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Abstract

Researchers often use games to analyze the abil-
ities of Artificial Intelligence models. In this
work, we use the game of Twenty Questions to
study the world knowledge of language models.
Despite its simplicity for humans, this game
requires a broad knowledge of the world to
answer yes/no questions. We evaluate several
language models on this task and find that only
the largest model has enough world knowledge
to play it well, although it still has difficulties
with the shape and size of objects. We also
present a new method to improve the knowl-
edge of smaller models by leveraging external
information from the web. Finally, we release
our dataset and Twentle, a website to interac-
tively test the knowledge of language models
by playing Twenty Questions.

1 Introduction

Generative language models achieve strong perfor-
mance on multiple NLP tasks by using an unsuper-
vised training objective: predicting the next token
in a string of text (Brown et al., 2020; Chowdhery
et al., 2022; Zhang et al., 2022).

Despite the simple training objective, these mod-
els capture a significant amount of world knowl-
edge (Roberts et al., 2020; Jiang et al., 2020; Tal-
mor et al., 2020). However, we can quickly uncover
some limitations by asking simple questions. For
example, GPT-3 (Brown et al., 2020) is more likely
to complete the following sentence question: is a
kettle smaller than a tennis ball? answer: with
yes than no. While trivial for a human, GPT-3 has
trouble comparing the size of a kettle and a tennis
ball.

We can use the let’s think step by step method to
look into the chain of reasoning of GPT-3 (Kojima
et al., 2022): question: is a kettle smaller than a
tennis ball? answer: let’s think step by step. [...]
a tennis ball is about 6 inches in diameter [...] a
typical kettle is about 8-10 inches tall and has a

Figure 1: Example Twenty Questions game: a human
must discover the hidden entity (a keyboard) by asking
yes/no questions to the language model. In this case,
the model needs to know about the shape, composition,
and purpose of a keyboard to correctly answer all ques-
tions. While trivial for humans, our results show that
this is not the case for most language models, except for
GPT-3, which displays fantastic world knowledge on all
questions except size-related questions.

diameter of about 4-5 inches. So, a kettle is smaller
than a tennis ball. According to this example, GPT-
3 predicts that a tennis ball is twice its actual size,
leading to the wrong conclusion that a kettle is
smaller than a tennis ball.

In this work, we try to analyze the world knowl-
edge of language models through the game of
Twenty Questions. We collected a dataset of 2000+
questions and tried to understand the strength and
weaknesses of language models by classifying
questions into nine categories of knowledge (us-
age, size & shape, appearance).

Our results show that GPT-3, a 175 billion pa-
rameters language model, can play Twenty Ques-
tions thanks to a consistent world knowledge on
all categories identified, except for size & shape
questions (e.g., is it bigger than a foot). Unfortu-
nately, we also show that smaller models do not
display the same consistency. However, leverag-
ing the web improved the knowledgeability of T0
by 10% and brought it to a level competitive with
GPT-3, despite having 16 times fewer parameters.
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Our contributions are the following:

• We release the first dataset consisting of
Twenty Questions games.

• We show that very large language models have
a consistent world knowledge, while smaller
models do not.

• We provide a method to improve the knowl-
edgeability of smaller models using back-
ground information from the web.

We publicly release our dataset on HuggingFace
(Wolf et al., 2020).1 We also present Twentle, a
website to interactively test the world knowledge
of language model by playing the game of Twenty
Questions.

2 Related Work

Although analyzing the capabilities of language
models through the game of Twenty Questions is
new, researching the amount of general knowledge
and common sense of language models is not.

Unfortunately, the knowledge stored by lan-
guage models is not symbolic. Therefore, we can-
not look into the model and inspect its knowledge.
Instead, previous work relied on multiple proxy
tasks.

One option is to use regular reading comprehen-
sion datasets in a closed-book format. Roberts et al.
(2020) follow this approach. They evaluate how
much knowledge can be stored inside the weights
of a text-to-text T5 model (Raffel et al., 2020). The
authors repurposed three reading comprehension
datasets to closed-book question answering: Web
Questions (Berant et al., 2013), Trivia QA (Joshi
et al., 2017) and Natural Questions (Kwiatkowski
et al., 2019). They concluded that T5 performs
on par with specialized machine comprehension
models. GPT-3 (Brown et al., 2020) was also eval-
uated on the same closed-book question-answering
datasets. The largest model (175B parameters)
achieved state-of-the-art results on TriviaQA de-
spite not being trained for the task.

Unfortunately, it has been demonstrated later
by Lewis et al. (2021) that the datasets used by
Roberts et al. (2020) and Brown et al. (2020) suffer
from a considerable overlap between the training
and test set, invalidating the authors’ conclusion
based on these datasets. Furthermore, when the

1https://huggingface.co/datasets/maximedb/twentle

overlap between the training and test set is removed,
the performance of BART (Lewis et al., 2020a)
diminishes from 26.7% to 0.8% on TriviaQA (Joshi
et al., 2017), suggesting that the model is unable to
generalize to previously unseen questions.

To overcome the previously mentioned overlap
problem, Wang et al. (2021) repurposed SQuAD
(Rajpurkar et al., 2016), a popular reading com-
prehension dataset, as a closed-book question an-
swering dataset. They evaluated the performance
of BART on this new dataset and concluded that
it was still challenging for generative models to
perform closed-book question answering.

Another approach is to look at how a language
model fills in blanks (i.e., masking). One can es-
timate what the language model knows by care-
fully analyzing the model’s suggestion. This is the
approach followed by Petroni et al. (2019). The
authors introduce a new dataset LAMA to test the
factual and commonsense knowledge in language
models. It provides a set of cloze tasks, e.g., ravens
can with the associated answer fly.

The oLMpic Games (Talmor et al., 2020) tests
the symbolic reasoning of language models through
eight synthetic tasks. While very similar to our
work, the dataset uses masking to probe the lan-
guage model. Mask tokens are only applicable to
encoder language models, while we are interested
in generative language models.

Previous studies have shown that providing gen-
erative language models with background informa-
tion improves their performance. (Borgeaud et al.,
2021; Lewis et al., 2020b; Komeili et al., 2022;
De Bruyn et al., 2020; Lazaridou et al., 2022) Simi-
lar to Lazaridou et al. (2022), we find that including
external knowledge improves the language model’s
performance, however, we obtain better results by
restricting the source of knowledge to Wikipedia
instead of the entire Internet.

To summarize, we are the first to analyze the
world knowledge of generative language models
through the game of Twenty Questions. We depart
from the work of Roberts et al. (2020) and Wang
et al. (2021) in several ways. First, we only have
yes/no answers, which simplifies the evaluation
and removes the surface-form problem (Holtzman
et al., 2021). Second, using generic questions al-
lows disentangling the understanding of the object
and the question.
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Twenty Questions
Questions 2,832
Generic questions 915
Entities 126
Words (per question) 6.8
Yes 35%
No 65%

Table 1: Summary of the Twenty Questions dataset. We
collected 2,832 questions from 126 different entities.
We make the distinction between generic and regular
questions. Generic questions refer to the entity as "it"
(e.g. does it [a rake] have a seat). Generic questions are
asked multiple times over different entities (on average
3). We use this unique feature to disentangle the under-
standing of the question and the entity.

3 Data

This section presents our dataset based on the
Twenty Questions game — the first boolean closed-
book question answering dataset regarding world
and commonsense knowledge. We start this sec-
tion by introducing the Twenty Questions game.
We then explain our data collection process. Fi-
nally, we analyze the type of knowledge required
to perform well on this dataset.

3.1 Twenty Questions Game

Wikipedia describes Twenty Questions as a spoken
parlor game that encourages deductive reasoning
and creativity. In the traditional game, one player
(the answerer) chooses a subject and does not reveal
it. The other players are questioners and must find
the hidden entity by asking yes/no questions.

Previous research focused on playing the ques-
tioner (Hu et al., 2018; Chen et al., 2018), however,
we are interested in the role of the answerer — the
player responsible for answering the yes/no ques-
tions using his knowledge of the world. According
to our research, this is the first attempt at playing
the role of the answerer.

3.2 Akinator

Instead of organizing games using Amazon Me-
chanical Turk, we used Akinator2 to collect many
questions. Akinator is an online game where users
can play games of Twenty Questions against a prob-
abilistic model.

Users first pick an entity (without revealing it),
and Akinator will then ask yes/no questions to find

2https://akinator.com/

the hidden entity. It can guess animals, objects, or
characters. The player can answer with 5 possi-
ble options: yes, no, probably yes, probably not,
and don’t know. Although the original Twenty
Questions game used a maximum of 20 questions,
Akinator will ask questions until it finds the cor-
rect entity. We provide examples of questions and
entities in Table 2. We were pleasantly surprised
by the quality of the Akinator model. It was able
to find our hidden entities in most instances. We
removed questions from the few instances where it
was not capable of finding the correct entity.

3.2.1 Generic Questions
Akinator does not know the entity when asking the
question and refers to the entity using "it". Because
of its probabilistic nature, Akinator will likely ask
the same generic question for multiple entities. We
list the most common generic questions in Table
3. For example is a rake bigger than a foot and is
a tennis ball bigger than a foot are two different
questions but share the same generic question is it
bigger than a foot. The average generic question
(e.g., is it bigger than a foot) is asked for three dif-
ferent entities. However, the distribution is highly
skewed, with many specific questions asked only
once.

3.2.2 Choice of Entities
We restricted our choice of entities to objects, as
we think characters and animals are too culture-
dependent to be deemed general knowledge. As
much as possible, we tried to choose objects which
are not specific to a particular place or culture.

3.2.3 Post-processing
As we are interested in yes/no questions, we re-
move all questions with probably yes, probably
not, or don’t know as answer. We use simple regex
rules to inject entities into generic questions. We
removed all questions about sex or the user’s per-
sonal experience (e.g., do you have one at home?)
as these require personal knowledge.

3.3 Knowledge Category

In order to understand the reasoning abilities of the
language model, we need to understand the type
of knowledge required to answer each question
correctly.

After carefully reviewing the questions in our
dataset, we classified each question into one of the
following nine categories: usage, size & shape,

82



Generic Question Entity Answer
Is it bigger than a foot? Padlock No
Does it work with electricity? Magnifying glass No
Does it have a seat? Forklift Yes
Does it work with the feet? Lawn mowner No
Can it be made of wood? Rake Yes
Is it mostly for girls? Belt No
Does it have a relationship with school? Wallet No
Can it be read? Worldmap Yes
Is it made of rubber? Balloon Yes
Is it bigger than a foot? Saw Yes

Table 2: Example questions in our dataset. Akinator does not know the entity when asking the question, and refers
to the entity using "it". To avoid any bias toward a specific culture we only used well-known objects as hidden
entities. We did not use animals or characters.

Question Entities
Is it bigger than a foot? 68
Does it go into the mouth? 67
Is it something we wear? 56
Can we buy it? 55
Is it a toy? 50
Is it made of metal? 48
Is it soft? 45
Can it be opened or closed? 42
Is it electronic? 34
Can it be found in a kitchen? 31

Table 3: Most common generic questions in the dataset.

location, composition, description, relatedness, ap-
pearance, functioning, and purpose. Finally, we
provide an overview with examples in Table 4.

Shape and Size To answer this kind of question,
the model should understand an object’s shape and
be able to compare it with others. For example, is
it bigger than a foot?

Usage The model should know how an object is
used in everyday life to answer these questions. For
example, the model should know that a question
like is it something we wear? applies to a pair of
sunglasses, but not a forklift.

Location The model must know in which place
or circumstances an object is used. For example,
can we find it in a bathroom or, is it outside.

Composition These questions require knowing
the composition of an object. For example, is it
liquid, or is it made of glass.

Description The model should know how hu-
mans describe this object with adjectives. For ex-
ample, is it heavy, or is it sticky.

Relatedness To answer these questions, the
model must be able to relate two categories of ob-
jects or concepts together. For example, does it
have a relation with water, or is it a toy.

Functioning These questions require knowing
how an object works. This category is broad and
includes questions such as can it be opened or
closed, or does it work with electricity.

Appearance This category is related to the de-
scription category but focuses on how an object
looks. For example, it includes questions such as
does it have a seat, or does it have eyes.

Purpose This kind of question focuses on the
purpose of objects. It is related to the usage cate-
gory but focuses on why we use objects instead of
how. It includes questions like is it useful to sleep,
or do we use it for travel.

3.4 Human Agreement
Answering yes/no question is not always straight-
forward. A single question can be approached in
multiple ways. For example, some people answer
the question, " is a DVD smaller than a tennis ball
with yes because the height of a DVD is smaller
than that of a tennis ball, while others look at the
diameter and answer no. We asked four annotators
to answer 100 randomly sampled questions. On
average, they share the same answer as the one in
the dataset 94% of the time. The inter-annotator
agreement is good, with a Cohen’s Kappa score of
0.76 (Cohen, 1968).
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Object Knowledge Example Question Percentage
Shape and Size Is it bigger than a foot? Is it flat? 12.7
Usage Is it something we wear? Do we use it for a sport? 15.5
Location Can it be found in houses? Is it outside? 10.9
Composition Is it liquid? Is it made of glass? 7.8
Description Is it heavy? Is it sticky? 7.1
Relatedness Does it have a relation with water? Is it a toy? 14.5
Functioning Does it work with electricity? Can it be opened or closed? 14.8
Appearance Does it have eyes? Does it have a seat? 6.9
Purpose Is it useful to sleep? Do we use it for travel? 7.4

Table 4: We classified each question of the dataset into nine categories depending on the type of knowledge required
to answer the question.

4 Language Models

In this section, we review the subjects of this work:
generative language models. Language models
come in all forms and shapes. However, we focus
on two types: encoder-decoder and decoder-only
models.

4.1 Encoder-Decoder Models

Encoder-decoder models treat every NLP task as
a text-to-text problem using an encoder-decoder
Transformer. When this framework is applied to
question answering, the model is trained to gen-
erate the literal text of the answer in a free-form
fashion (Roberts et al., 2020).

T5 is a text-to-text model pre-trained on multiple
tasks simultaneously: translation, summarization,
classification, reading comprehension, and an unsu-
pervised span corruption task (Raffel et al., 2020).
We experiment with the 11 billion parameters ver-
sion.

T0 further trains T5 on 1700 English datasets
(Sanh et al., 2022). The resulting model outper-
forms GPT-3 (Brown et al., 2020) on several tasks
despite being 16x smaller. We use the T0pp ver-
sion with 11 billion parameters. Conveniently,
T0 has already been pre-trained on BoolQ (Clark
et al., 2019), a reading comprehension dataset with
boolean answers.

4.2 Decoder Models

Decoder models use the decoder part of the original
Transformer (Vaswani et al., 2017) model. These
models were not trained for a specific task but with
an unsupervised objective: predict the next token
in a piece of text. Due to their extensive training

corpora, these models have already seen many ex-
amples of Trivia style questions.

GPT-3 is an auto-regressive language model
(Brown et al., 2020). The largest version has 175
billion parameters. The model weights are not pub-
licly available, although the model’s predictions
are available through a paid API.3

GPT-J is a 6 billion parameters autoregressive
language model (Wang and Komatsuzaki, 2021)
trained on the Pile (Gao et al., 2021).

GPT-Neo-X is a 20 billion parameters autore-
gressive language model (Black et al., 2022)
trained on the Pile (Gao et al., 2021).

OPT is a similar model to GPT-3, but the models’
weights were publicly released (Zhang et al., 2022),
except for the largest version (175 billion parame-
ters), which is available upon request. Similar to
GPT-J, it was trained on the Pile along with data
from Reddit. We experiment with the 30 billion
parameters version.

5 Experiments

In this section, we report on our experiments using
our dataset of Twenty Questions. We experimented
with three setups: zero-shot, few-shot, and zero-
shot with knowledge augmentation. We use these
results in the section to understand the scale of the
world knowledge stored by language models.

5.1 Experimental Settings

Our experiments do not require any training, we
use language models as-is without fine-tuning. We
use the entirety of our dataset for evaluation. We

3https://openai.com/api/
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Model Size F1 Accuracy
Majority - 0 65.0
GPT-J 6B 48.6 49.0
T5 11B 24.6 68.4
T0 11B 68.5 81.9
GPT-Neo-X 20B 51.8 34.9
OPT 30B 52.8 38.2
GPT-3 13 B 59.4 60.2
GPT-3 175B 66.4 81.3

Table 5: Result of the zero-shot evaluation. Best perfor-
mance is achieved by GPT-3 and T0. The other models
struggle to reach the majority vote baseline.

measure the probability of the yes answer by sum-
ming the probability of the yes, Yes, true, and True
tokens. The same is done for the no answer with no,
No, false and False. Our dataset contains 65% of no
answers, we use F1 (binary) as primary evaluation
metric and also report accuracy.

5.2 Zero-shot

In the zero-shot setting, models answer the question
with only a textual description of the task. We
expect T5 and T0 to perform well in this setup as
they were pre-trained using the same setup, while
this is not the case for decoder-only models.

Prompt We use the same prompt for both
encoder-decoders and decoder-only models.

You are playing a game of 20 questions.
Answer the following question with yes or no.
Question: {{ question }}
Answer:

Results We report the results of our zero-shot ex-
periment in Table 5. As expected, T0 achieves the
best results with an F1 of 68.5% and an accuracy
of 81.9%. GPT-3 also performs nicely in this setup,
with 16x more parameters than T0. However, all
the other models show an accuracy lower than the
majority vote baseline.

5.3 Few-shot

In the few-shot setup, models receive identical in-
structions as in the zero-shot setup, in addition to
a few examples. This setup benefits decoder-only
models as they can now learn the task on the fly
using in-context learning (Beltagy et al., 2022).

Prompt We augment the zero-shot prompt with
four examples. There are two examples with yes

Model Size F1 Accuracy
Majority - 0,0 65.0
GPT-J 6B 57.7 57.7
T5 11B 0.0 65.8
T0 11B 6.7 65.8
GPT-Neo-X 20B 58.4 58.3
OPT 30B 60.4 71.6
GPT-3 13B 58.2 60.2
GPT-3 175B 83.0 87.9

Table 6: Result of the few-shot evaluation. GPT-3’s F1
improves by 9% to reach 83%. The performance of OPT
barely improves compared to the zero-shot reasoning,
while as expected the performance of encoder-decoder
models plummets.

and two with no. We randomly select examples
from different entities and generic questions.4

You are playing a game of 20 questions.
Answer the following question with yes or no.
Question: {{ question_example_1 }}
Answer: {{ answer_example_1 }}
...
Question: {{ question_example_n }}
Answer: {{ answer_example_n }}
Question: {{ question }}
Answer:

Results We provide an overview of the few-shots
results in Table 6. As expected, the performance
of decoder-only models increases, while the perfor-
mance of encoder-decoder decreases5. For exam-
ple, GPT-3’s F1 increased from 66.4% to a record
83.0%. Unfortunately, these results also show that
(relatively) smaller decoder-only models do not
reach T0’s performance in a zero-shot setup.

5.4 Zero-shot with Knowledge Augmentation
The performance of GPT-3 is exceptional. How-
ever, it comes at a steep computational and envi-
ronmental cost. Moreover, as T0 has fewer param-
eters than GPT-3, it has less "space" to store world
knowledge. In this section, we try to augment T0
with external knowledge to help it bridge the per-
formance gap with GPT-3. We use two sources of
background knowledge: the entire Internet using
Bing search and the Wikipedia page of the entity.

Prompt We follow the same prompt as in the
zero-shot analysis. In addition, we augment it with
a space for background knowledge.

4This setup is similar to the start of a Twenty Questions
game where the model does not have previous examples for
the same entity.

5These models were zero-shot inference, not few-shot.
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Model Size F1 Accuracy
T0 (ZS) 11B 68.5 81.9
T0 (Bing) 11B 69.7 75.7
T0 (Wiki) 11B 79.3 86.0
GPT-3 (FS) 175B 83.0 87.9

Table 7: Augmenting T0 with background information
improves its F1 score by 10% and brings it to a compet-
itive level with GPT-3.

Text: {{ background_knowledge }}
You are playing a game of 20 questions.
Answer the following question with yes or no.
Question: {{ question }}
Answer:

Bing We run a bing search for every question
and only keep the text snippet returned by Bing.
We compare each text snippet to the question us-
ing a cross-encoder from Sentence Transformers
(Reimers and Gurevych, 2019). We then keep the
snippet with the highest score. We do not restrict
Bing, so it can also choose to return pages from
Wikipedia.

Wikipedia We chunk the Wikipedia page of each
entity into passages of around 256 tokens. Then,
we re-rank the passages using the same cross-
encoder.

Results We provide an overview of the few-shots
results in Table 7. The Bing search results are
disappointing. The F1 score barely improves by
1%. On the other hand, the Wikipedia search results
are outstanding: F1 improves by over 10% and
accuracy by 4%.

This section concludes that GPT-3 (few-shot)
is the best model for playing the answerer in a
game of Twenty Questions. However, GPT-3 is
computationally and environmentally costly. We
showed that incorporating background knowledge
from Wikipedia can improve T0’s performance to
a competitive level with GPT-3 despite having 16
times fewer parameters.

6 World Knowledge Analysis

We now use the results of the previous section to an-
alyze the world knowledge of the three best models:
GPT-3, T0, and T0 Knowledge Grounded (KG).

6.1 Knowledge Category
We list the accuracy by category of knowledge
in Table 8. The most striking result is the low
performance of the three models in the Shape &

Knowledge Type GPT-3 T0 T0-KG OPT
Shape & Size 66 56 69 60
Usage 86 82 86 75
Location 88 74 89 60
Composition 90 78 78 69
Description 81 69 73 65
Relatedness 95 94 88 79
Functioning 87 79 74 71
Appearance 91 83 83 89
Purpose 91 88 82 75

Table 8: Accuracy (%) by category of knowledge. GPT-
3 outperforms T0 on every knowledge type. Shape &
Size questions stand out as a weak spot for GPT-3 and
T0.

Size category. For example, GPT-3 has a difference
of 20% between the worst category (Shape & Size)
and the second-worst category (Usage).

On the other hand, GPT-3 and T0 can answer
questions relating to two objects or concepts ex-
ceptionally well (e.g., is it related to water or is it
a toy). Intriguingly, incorporating knowledge into
the prompt diminishes the score on relatedness for
T0-KG.

We now dig deeper into size & shape questions
and try to understand if there are specific kinds
of questions mishandled by the language models.
We list the average accuracy by questions in the
Shape & Size category in Table 9. We notice that
questions 1, 3 & 4 are not specific enough. On
which dimension should we compare the size of
the tennis ball? 6 The inter-annotator score on
Shape & Size question is 0.75, almost equivalent to
the global inter-annotator score of 0.76. We believe
humans have enough common sense to decide on
which dimension to evaluate the size of objects.

6.2 Entities

Inspired by previous research (Razeghi et al., 2022),
we look for a correlation between the average ac-
curacy of an entity and its frequency in the pre-
training data.7 We do not find any significant cor-
relation, except a small 0.05 correlation for T0.
We believe the conclusion would be different with
lesser-known objects.

We notice that ambiguous entities such as a rule8

6Is a DVD smaller than a tennis ball because of its thick-
ness?

7We use the first 10 billion tokens of the C4 dataset (Raffel
et al., 2020) to estimate the frequency of entities in the pre-
training data.

8As in a 30 cm rule/ruler
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Question GPT-3 T0 T0-KG
Is it smaller than a tennis ball? 50 55 60
Is it globe-shaped? 55 77 77
Is it bigger than a foot? 60 47 67
Can we transport it in a pocket? 62 50 50
Is it flat? 66 55 61
Is it round? 68 43 69
Is it long? 71 28 57
Is it rectangular? 72 81 72
Is it taller than a man? 78 78 71
Does it have a square shape? 80 80 100
Is it pointed? 85 71 71
Is it bigger than a bus? 100 100 100

Table 9: Accuracy (%) of GPT-3, T0, and T0-KG on
Shape & Size questions. GPT-3 struggles with compar-
ing the size of entities with the size of a tennis ball.

and a racket9 are not well managed by all models
for understandable reasons.

6.3 Knowledge Augmentation
In this section, we try to understand why Wikipedia
is a much better source of background knowledge
than Bing’s search over the Internet.

Knowledge Source We manually reviewed and
compared the background knowledge provided by
Bing and Wikipedia. We found that the knowledge
returned by Bing can be specific, whereas the game
of Twenty Questions requires general knowledge.
For example, when asked does a printer have a
seat, the obvious answer is no. However, Bing
returns a text saying [...] each used printer takes
one license seat. [...] confusing the model into
thinking printers do have seats. Another example
is the question is a litter box a weapon. The cor-
rect answer is no. Bing, however, returns a text
saying [...] cat litter box used as a weapon in fight
over prescription drugs [...] confusing the model
into thinking a litter box is a weapon. In both in-
stances, the knowledge returned by Wikipedia is
the introductory paragraph describing the entity.

Knowledge Category According to Table 8, in-
corporating background knowledge helps in Loca-
tion (+15%) and Usage (+13%) questions. On the
other hand, it hurts performance on Relatedness
questions (-6%).

This section concludes that GPT-3 performs con-
sistently on all categories of questions, except
Shape and Size. Although competitive, T0 does not
show the same consistency as GPT-3, even when
augmented with background information.

9As in a tennis racket

7 Twentle

We present an interactive website to let anyone
test the world knowledge of T0-KG by playing the
game of Twenty Questions. Inspired by Wordle,
we named our website Twentle, available at twen-
tle.com.

8 Future Work

Reducing the world to yes/no questions is not an
easy task. Our human agreement section demon-
strates that humans do not agree on all answers.
Future work is needed to compare the agreement
of humans and language models by category of
question. In this study, we limited ourselves to the
study of the answerer. However, GPT-3 could po-
tentially also play the role of the questioner. Future
work is needed to study the knowledgeability of
language models on lesser-known objects. In this
case, we anticipate that large models will also need
to leverage the web for information.

9 Conclusion

In this work, we analyzed the world knowledge
of language models through the game of Twenty
Questions. Our analysis reveals that most language
models do not have the world knowledge required
to play this game. GPT-3 is a notable exception. It
displays impressive world knowledge on all cate-
gories of questions identified, except for shape &
size questions — is it smaller than a tennis ball.
Furthermore, we showed how grounding smaller
models on information from the web improves their
knowledgeability. Through this work, we demon-
strated the need for more clarity on which model
architecture and pre-training method best captures
world knowledge.

10 Limitations

We intentionally limited our analysis to well-known
objects. We anticipate a lower performance on
lesser-known objects. Furthermore, our work uses
well-defined questions with little noise, whereas
real-world questions by humans could be more
challenging for language models to understand.
The dataset we collected could contain biases al-
ready present in our society. Unfortunately, the
same is true for the answers given by the language
model.
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A Computing Infrastructure

We ran all our experiments on a server running 8
NVIDIA GPU (12GB) with 128GB of RAM and
24 CPU. All models ran in parallel using the de-
vice_map argument of the from_pretained method.
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We did not engage in a hyperparameter search. Fu-
ture research could look for the optimal prompt,
balance of yes and no examples.

C Correlation With Token Frequency

We display the correlation between the average
accuracy of an entity and its relative frequency in
the pre-training data in Table 10.

Model Correlation P-value
GPT-3 -0.02 0.35
T0 0.05 0.01
T0-KG -0.01 0.45

Table 10: Spearman correlation of the average accuracy
of an entity with its frequency in the pre-training data.
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