This could dramatically reduce

the number of generations needed to leak specific

information.

Similar techniques for filtering the output of all

generative models could be explored in the future.

Highly sophisticated text-to-image models like

DALL-E from Ramesh et al. (2021) and Stable-

Diffusion from Ho and Salimans (2021) might

have interesting and unique behavior if pixel based

filters that are analogous to our technique can be

developed.

It would be extremely interesting to see how this

technique will work with large scale language

models such as OpenAIs GPT-3 or Huggingfaces

BLOOM model. It is likely to make this technique

extremely sophisticated, but large scale models

frequently are not released to the public and their

vocabularies probability distributions are not

always exposed to the end user.

7 Final Thoughts and Conclusion

In this paper, we introduced the AI constrained

writing assistant called CTGS, explained its

features and rationale, and mused about its

potential use cases. We also introduced a

Huggingface hosted webapp which demonstrates

the plug-and-play nature of constraining the

vocabulary of a language model. We introduced a

dataset of English books which do not contain the

letter “e” called “Lipogram-e”. We showed that our

technique results in lower perplexity and zero

ignored constraint errors in a variety of

circumstances. Finally, we discussed the unique

behaviors that models with constraints have.

 We also hope to use this paper to serve as a call

to action for the language modeling community to

not abandon research into word level tokenizers

and training models using them. If that’s not

possible, at least some form of “signposting”

should be built into subsequently trained models

using potentially a new subword tokenization

scheme designed for this purpose. We hope this

paper motivates future work on word-level

tokenization, and on language models trained with

extremely large vocabularies.

References

Balakrishnan, A., Rao, J., Upasani, K., White, M., and

Subba, R. 2019. Constrained Decoding for

Neural NLG from Compositional

Representations in Task-Oriented Dialogue.

ACL 2019 - 57th Annual Meeting of the

Association for Computational Linguistics,

Proceedings of the Conference, 831–844.

Retrieved from http://arxiv.org/abs/1906.07220

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.

2016. Enriching Word Vectors with Subword

Information. Transactions of the Association for

Computational Linguistics, 5, 135–146.

Retrieved from http://arxiv.org/abs/1607.04606

Chowdhery, A., Narang, S., Devlin, J., Bosma, M.,

Mishra, G., Roberts, A., … Fiedel, N. 2022.

PaLM: Scaling Language Modeling with

Pathways. Retrieved from

http://arxiv.org/abs/2204.02311

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V.,

& Salakhutdinov, R. 2019. Transformer-XL:

Attentive Language Models Beyond a Fixed-

Length Context. ACL 2019 - 57th Annual

Meeting of the Association for Computational

Linguistics, Proceedings of the Conference,

2978–2988. Retrieved from

http://arxiv.org/abs/1901.02860

Ho, Jonathan and Salimans, Tim, 2021, Classifier-

Free Diffusion Guidance, NeurIPS 2021

Workshop on Deep Generative Models and

Downstream Applications, Retrieved from

https://arxiv.org/abs/2207.12598

Kumar, S., Malmi, E., Severyn, A., & Tsvetkov, Y.

2021. Controlled Text Generation as

Continuous Optimization with Multiple

Constraints. Retrieved from

http://arxiv.org/abs/2108.01850

Lu, Y., Zhang, L., Han, W., Zhang, Y., & Tu, K.

2021. Constrained Text Generation with Global

Guidance-Case Study on CommonGen.

Mireshghallah, F., Goyal, K., & Berg-Kirkpatrick, T.

2022. Mix and Match: Learning-free

Controllable Text Generation using Energy

Language Models. Retrieved from

https://github.

Pascual, D., Egressy, B., Meister, C., Cotterell, R.,

and Wattenhofer, R. 2021. A Plug-and-Play

Method for Controlled Text Generation.

Retrieved from

https://github.com/dapascual/K2T

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,

and Sutskever, I. 2019. Language Models are

Unsupervised Multitask Learners. Retrieved

from https://github.com/codelucas/newspaper

Ramesh, Aditya and Pavlov, Mikhail and Goh,

Gabriel and Gray, Scott and Voss, Chelsea and

Radford, Alec and Chen, Mark and Sutskever,

Ilya, 2021, Zero-Shot Text-to-Image

Generation. Retrieved from

15

https://arxiv.org/abs/2102.12092

Swanson, B., Yamangil, E., and Charniak, E. 2014.

Natural Language Generation with Vocabulary

Constraints.

Zhang, Y., Wang, G., Li, C., Gan, Z., Brockett, C., &

Dolan, B. 2020. POINTER: Constrained

Progressive Text Generation via Insertion-

based Generative Pre-training. Retrieved from

https://github.com/dreasysnail/POINTER

