
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 426 - 440
December 8, 2022 ©2022 Association for Computational Linguistics

A Continuum of Generation Tasks for Investigating
Length Bias and Degenerate Repetition

Darcey Riley and David Chiang
University of Notre Dame

{darcey.riley,dchiang}@nd.edu

Abstract
Language models suffer from various degen-
erate behaviors. These differ between tasks:
machine translation (MT) exhibits length bias,
while tasks like story generation exhibit ex-
cessive repetition. Recent work has attributed
the difference to task constrainedness, but evi-
dence for this claim has always involved many
confounding variables. To study this ques-
tion directly, we introduce a new experimen-
tal framework that allows us to smoothly vary
task constrainedness, from MT at one end to
fully open-ended generation at the other, while
keeping all other aspects fixed. We find that:
(1) repetition decreases smoothly with con-
strainedness, explaining the difference in repe-
tition across tasks; (2) length bias surprisingly
also decreases with constrainedness, suggesting
some other cause for the difference in length
bias; (3) across the board, these problems affect
the mode, not the whole distribution; (4) the
differences cannot be attributed to a change in
the entropy of the distribution, since another
method of changing the entropy, label smooth-
ing, does not produce the same effect.

1 Introduction

Neural language models serve as the core of mod-
ern NLP technologies, but they suffer from “in-
adequacy of the mode” (Eikema and Aziz, 2020;
Zhang et al., 2021), in which the sentences with the
very highest probability under the model exhibit
various pathological behaviors. Specifically, ma-
chine translation suffers from length bias, where
the generated translations are too long or (more of-
ten) too short (Murray and Chiang, 2018; Stahlberg
and Byrne, 2019), while story generation suffers
from degenerate repetition, where the generated
text repeats words or phrases unnecessarily (Holtz-
man et al., 2020).

It has frequently been assumed that length bias
and degenerate repetition are both aspects of a
single phenomenon; for instance, it is very com-
mon for papers studying MT to reference issues

observed in story generation. However, MT and
story generation exhibit very different problems,
and have been addressed using very different solu-
tions. So it is worth pausing for a moment to ask
how they relate. Are they truly two symptoms of
the same problem? Why do different tasks exhibit
different degenerate behaviors?

Stahlberg et al. (2022) and Wiher et al. (2022)
attribute the differences to task constrainedness:
given a particular input, how many different possi-
ble correct answers might there be? For example,
grammatical error correction (GEC) and speech
recognition are more constrained; image caption-
ing and MT are in the middle; and story generation,
dialogue, and pure unconditioned generation from
the language model (UCG) are least constrained.
However, constrainedness is only one of many dif-
ferences among these tasks. They also differ in the
length of the inputs and outputs, the size of the mod-
els, and so on. So although these papers provide
compelling circumstantial evidence that the differ-
ences can be explained in terms of constrainedness,
they do not rule out alternative hypotheses.

In this paper, we introduce a new experimen-
tal framework which lets us directly adjust con-
strainedness while keeping everything else (archi-
tecture, number of parameters, type of output data)
fixed. We expect that, if task constrainedness re-
ally is responsible for the differences in degenerate
behaviors seen across tasks, then these behaviors
should vary smoothly as we adjust constrainedness.
We find this to be true for degenerate repetition: we
see basically none for pure MT, and an increasing
amount as we lower the constrainedness down to
UCG. This is consistent with the literature, which
reports repetition as a problem in UCG, but not MT.

On the other hand, for length bias, we discover,
to our knowledge for the first time, that length bias
actually increases for less constrained tasks. This
is inconsistent with the literature, where length bias
is commonly reported for MT but very rarely re-
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ported for UCG. We conclude that the difference,
then, is either due to some other factor besides
constrainedness influencing the model’s probabil-
ity distribution, or that it can be attributed to the
different decoding strategies commonly used for
the different tasks.

In addition, we present results showing that both
length bias and degenerate repetition are problems
exclusive to the mode; they do not in general affect
random samples from the distribution. Lastly, we
explore one possible explanation for why length
bias and repetition differ across constrainedness
levels: that it is because less constrained tasks have
higher entropy. We find that this cannot be the
explanation, as another method of increasing the
entropy, label smoothing, has very little effect on
these phenomena.

2 Related Work

Closely related to our work are two recent papers
by Stahlberg et al. (2022) and Wiher et al. (2022),
which also explore how degenerate phenomena dif-
fer across tasks. Stahlberg et al. (2022) study two
more-constrained tasks, MT and GEC. Using exact
search and beam search, they find that, for GEC,
the distribution is peaked around a few very high-
probability outputs, and that, unlike MT, it does not
suffer from inadequacy of the mode.

Wiher et al. (2022) study tasks in the same con-
strainedness range as we do, from MT to UCG. Al-
though their main focus is on evaluating different
decoding strategies (where they confirm the trend
seen in the literature, that more constrained tasks fa-
vor mode-seeking strategies, while less constrained
tasks favor sampling-based methods), they look, as
we do, at how degenerate repetition and length bias
differ across tasks, finding that these phenomena
vary across tasks and decoding methods.

Our contribution here is to provide a more rig-
orous empirical analysis of why these behaviors
differ across tasks. Both Stahlberg et al. (2022) and
Wiher et al. (2022) attribute the differences they ob-
serve to task constrainedness, and Stahlberg et al.
(2022) quantify task constrainedness by looking
at how much the references differ across a multi-
reference test set, but neither is able to directly
control task constrainedness while keeping all else
fixed. Tor our knowledge, our method is the first to
study the effect of task constrainedness on degen-
eration in a completely controlled way.

3 An Experimental Framework for
Controlling Task Constrainedness

The tasks which have been compared before (GEC,
MT, story generation, and others) all differ along
multiple dimensions besides constrainedness: they
use different architectures, different numbers of
parameters and amounts of training data, and they
produce different length outputs (one sentence for
MT, many sentences for story generation), among
other distinctions. This makes it difficult to study
whether task constrainedness is actually respon-
sible for the differences observed between these
tasks. We therefore seek a way of controlling the
constrainedness directly, via some sort of “knob”
that we could adjust. In this section, we introduce
an experimental framework that allows us to do so.

3.1 Truncation

We begin with an ordinary MT dataset and a desired
constrainedness level 𝑠, which can be 0 (UCG, the
least constrained task) or 100 (MT, the most con-
strained task in our setup) or anything in between.
In our experiments, we choose 𝑠 = 0, 10, . . . , 100.
For each value of 𝑠, we truncate each source sen-
tence in the dataset to 𝑠% of its original length. To
be precise, if 𝑥 = 𝑥1 · · · 𝑥𝑛 · EOS is the original
sentence (after separating punctuation, but before
BPE), we let 𝑛′ = ⌈𝑛 · 𝑠%⌉ and truncate the sen-
tence to 𝑥1 · · · 𝑥𝑛′ ·EOS. See Table 1 for an example
German source sentence and all of its truncations.

We apply this truncation to all of the source sen-
tences in the train, dev, and test data, leaving the
target sentences intact. This way, as 𝑠 decreases,
the model has to predict the target side given less
and less information about what it might contain.
Or, to think of it another way, as 𝑠 decreases, there
become more and more possible “correct” answers,
since the truncated source sentence could be the
prefix of many possible full source sentences, and
a translation of any one of them can be considered
a valid solution to the task.

3.2 Experimental details

We use the German-to-English (de-en) and Chinese-
to-English (zh-en) datasets from IWSLT 2017 (Cet-
tolo et al., 2012), consisting of transcribed TED
talks. We use the standard dataset for training, the
2010 development set for development, and the
2010–2015 test sets for testing, following the split
by Kulikov et al. (2021). Table 2 shows the size of
each of these sets, after removing copy noise (pairs
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𝑠 (%) length tokens

0 0 EOS
10 3 Sch@@ on heute EOS
20 7 Sch@@ on heute spru@@ d@@ elt in EOS
30 8 Sch@@ on heute spru@@ d@@ elt in einigen EOS
40 13 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en EOS
50 14 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en in EOS
60 19 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en in Al@@ as@@ ka Me@@ than EOS
70 21 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en in Al@@ as@@ ka Me@@ than von selbst EOS
80 22 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en in Al@@ as@@ ka Me@@ than von selbst aus EOS
90 24 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en in Al@@ as@@ ka Me@@ than von selbst aus dem Wasser EOS

100 25 Sch@@ on heute spru@@ d@@ elt in einigen f@@ la@@ chen Se@@ en in Al@@ as@@ ka Me@@ than von selbst aus dem Wasser . EOS

Table 1: Prefixes of an example German source sentence, for all values of 𝑠. Lengths do not include EOS.

de-en zh-en

train 205,898 231,259
dev 888 879
test 8,079 8,549

Table 2: Sizes of our training, development, and test
datasets.

where the source and target are identical) from the
data (Ott et al., 2018).

We preprocess the data using BPE tokenization
(Sennrich et al., 2016). To ensure that the experi-
mental setup is as similar as possible for all values
of 𝑠, we learn BPE on the full, untruncated dataset.
Then, once BPE has been learned, we apply it to
the truncated data. Initially, we experimented with
both joint and separate BPE, but found very little
difference between them, so we present results for
joint BPE only.

For our MT system, we use the Transformer
model (Vaswani et al., 2017); specifically, we use
a fork of the Transformers without Tears library
(Nguyen and Salazar, 2019).1. We use identical hy-
perparameter settings for both language pairs and
all values of 𝑠; these are the same as the Transform-
ers without Tears base configuration, except that
we use 6 layers and 4 heads.

We trained our systems both with and without
label smoothing (Szegedy et al., 2016), thinking
that, because label smoothing changes the shape of
the distribution, it might impact the results. We dis-
cuss the effect of label smoothing in §6; in all other
sections we look only at systems trained without it.
All of our results are averaged across three random
restarts.

Fearing that BLEU scores might not provide a
meaningful enough signal for 𝑠 < 100, we tried

1https://github.com/darcey/
transformers_without_tears/tree/
mt-interpolation-paper

using both dev BLEU and dev perplexity to lower
the learning rate and control early stopping; these
gave very similar results, so we only present results
for the systems tuned using dev BLEU.

To better view the natural properties of the dis-
tribution, we do not use any length normalization
during decoding. We decode up to a maximum
length of 300 tokens.

We make our full experimental setup publicly
available on GitHub.2

3.3 Sanity checks

We verify via BLEU score that we have trained
our systems successfully. Although, for the pur-
poses of our experiment, it is not necessary to use a
state-of-the-art MT system, we nonetheless achieve
reasonable BLEU scores of 34.7 and 17.5 for de-en
and zh-en respectively for the 𝑠 = 100 systems,
using the standard beam size of 4 for decoding.
Predictably, lowering 𝑠 also decreases the BLEU
score, as can be seen in Figure 2.

As an additional sanity check, we confirm that
varying 𝑠 does indeed change the spread of the dis-
tribution in the expected way. Using 1000 samples
for each sentence in the test set, we estimate the
entropy (Figure 1a), and find that it decreases as 𝑠
increases. In addition, following Ott et al. (2018),
we look at the portion of the total probability mass
covered by all of the unique samples, and find that,
although the number of unique samples decreases
as 𝑠 increases (Figure 1c), the total probability mass
covered increases (Figure 1b).

4 Degeneracy in the Mode

In this section, we look at how length bias and
repetition vary as we vary the constrainedness pa-
rameter 𝑠.

2https://github.com/darcey/
mt-interpolation
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Figure 1: Increasing constrainedness increases the peakedness of the predictive distribution as expected. Every data
point is based on 1000 random samples for each sentence in the test data.
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Figure 2: Predictably, BLEU score decreases smoothly
as we decrease 𝑠.

4.1 Length bias
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(b) Chinese–English

Figure 3: Length ratio versus source sentence percent-
age (𝑠), for various beam sizes (𝑘). For high 𝑠, there is a
slight bias towards shorter outputs that increases mildly
with 𝑘 , whereas for low 𝑠, we see extreme bias, towards
longer or shorter outputs depending on 𝑘 .

Length bias is a problem where the length of the
output consistently differs from the length of the
reference; the term typically refers to sentences be-
ing too short. In NMT, length bias is such a major
and well-known problem that nearly all systems
correct for it using some kind of length normaliza-
tion during decoding (Wu et al., 2016; Koehn and
Knowles, 2017; Murray and Chiang, 2018).

In NMT, length bias gets worse the closer one
approaches the mode of the distribution. It has
been repeatedly shown that, as beam size increases,
bringing the output translation closer to the mode,
the length bias becomes more extreme. In fact, the
mode of the distribution is often simply the empty
string itself (Stahlberg and Byrne, 2019).

On the other hand, length bias has been under-
studied in less constrained tasks such as story gen-
eration or UCG. We know of just two reports of
this problem: for story generation, Holtzman et al.
(2020) report worsening length bias as beam size in-
creases, with immediate stopping when using beam
sizes ≥ 64, and Wiher et al. (2022) found length
bias for beam sizes 𝑘 = 5, 10; however, neither of
these is the main result of their respective papers.

This difference in emphasis seen in the literature
would seem to suggest that length bias only affects
MT, and does not affect less constrained tasks like
story generation. Thus, if constrainedness were
fully responsible for the difference seen in the lit-
erature, then we would expect to see length bias
decrease with constrainedness, becoming less of a
problem for less constrained tasks.

To test this, we measure how length bias changes
as we vary 𝑠. To quantify length bias, we compute
the (micro-averaged) length ratio,

ℓ(𝑇) =
∑

(ℎ,𝑟 ) ∈𝑇 |ℎ|∑
(ℎ,𝑟 ) ∈𝑇 |𝑟 |

where𝑇 is a test set consisting of pairs (ℎ, 𝑟), where
ℎ is a hypothesis (output) sentence and 𝑟 is a refer-
ence sentence.
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Figure 3 shows how length ratio changes as we
vary both 𝑠 and the beam size 𝑘 .3 Consistent with
previous findings, we find that standard NMT suf-
fers from considerable length bias, with the prob-
lem worsening as beam size 𝑘 increases. But to
our surprise, as 𝑠 decreases, we find that not only
does length bias worsen, but that the dependence
on beam size grows stronger and stronger. This is
surprising given the lack of concern with length
bias in the literature on less constrained tasks. To
our knowledge, we are the first to report a result
like this, where length bias actually worsens as task
constrainedness decreases.

We can think of two explanations for this result.
The first is that there are other factors besides con-
strainedness affecting the length bias seen across
tasks. We suspect that the length of the reference
outputs might be a major part of this; models like
GPT-2 are trained to produce much larger chunks
of text than our systems, which typically just output
one sentence at a time. The second is that this is
an artifact of the decoding processes used. Most of
the literature on NMT uses mode-seeking decoding
strategies such as beam search, while literature on
less constrained generation favors sampling-based
approaches. So it could in fact be that all uncon-
strained systems also suffer from length bias, but
it simply doesn’t show up because beam search is
not used with those systems.We also note that it
may be more difficult to study length bias in less
constrained tasks, since there is not necessarily a
roughly “correct” length the way there is in MT.

A last interesting result is that, for 𝑘 = 1 (greedy
search), the length ratio actually increases for de-
creasing 𝑠, ending up well above 1. This agrees
with a recent result reported by Wiher et al. (2022),
who found that, for the relatively unconstrained
task of story generation, beam sizes 𝑘 = 5, 10
returned texts that were too short, while greedy
search returned texts which were far too long.

4.2 Repetition

Degenerate repetition is a well-known problem
where the model gets stuck in a loop, repeating the
same 𝑛-grams over and over again. It so strongly

3These graphs (and all of our beam search results) exclude
the 𝑠 = 0 case, which turn out to be nearly meaningless: since
the source sentence is identical (namely, the empty string)
for each sentence pair in the test set, the beam search results
will also be identical, meaning that the decoder will simply
generate |𝑇 | copies of the same sentence. So any properties of
that one sentence will be magnified. The results under beam
search for 𝑠 = 0 are therefore little better than noise.

affects less constrained tasks like story generation
(Holtzman et al., 2020) that these tasks avoid mode-
seeking strategies altogether, preferring sampling-
based approaches. Since pure random sampling
also produces low-quality output, most work on
this topic has focused on finding a balance between
mode-seeking and pure sampling, either by trun-
cating the distribution during sampling (Fan et al.,
2018; Holtzman et al., 2020; Basu et al., 2021;
Zhang et al., 2021; Nadeem et al., 2020; DeLucia
et al., 2021), or by using some combination of sam-
pling and search (Massarelli et al., 2020), though
Welleck et al. (2020) address the issue via train-
ing rather than search, by modifying the objective
function to discourage repetition.

In contrast, to our knowledge, degenerate rep-
etition has not been reported in the literature on
NMT. (Our anecdotal experience is that degener-
ate repetition is a familiar sight in MT, but not a
serious problem in well-trained systems.) If the
difference between story generation and MT can
be explained by their constrainedness, as previous
work has suggested, then we should expect to see
repetition increase smoothly as we decrease 𝑠.

This is, in fact, exactly what we find. Figure 4
shows the amount of repetition for German-to-
English, measured as the percentage of unique 𝑛-
grams which appear in each search result (that is,
for each search result, the number of 𝑛-gram types
divided by tokens), as compared to the reference.
(The Chinese-to-English results are similar, and
can be found in Appendix B.) We find that, as 𝑠
decreases, repetition increases considerably. Con-
sistent with the literature, we see basically no evi-
dence of repetition in pure MT, where the amount
of repetition almost perfectly matches that seen
in the references. But as 𝑠 decreases, so does the
percent of unique 𝑛-grams, until for 𝑠 = 10 there
is very clear evidence of repetition. We therefore
feel confident in concluding that task constrained-
ness adequately explains the difference in the level
of concern paid to repetition in the literature for
different tasks.

One interesting thing to observe is that, as beam
size increases, repetition actually decreases. We
suspect that this might be due to the effect of length
bias: as shown in the previous section, higher beam
sizes tend to return shorter sentences, and these
seem less likely to experience degenerate repeti-
tion (though it is certainly possible to have both
problems at once).
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Figure 4: Amount of repetition versus source sentence percentage (𝑠), for various beam sizes (𝑘). Repetition is
measured as the percentage of unique 𝑛-grams in a sentence; the graphs show this for different values of 𝑛. The
repetition rate of the reference is plotted as a dashed grey line. Across all values of 𝑛, the percent of unique 𝑛-grams
drops as 𝑠 decreases. These graphs show German-to-English results only; see Appendix B for Chinese-to-English.

4.3 Discussion

It is illustrative to examine some strings generated
by our systems. Table 3 shows the translations
for one sentence from the test data; others can be
found in Appendix B. Consistent with our results,
we see length roughly decrease along with 𝑠. We
also see some concrete examples of degenerate
repetition for the lower 𝑠 values. As is typical, the
same phrase is repeated over and over, separated
by commas or “and”.

In addition to length bias and repetition, we can
also observe that, as 𝑠 decreases, the content of the
generated strings diverges further and further from
the reference. But we notice that, qualitatively, as it
does this, the outputs get increasingly boring. This
fits with what others have reported (Holtzman et al.,
2020), that beam search simply produces tedious
and boring output for less constrained tasks.

Another observation is that some of these sen-
tences are simply ungrammatical. While gram-
matical errors are very common among random
samples, it is interesting to see them even at these
high probabilities.

5 No Degeneracy in Samples

In addition to looking at search results, we also
look at samples from the distribution. For each
system and for each sentence in the test set, we
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Figure 5: Length ratio of samples versus source sentence
percentage (𝑠), for both language pairs. The samples
only suffer from very slight length bias, and only for
higher values of 𝑠.

take 1000 samples, and discover that the samples
do not suffer from either degenerate repetition or
length bias (Figs. 5 and 6). This underscores that
these problems are specific to the mode, and are
not properties of the distribution as a whole.

For low values of 𝑠, this should not be par-
ticularly surprising; sampling-based decoding ap-
proaches such as top-𝑘 (Fan et al., 2018) and top-𝑝
(Holtzman et al., 2020) are favored for these tasks
specifically to avoid the degenerate mode.

Yet it may be surprising to see that the pure MT
(𝑠 = 100) outputs do not suffer from degeneracy
either. Since MT papers rarely explore properties
of the full distribution beyond the mode, one might
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𝑠 (%) Output found using beam search, 𝑘 = 4

0 And I said, “Well, I’m going to show you a little bit.”
10 When Steve Lopez said, “You know, I’m not going to be here.”
20 When Steve Lopez, Columni, who is the first person in the world, he’s the first person in the world, and he’s the first person in the world.
30 When Steve Lopez, Columni, the Los Angeles Times, he said, “You know, I’m going to go to school.”
40 When Steve Lopez, Columnist, the Los Angeles Times, one day, he said, “You know, we’re going to have to do this.”
50 When Steve Lopez, Columnist, the Los Angeles Times, one day through the Pacific Ocean Ocean, I started to think about it.
60 When Steve Lopez, Columnist in Los Angeles Times, one day through the streets in the center of the city, the city of New York.
70 When Steve Lopez, Columnist, the Los Angeles Times, one day through the streets of Los Angeles, the city of London.
80 When Steve Lopez, Columnist, the Los Angeles Times, one day went through the streets at the center of Los Angeles, I heard this story.
90 When Steve Lopez, Columnist, the Los Angeles Times, one day went through the streets at the center of Los Angeles, he heard a wonderful story.

100 When Steve Lopez, Columnist at the Los Angeles Times, walked through the streets at the center of Los Angeles, he heard a wonderful music.

ref One day, Los Angeles Times columnist Steve Lopez was walking along the streets of downtown Los Angeles when he heard beautiful music.

Table 3: Beam search (𝑘 = 4) outputs for a sentence in the test dataset, shown across all values of 𝑠. Illustrates both
length bias and degenerate repetition.
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Figure 6: Amount of repetition versus source sentence percentage (𝑠), for various values of 𝑛, computed over
1000 random samples for each sentence in the test data. The samples show no evidence of degenerate repetition
whatsoever; the level of repetition matches extremely closely to the reference (shown as a dashed grey line which is
completely hidden behind the sampling results).

get the false impression that length bias is a prob-
lem that affects most sentences in the distribution.
Figure 5 shows that this is definitely not the case.
This supports the argument by Eikema and Aziz
(2020) that it is a mistake to focus too much on the
mode during decoding.

6 Label Smoothing and Degeneration

We now begin to examine exactly what it is about
task constrainedness which affects the amount of
degeneration. One possible explanation is that, as
we vary 𝑠, we vary the distribution’s peakedness:
the distribution becomes much less peaked as 𝑠
decreases (as shown in §3.3). To examine whether
differences in peakedness fully explain the level of
degeneration, we contrast with a different method

of adjusting peakedness: label smoothing. Label
smoothing (Szegedy et al., 2016) is an alternative
to the standard cross-entropy loss function. Instead
of comparing the next-word distribution against a
one-hot vector, it compares against a mixture of
a one-hot vector and the uniform distribution. It
is commonly used in modern NMT systems, and
has generally been found to be helpful, though the
reasons why are still being investigated (Müller
et al., 2019; Lukasik et al., 2020; Gao et al., 2020).

Label smoothing has the effect of smoothing
the distribution over more output tokens at each
timestep. This has a big effect on the peakedness,
as shown in Fig 7. But, as we will show, it has
almost no impact on either length bias or repetition.
(All the graphs in this section show German-to-
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Figure 7: Effect of label smoothing (ls) on the peakedness of the distribution, compared with no label smoothing
(nols), for German-to-English (see Appendix C for Chinese-to-English). Label smoothing consistently increases
entropy and decreases total probability mass across all values of 𝑠.
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Figure 8: Length ratio of translations and percentage of unique 1-grams versus source sentence percentage (𝑠), both
with label smoothing (ls) and without (nols). Results for samples are computed based on 1000 samples for each test
sentence; results for beam search vary across beam sizes (𝑘). For samples, label smoothing increases the length
ratio from slightly below the reference length to slightly above it; otherwise it has no discernible effect. (These
results are for German-to-English; see Appendix C for Chinese-to-English.)
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English only; the Chinese-to-English results are
similar and can be found in Appendix C.)

The biggest effect we see is in Figure 8a, which
shows how adding label smoothing impacts the
length bias when sampling. Here, label smoothing
changes the length bias from just below 1 to just
above 1, giving sentences which are, on average,
very slightly longer than the reference.

However, although label smoothing affects
length bias for the overall distribution, we see es-
sentially no effect on length bias when using beam
search (Figure 8b).4 Similarly, Figures 8c and 8d
show the effect of label smoothing on 1-gram repe-
tition, for both search and sampling; there is essen-
tially no effect. (We found this to be true for other
values of 𝑛 as well.)

From this, we can conclude that it is not merely
the spread of the distribution which causes these
degenerate behaviors to occur. There must be some
other property of task constrainedness which is
influencing them. We leave further investigation of
what that property might be to future work.

7 Conclusion

We introduced a new experimental framework for
directly controlling the level of task constrained-
ness, by truncating sentences on the source side of
an MT system. Using this experimental framework,
we analyzed how task constrainedness affected de-
generate behaviors.

For less constrained tasks, we observe three fail-
ure modes: beam search decoding that is too short,
greedy decoding that is too long and repetitive, and
random samples that are disfluent. We note that the
same three failure modes are also displayed by a
simple unigram language model: since every sen-
tence contains EOS, the highest-probability output
must be empty (just EOS with no real words); since
𝑃(EOS) < 𝑃(the), a greedy search will choose the
over and over; and random samples from a unigram
distribution are of course disfluent. So the simplest
explanation may be that the neural models used
here are still insufficiently sensitive to context.

For more constrained tasks, these effects are
much milder. The presence of the source sentence
seems to be sufficient to all but eliminate repetition
and noticeably improve fluency. Although some
work on RNN models for NMT focused on adding

4We do note, however, that Peters and Martins (2021) did
find that label smoothing affected length bias in the mode of
the distribution.

coverage models to reduce skipping and repeating
of source words (Tu et al., 2016; Mi et al., 2016;
Li et al., 2018), Transformers seem to suffer from
these problems far less. As Transformers were orig-
inally designed for the 𝑠 = 100 case, one direction
for future research may be to investigate modifica-
tions of the Transformer that are better-suited to
less constrained tasks.
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A Additional results on repetition

Here we show some additional outputs from our
systems. Figure 10 graphs the amount of repetition
for the Chinese-to-English systems; we see similar
results to the German-to-English systems, but with
an even more pronounced decrease in repetition for
higher beam sizes 𝑘 .

Figure 9 displays the same results, but graphed
in terms of 𝑛. (We look at beam size 𝑘 = 1 since
repetition is most pronounced in that case.) This
graph shows a surprising consistency across 𝑛; al-
though the effect is most pronounced for 1-gram
repetition, we still see quite a bit of degenerate
repetition even up to 6-grams, suggesting that the
phrases which are being repeated are quite long.

B Additional outputs from our model

As a supplement to Table 3, we present some addi-
tional outputs from our system, which show similar
trends.

C Additional results on label smoothing

Here we present additional results on label smooth-
ing, for the Chinese-to-English language pair.
These results are quite similar to the ones observed
for German-to-English. Again, we see a substan-
tial difference in the peakedness of the distribution.
And again, we notice a slight change in length ratio
for the samples, but otherwise, we observe essen-
tially no effect of label smoothing on degenerate
behavior.
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Figure 9: Amount of repetition, measured as the percentage of 𝑛-grams in the sentence which are unique, versus
source sentence percentage (𝑠). This is mostly the same information shown in Figures 4 and 10, but viewed in a
different way: here, we look at just one beam size (𝑘 = 1, for which the repetition was most pronounced), and
compare multiple 𝑛. All values of 𝑛 show a similar pattern, with considerable repetition observed even for 6-grams
for low 𝑠.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100

%
 U

ni
qu

e 
1-

g
ra

m
s

Source sentence %

k=1

k=2

k=3

k=4

k=5

k=10

k=20
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100

%
 U

ni
qu

e 
2-

g
ra

m
s

Source sentence %

k=1

k=2

k=3

k=4

k=5

k=10

k=20

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100

%
 U

ni
qu

e 
3-

g
ra

m
s

Source sentence %

k=1

k=2

k=3

k=4

k=5

k=10

k=20
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100

%
 U

ni
qu

e 
4-

g
ra

m
s

Source sentence %

k=1

k=2

k=3

k=4

k=5

k=10

k=20

Figure 10: Amount of repetition versus source sentence percentage (𝑠), for various beam sizes (𝑘). (Graphs show
Chinese-to-English results only.) Repetition is measured as the percentage of unique 𝑛-grams in a sentence; the
graphs show this for different values of 𝑛. The repetition rate of the reference is plotted as a dashed grey line. As
in German-to-English, the percent of unique 𝑛-grams drops as 𝑠 decreases across all values of 𝑛, while repetition
actually becomes less of a problem for higher values of 𝑘 .

𝑠 (%) Output found using beam search, 𝑘 = 4

0 And I said, "Well, I’m going to show you a little bit."
10 A few years ago, I was in the hospital, and I was in the hospital.
20 A few years ago, when I was a kid, I was a kid.
30 A few years ago, here at TED, I’m going to tell you a little bit about this.
40 A couple of years ago, at TED, I’m going to tell you a little bit about this.
50 A couple of years ago, at TED, Peter Peter asked me, "What are you doing?"
60 A couple of years ago, here at TED, Peter Skillman introduced a book called "The Sun."
70 A couple of years ago, here at TED, Peter Skillman introduced a design competition called "The House."
80 A few years ago, here at TED, Peter Skillman introduced a design competition called "The Government."
90 A few years ago, here at TED, Peter Skillman made a design competition called "The Marshmallow Child."

100 A few years ago, here at TED, Peter Skillman introduced a design competition called "The Marshmallow Child."

ref Several years ago here at TED, Peter Skillman introduced a design challenge called the marshmallow challenge.

Table 4: Beam search (𝑘 = 4) outputs for a sentence in the test dataset, shown across all values of 𝑠.
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𝑠 (%) Output found using beam search, 𝑘 = 4

0 And I said, "Well, I’m going to show you a little bit."
10 A child, a child, a child, a child, a child, a child, a child, a child.
20 A child who is living in the world today is a child, a child, a child, a child, a child, a child, a child.
30 A child who’s born in New Delhi today will be born in a new world, a new world, a new world, a new world.
40 A child born today in New Delhi can expect to be a child who has been born in the United States.
50 A child who’s born in New Delhi today can expect to be as long as they’re born, and that’s where they are.
60 A kid who can be born in New Delhi today would expect to live as long as they were, and that’s what they were doing.
70 A child born in New Delhi today will expect to live as long as the richest child in the world.
80 A child born in New Delhi today will expect to live as long as the richest man on the planet.
90 A child born today in New Delhi can expect to live as long as the richest man in the world, 100 years ago.

100 A child born today in New Delhi can expect to live as long as the richest man in the world 100 years ago.

ref A kid born in New Delhi today can expect to live as long as the richest man in the world did 100 years ago.

Table 5: Beam search (𝑘 = 4) outputs for a sentence in the test dataset, shown across all values of 𝑠.

𝑠 (%) Output found using beam search, 𝑘 = 4

0 And I said, "Well, I’m going to show you a little bit."
10 Today, I’m going to show you a couple of examples of how this works.
20 Today, I don’t know how many of you have heard of this, but I think it’s a very important thing.
30 Today, I don’t know, maybe it’s going to go up today, but I’m going to tell you a little bit about what I’m going to talk about today.
40 Now, I don’t know, maybe someone in this room came to me and said, "You know, I’m going to go to school."
50 Today, I don’t know, maybe someone in Lagos came to a place where I was born, and I didn’t know what to do.
60 Today, I don’t know, maybe somebody in Lagos came into an airplane this morning, and it’s going to be like, "Oh, I’m going to die."
70 Now, I don’t know, maybe someone in Lagos this morning went into an airplane, and it’s going to go to Los Angeles, and it’s going to be a big deal.
80 Today, I don’t know, maybe someone in Lagos came to an airplane this morning, and it’s just going to Los Angeles, in the middle of the Central Sea.
90 Today, I don’t know, maybe someone in Lagos is going to go to an airplane this morning, and he’s going to go to Los Angeles, right now he’s gone.

100 Today, I don’t know, maybe someone in Lagos climbed into an airplane this morning, and it’s just going to Los Angeles right now, it’s over Ohio.

ref Today, I don’t know, maybe a guy got on a plane in Lagos this morning, and he’s flying to LAX, right now he’s over Ohio.

Table 6: Beam search (𝑘 = 4) outputs for a sentence in the test dataset, shown across all values of 𝑠.

𝑠 (%) Output found using beam search, 𝑘 = 4

0 And I said, "Well, I’m going to show you a little bit."
10 If you look at it, you can see that it’s a little bit different.
20 If you’re 10 teams, you’re going to have to be able to do that.
30 If you have 10 teams, you have 10 teams, and you have 10 teams, and you have them.
40 If you have 10 teams, typically, you have 10 teams, and you have 10 teams.
50 If you have 10 teams that are typically predicting, you’re not going to be able to do that.
60 If you have 10 teams that are typically predicted, you get 10 teams, and you get 10 teams.
70 If you have 10 teams that typically go, you get about six teams per second.
80 If you have 10 teams that typically go ahead, you get about six, the two teams.
90 If you have 10 teams that are typical, you get about six, the stable structures.

100 If you have 10 teams that go typically, you get about six that have stable structures.

ref If you have 10 teams that typically perform, you’ll get maybe six or so that have standing structures.

Table 7: Beam search (𝑘 = 4) outputs for a sentence in the test dataset, shown across all values of 𝑠.
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Figure 11: Effect of label smoothing (ls) on the peakedness of the distribution, compared with no label smoothing
(nols), for Chinese-to-English. As with German-to-English, label smoothing consistently increases entropy and
decreases total probability mass across all values of 𝑠.
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(d) Repetition, beam search

Figure 12: Length ratio of translations and percentage of unique 1-grams versus source sentence percentage (𝑠),
both with label smoothing (ls) and without label smoothing (nols). Results for samples are computed based on 1000
samples for each test sentence; results for beam search vary across beam sizes (𝑘). As with the German-to-English
results, we find that, for samples, label smoothing increases the length ratio from slightly below the reference length
to slightly above it; otherwise it has no discernable effect.
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