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Abstract

Deep learning models are widely used for solv-
ing challenging code processing tasks, such as
code generation or code summarization. Tradi-
tionally, a specific model architecture was care-
fully built to solve a particular code process-
ing task. However, recently general pretrained
models such as CodeBERT or CodeT5 have
been shown to outperform task-specific models
in many applications. While pretrained models
are known to learn complex patterns from data,
they may fail to understand some properties of
source code. To test diverse aspects of code
understanding, we introduce a set of diagnostic
probing tasks. We show that pretrained models
of code indeed contain information about code
syntactic structure, the notions of identifiers,
and namespaces, but they may fail to recognize
more complex code properties such as semantic
equivalence. We also investigate how probing
results are affected by using code-specific pre-
training objectives, varying the model size, or
finetuning.

1 Introduction

Deep learning and especially Natural Language
Processing (NLP) methods have been widely and
successfully adopted to process source code. Exam-
ple tasks include code generation (Allamanis et al.,
2015; Chen et al., 2021) where the task is usually
formulated as to produce a code of a function given
the natural description; code translation (Nguyen
et al., 2013; Roziere et al., 2020a) where the model
needs to translate from one programming language
to another; and code summarization (Haiduc et al.,
2010; Alex et al., 2020) where the task is to pro-
duce natural language (NL) description for a given
code snippet. Deep learning is also widely used in
discriminative tasks, such as automated bug search
and repair (Hellendoorn et al., 2020).

In recent years, the focus has shifted from de-
veloping task-specific models incorporating prior
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knowledge about the task, to relying on general pre-
trained models of code such as CodeBERT (Feng
et al., 2020) or CodeT5 (Wang et al., 2021). These
models, once pretrained, can be finetuned on the
downstream tasks with a little additional cost, sur-
passing task-specific models. While the perfor-
mance of the models is high on a wide range of
downstream tasks (Lu et al., 2021), the boundary
between what the models know and where they
fail remains hidden behind the complexity of the
downstream tasks. The lack of interpretability of
pretrained models limits their practical use. At the
same time, a deeper examination of model’s under-
standing of source code may increase developers’
trust and broaden the applicability of pretrained
models.

In NLP, there is an established probing approach
for a more fine-grained examination of the knowl-
edge of various aspects of the language, e.g. mor-
phology, syntax, or discourse understanding (Be-
linkov et al., 2020; Tenney et al., 2019; Koto et al.,
2021). Probing usually means training a linear
model on top of hidden representations of a model
for various simple tasks, e.g. to predict a part-of-
speech tag, to detect whether a sentence was cor-
rupted, or to estimate the number of objects in the
main clause (Conneau et al., 2018a). Probing ex-
periments may suggest ways to improve the quality
of the pretrained model or provide recommenda-
tions on how to tune the model better in applied
tasks (Belinkov, 2022).

Inspired by the insights probing provided in NLP,
we develop probing tasks to understand the extent
to which the current state-of-the-art pretrained mod-
els capture structural and semantic properties of
source code. Our contributions are as follows:

* we introduce a set of syntactic and semantic
probing tasks, suitable for testing diverse as-
pects of code understanding;

* we study an effect of the model choice, pre-
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Figure 1: Illustration of the proposed probing tasks testing various aspects of code understanding.

training objective choice, and model size on
probing results;

* we use probings to highlight which informa-
tion about code is preserved by finetuned mod-
els in different downstream tasks.

We release our code!.

2 Probing tasks

We probe pretrained models of code using linear
regression or classification trained on top of code
representations extracted from each layer of each
model (layers weights are not finetuned) (Alain and
Bengio, 2016).

We develop auxiliary tasks (with synthetic data
or data borrowed from other works) that test mod-
els’ understanding of various properties of source
code: strict syntactic structure, the notions of data
flow and namespaces, naming, semantic equiva-
lence, and readability. We consider both global
tasks (predicting a property of the whole code
snippet) and local tasks (predicting a property
of a particular token or a group of tokens). For
each task, we introduce a simple but as strong as
possible baseline. Figure 1 illustrates all tasks.
For all classification tasks, we measure test er-
ror (1 — accuracy), and for “AST depth" regres-
sion task, we calculate the mean absolute error

N )
MAE(ytrueu ypred) = % Zizl \yime

Notation. Pretrained models of code usually fol-
low the standard NLP methodology: representing a
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code snippet as a sequence of subtokens, e. g. byte-
pair encoding subtokens, and pretraining the model
on a large corpora of source code using masked
language modeling. We denote the sequence of
subtokens as sq, . . ., S,. Let us denote ¢(s;) a map-
ping from a subtoken s; into a corresponding code
token (s;), e.g. for a subtoken sequence [_(, _for,
_public, _get, Status], t(_get) = getStatus.
For each subtoken s;, we extract the model’s em-
bedding wf € R? for a particular layer ¢, where d
is the size of hidden representations.

2.1 Token Path Type

The first two probing tasks test whether pretrained
models contain information about the syntactic
structure of code. The first task consists of pre-
dicting the position of a token in the Abstract Syn-
tax Tree (AST). Given a subtoken s; and the cor-
responding embedding we the task is to predict
the path type from the root to the ¢(s;) token, e.g.
[1,2, 1], meaning go to the first child, then to the
second one, then to the first one. This task, which
is a local task, is formulated as a classification prob-
lem by selecting target subtokens corresponding
to 15 most frequent path types. As a baseline, we
consider constant prediction w. r. t. a subtoken, i. e.
we select the most frequent class (path type) for
each subtoken in the vocabulary.

2.2 AST depth

The second syntactic task is defined on a code snip-
pet level (global task) and consists of predicting the
depth of the AST built from the snippet (regression
problem). The baseline for this task is defined as a
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linear regression trained on a single feature — the
number of tokens in the code snippet, this baseline
outperforms the median depth baseline computed
over the whole dataset.

2.3 Is Variable Declared

This task tests the model’s understanding of the no-
tion of namespaces. The model is asked, whether
there is an “undeclared variable name" error for
a particular expression with an identifier. For ex-
ample, in the first code snippet the identifier y is
correctly used after a declaration:

int x = 0;
if (x ==0) {
int y = x; // declare
System.out.println(y); // use
}

However, in the second snippet there is an error,
since y is outside of the scope of it’s declaration:

int x = 0;
if (x ==0) { inty =x; }
System.out.println(y); // y is undeclared

We generate positive and negative examples us-
ing the following procedure. For a code snippet,
we find a variable name declaration, e.g. float x
= 0. Next, we find a random place in code after the
variable declaration where we can insert a printing
expression e.g. System.out.println(x);, and
define a label for binary classification analyzing
variable scopes: is variable declared before used?
The task is formulated for the mean subtoken em-
bedding of the inserted variable name (local task).
The baseline in this task is a constant prediction
that the variable is declared.

2.4 [Edge Prediction in Data Flow Graph

The next task measures to what extent a model
encodes the information about the data flow. Given
two tokens, the task is to predict a data flow edge
between them. There can be no edge (negative
example), a “comes from" edge, or a “computed
from" edge. The task is formulated as classification
of a pair of tokens (their mean embeddings over
subtokens are concatenated), this is the local task.

In addition to existent data flow edges we select
a roughly equal number of “no edge" examples by
selecting random pairs of nodes from AST with
suitable node types (e.g. pairs of identifiers, con-
stants, etc.). As a baseline, we predict the most
frequent edge type for the corresponding pair of

tokens, which outperforms the most frequent class
baseline.

2.5 Variable Name

The next task targets the ability to link code ele-
ments and their natural language descriptions. A
model should predict a variable name, given a code
snippet with all occurrences of the original name
replaced with a placeholder var. This task requires
semantic understanding of the variable’s role in the
program (local task).

We formulate this task as classification, targeting
only 15 most popular identifier names. The feature
vector is a mean hidden representation for all oc-
currences of the identifier in code. In such way,
the model should be able to predict the identifier
name based on the context in which the variable
was used. The baseline in this task is defined by
the bag-of-words model: we count occurrences of
all subtokens in the code snippet, convert them to
tf-idf values and train a linear classifier on these
features. This baseline substantially outperforms
the constant baseline which always predicts the
most frequent variable name.

2.6 Is Variable Misused

The next local task tests the ability of the model to
detect the variable misuse bug (Hellendoorn et al.,
2020). We introduce variable misuse by randomly
assigning “wrong" identifier name copying from
another identifier from the same code snippet. We
add “correct” code snippet for each “wrong" snip-
pet, formulating the task as a binary classification
problem, where the input is identifier’s subtokens
(mean embedding). The baseline is the bag of
words predictor, which, for this task, is better than
most frequent class predictor.

2.7 Algorithm

The next (global) semantic task also tests the ability
of models to distinguish computationally equiva-
lent codes from other codes. To obtain a dataset
for this task, we select a simple problem from the
CodeForces competition?, which can be reformu-
lated as to check if each character in a string has
a neighbor equal to it. We download “wrong an-
swer" and “accepted” Python submissions from the
contest and filter out too long codes (> 1000 char-
acters) obtaining 550 “accepted” and 384 “wrong
answer" submissions.

Zhttps://codeforces.com/problemset/problem/1671/A
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The task is to distinguish “correct” code from
“wrong" and formulated as a binary classification
problem. The task requires deeper understanding
of the data and control flow since the “accepted"
and “wrong answer" solutions are usually very sim-
ilar visually. It should be hard for a model to make
predictions based only on spurious surface or syn-
tactic features to succeed in this task. As a baseline,
we again use the bag-of-words model described
above.

2.8 Readability

Finally, we consider a readability property of code.
Readability defines how easy code is for the pro-
grammers to understand and maintain. Generally,
readability depends on visual appearance of code
(spaces, new lines etc), the meaningfulness of vari-
able and function names, the quality of comments,
and the particular algorithmic implementation (the
same algorithm could be written in different ways,
some of them more and some of them less read-
able). We use the 200 examples dataset provided
by Scalabrino et al. (2018) and obtained by col-
lecting a set of functions and asking developers to
rate readability on the scale from 1 to 5 (several
ratings per example). The task is then converted
by the authors to binary classification by treating
all snippets with rating < 3.6 as not readable and
the rest ones as readable, as in Scalabrino et al.
(2018). This is a global task and as the baseline we
use the bag-of-words model which outperforms the
constant most frequent class prediction.

3 Models

In this section, we briefly describe the models to
be compared. We have selected several widely
used pretrained models, which vary in the model
architecture, pretraining objective, model size, and
training datasets.

3.1 CodeBERT

CodeBERT (Feng et al., 2020) is one of the first
attempts to pretrain a Transformer-based encoder
model for source code representation learning and
comprehension. It is a 12 layer encoder model
based on RoBERTa-base (125M) (Liu et al., 2019)
and trained with masked language modeling and
replaced token detection objectives. The model is
trained on 6M CodeSeachNet dataset (Husain et al.,
2020), composed of functions from 6 programming
languages (Java, Python, JavaScript, PHP, Ruby,

Go) and NL comments.

3.2 GraphCodeBERT

GraphCodeBERT (Guo et al., 2021) extends the
work of (Feng et al., 2020), by introducing data
flow-related objectives. They encourage the mod-
els to learn structure-aware representations by pre-
dicting randomly selected “comes from" data-flow
edges.

3.3 PLBART

Ahmad et al. (2021a) introduced a 140M parame-
ter PLBART model with 6 encoder and 6 decoder
layers. The model is based on the BART (Lewis
et al., 2020) architecture. The authors released a
PLBART? checkpoint pretrained on the data col-
lected by Roziere et al. (2020b), which is 470M
Java, 210M Python functions/methods, and pre-
trained the 47M NL descriptions. They release a
PLBART _large checkpoint as well (400M, 12 layer
encoder, 12 layer decoder).

3.4 CodeT5

CodeT5 (Wang et al., 2021) is an encoder-decoder
model based on the TS5 (Raffel et al., 2020) ar-
chitecture and pretrained on 8.35M functions in 8
programming languages (Python, Java, JavaScript,
PHP, Ruby, Go, C, and C#). The model combines
the masked language modeling objective with code-
specific objectives, including identifier tagging and
predicting variable names. We experiment with
two released model checkpoints*: CodeT5-base
(220M) and CodeT5-small (60M).

3.5 CodeGPT2

CodeGPT2 (Lu et al., 2021) is a decoder only
model based on GPT-2 architecture (Radford et al.,
2019). The 117M model consists of 12 layers
and is pretrained on the CodeSearchNet (Husain
et al., 2020) dataset. We used CodeGPT-small-java-
adaptedGPT2 checkpoint®, that is initialized from
GPT-2 model and then trained on code corpus.

3.6 BERT

We also consider the text-based model, BERT, to
understand the effect of code-specific pretraining.
We use a 110M 12-layer BERT model (Devlin et al.,

3https://github.com/wasiahmad/PLBART
4https://github.com/salesforce/CodeTS

Shttps://huggingface.co/microsoft/
/CodeGPT-small-java-adaptedGPT2
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Figure 2: Results for the best performing layer representations, for all probing tasks. Metrics are the lower the

better.

2019), "bert-base-cased" checkpoint from Hug-
ging Face®, trained on the Book Corpus (Zhu et al.,
2015).

4 Experimental setup

4.1 Data and preprocessing

For our experiments which involve synthetic data
(first 6 tasks), we use the test dataset provided by
Ahmad et al. (2021a) consisting of 10k examples
of Java functions and methods with removed com-
ments and new line symbols, and standardized code
snippets. For the two remaining tasks the datasets
were mentioned in the task descriptions. For each
pretrained model, we apply it’s subtokenization pro-
cedure. All models have a limit of 512 input subto-
kens. We crop subtoken sequences that are longer
than 512 subtokens. We use commonly used open
access datasets intended for research purposes.

4.2 Probing details

For each probing task, we average results over four
runs using 4-fold cross-validation. For each model,
we use a single checkpoint as usually only one
checkpoint is released.

Each pretrained model returns representations
for a sequence of subtokens i, ..., Sy, €. g. from
byte-pair encoding. When the task is formulated
on a code snippet level, the layer-wise embeddings
of the snippet are obtained by averaging subtoken
embeddings, following (Koto et al., 2021).

For the probing models, we use linear mod-
els from scikit-learn (0.24.2) (Pedregosa et al.,
2011), including SGDClassifier with logistic re-
gression loss for classification tasks (we se-
lect optimal alpha parameter via grid search
over [0.0001,0.001,0.01,0.1,1,10,100] range,

6https ://huggingface.co/bert-base-cased

and set tolerance to 0.0001); and RidgeCV for
regression tasks (grid search for alpha over
[0.0001,0.001,0.01,0.1, 1, 10, 100] range). In ad-
dition to linear probings, we also probe pretrained
models with a 3-layer MLP (see Appendix B), how-
ever, the results for MLP are similar.

5 Experiments

Our research questions are as follows:

* To what extent do the models pretrained on
code capture information about source code
properties?

* Does multitask pretraining with code-specific
objectives provide richer representations?

* How does the model size affect probing re-
sults? Which representations are better: pro-
vided by the encoder or by the decoder?
Which layers provide better representations?

* Does finetuning preserve syntactic and seman-
tic information in different downstream tasks?

We used a single Tesla V100 GPU for the for-
ward pass to collect embeddings, and 4 CPU for
training linear models. Our total computational
budget is 864 CPU hours and 20 GPU hours.

5.1 Comparison of different models

In this subsection, we study the performance of
different pretrained models in all probing tasks. In
this experiment, we report the results for the best
performing layer representation for each model: the
layer is chosen using the first fold and the results
are averaged over three remaining folds. Figure 2
presents the results.
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Overall, we observe that the probing perfor-
mance of pretrained models exceeds the perfor-
mance of the simple baseline in all tasks. How-
ever, in the semantic-related “Readability”" and
“Algorithm" tasks, the pretrained models are very
close to the simple baseline and thus do not cap-
ture much more information relevant to these tasks.
The BERT model pretrained on textual data per-
forms worse than the models pretrained on code in
all tasks except the semantic-related “Readability"
and “Algorithm" tasks, where all pretrained mod-
els perform similarily. We conclude that models
pretrained on code contain knowledge about basic
source code properties but lack a deeper semantic
understanding of code.

Comparing different models, we find that the
models pretrained with code-specific objectives,
GraphCodeBert and CodeT?5, are better or on par
with other models for all tasks. In “Edge Prediction
in DFG", GraphCodeBERT performs best because
it uses the edge prediction objective during pretrain-
ing. Similarly in “Variable is Undeclared", “Is Vari-
able Misused" CodeT5 and GraphCodeBERT per-
form best potentially because they use the variable-
related pretraining objectives. CodeGPT2 performs
worse for “Is Variable Misused" task, because it
only sees the left context which may be not enough
to predict the misused variable. To sum up, models
pretrained with code-specific objectives, CodeT5
and GraphCodeBERT, show consistent gain for the
tasks related to their pretraining objectives, over
other models, pretrained with single objectives, or
perform on par with them.

To better understand how pretrained models per-
form on each task, we perform an ablation study
masking different code components: identifiers,
keywords, and punctuation. This ablation study
is described in Appendix A. The main finding is
that masking punctuation hurts the probing perfor-
mance of the model pretrained on source code in
almost all tasks, while masking language keywords
and renaming identifiers do not have much effect
(except the variable naming task where renaming
identifiers has a significant effect).

5.2 Encoder vs Decoder

This subsection compares the representations of
the encoder and the decoder. We consider represen-
tations of two encoder-decoder models, PLBART-
base and CodeT5-base. Table 1 compares best per-
forming encoder representations and best perform-

ing decoder representations for all probing tasks.
We observe that in almost all probing tasks, the
decoder representations perform worse or on par
with the encoder representations. In some tasks,
e. g. “Is Variable Misused", the decoder shows
much worse results than the encoder. A possible
explanation is that the aim of the encoder is to pro-
vide rich representations for the decoder, hence the
encoder is more suitable for information extraction.

5.3 The effect of the model size

In this subsection, we are interested whether
larger models capture more information about the
source code properties than smaller models. Ta-
ble 1 reports the performance of CodeT5-base and
CodeT5-small models, and of PLBART-large and
PLBART-base models (other models are not avail-
able in variable sizes). We find that in three vari-
able related tasks the larger models expectantly
perform better than smaller models but in the ma-
Jjority of the tasks the performance is similar.

5.4 Per-layer probing performance

We now analyse probing results for different Trans-
former layers. Figure 3 shows the per-layer per-
formance of all considered pretrained models.
In syntax-related, namespace-related, data flow-
related, algorithm-related and readability-related
tasks, middle layers (4—10) usually provide the
most informative representations. In the “Variable
Name" (and partly in “Is Variable Misused"), the
last layers consistently perform better because the
task is closely related to the masked language mod-
eling objective which is usually solved on top of
last layers.

5.5 The effect of finetuning

In this section, we study the effect of finetuning
on probing results. Specifically, we are interested
1) whether finetuned models preserve information
contained in pretrained models; 2) does pretrain-
ing enrich the representations of finetuned mod-
els, compared with the representations of models
trained from scratch.

In this section, we focus on the PLBART model
and finetune it for 5 downstream tasks: 3 genera-
tive tasks (Code Translation from Python to Java,
Java Code Generation based on natural language
descriptions, Java Code Summarization into textual
description) and 2 discriminative tasks (Clone De-
tection, Defect Prediction). We use the AVATAR
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dataset (Ahmad et al., 2021b) in the Code Transla-
tion task and CodeXGLEU benchmark (Lu et al.,
2021) in other tasks (MIT license). We use scripts
for PLBART finetuning on these tasks provided in
PLBART’ and AVATARS repositories.

Figure 4 compares 3 scenarios: the PLBART
checkpoint after pretraining (leftmost bar), check-
points after PLBART finetuning on each of 5 down-
stream tasks (dark bars), and checkpoints after
training from scratch on each of 5 downstream
tasks (semi-transparent bars). We also include base-
lines for reference.

7https ://github.com/wasiahmad/PLBART
8https ://github.com/wasiahmad/AVATAR

Models finetuned for discriminative tasks exhibit
the highest information loss between the initial
pretrained stage and the finetuned stage, which
may indicate that models trained on these tasks
rely on some spurious features, rather than on code
syntax or semantics.

Among generative tasks, the Code Translation
model exhibits almost no gap between pretrained
and finetuned stages. This could be attributed to
having code as both input and output of the task.
Code Generation and Code Summarization models
have code only as either the input or the output of
the task, and usually exhibit a slightly larger gap.

As for models, trained from scratch for down-
stream tasks (semi-transparent bars), the overall
trend is similar across the downstream tasks, but
the absolute results are usually much worse, com-
pared to finetuned models, and sometimes are close
to simple baselines. The downstream tasks alone
do not provide high-quality code representations.

6 Related Work

Probing became a universal tool in NLP for test-
ing pretrained models’ understanding or knowl-
edge of various language aspects. A simple linear
probing was used in (Gupta et al., 2015) to test
whether referential knowledge is already encoded
in word embeddings, while Kohn (2015) got in-
sights into the behaviour of word embedding in
terms of morphological and syntactical properties.
Probing tasks were developed to evaluate sentence
embeddings (Ettinger et al., 2016; Conneau et al.,
2018b) whether they incorporate compositional, or
surface (length of the sentence), syntax (tree depth,
top constituent), and text semantics (e.g. tense of a
sentence) knowledge. Hewitt and Manning (2019)
proposed more complex probing tasks, questioning
the possibility to parse the whole dependency trees
from the sentence embeddings using a metric learn-
ing approach. More recent studies for language
models include the study of emerging capabilities
of large language models (Wei et al., 2022). We
refer to Belinkov (2022) for a broad review of ex-
isting probing works in NLP.

In the context of source code, Karmakar and
Robbes (2021) made the first steps towards probing
pretrained models. However, they only consider
four simple tasks and tree code models, CodeBERT,
CodeBERTa and GraphCodeBERT. In contrast to
their work, we propose a wider set of tasks, in-
cluding several token-wise tasks, consider a wider
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PLBART CodeT5 PLBART CodeT5

Task encoder decoder | encoder decoder || base large | small base

Token Path Type 0.011 0.012 0.013 0.036 0.011 0.014 | 0.012 0.013
AST depth 0.866 0.820 0.867 0.864 0.820 0.850 | 0.863 0.864
Is Variable Declared 0.042 0.049 0.014 0.061 0.042  0.019 | 0.025 0.014
Edge Prediction in DFG | 0.167 0.191 0.161 0.230 0.167 0.167 | 0.162 0.161
Variable Name 0.186 0.194 0.162 0.211 0.186 0.165 | 0.208 0.162
Is Variable Misused 0.080 0.112 0.046 0.176 0.080 0.053 | 0.064 0.046
Algorithm 0.239 0.251 0.228 0.268 0.246 0.225 | 0.235 0.228
Readability 0.226 0.237 0.247 0.246 0.216 0.238 | 0.242 0.221

Table 1: Encoder vs decoder performance for PLBART-base and CodeT5-base; and comparison of small vs large
models: PLBART-base vs PLBART-large, and CodeT5-small vs CodeT5-base. Metrics: MAE for “AST depth",
otherwise test error (1-accuracy).
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Figure 4: Results on the effect of finetuning. Pre-train (leftmost bar): pretrained-only checkpoint. The following
bars: dark — finetuned models, semi-transparent — models trained from scratch. Results for 5 downstream tasks:

Code Translation, Code Generation, Code Summarization, Defect Prediction, Clone Detection.

range of pretrained models, and investigate various
dimensions, including different pretraining objec-
tives, model sizes, and the effect of finetuning.

A line of work investigate pretrained models for
code in different directions. anonymous authors
(2022) show that CodeBERT relies on the high
token overlap between query and code solving code
search task rather than deeper syntax or semantic
features, and Sharma et al. (2022) shows that BERT
trained on code pays more attention to identifiers
and separators. Our work provides another view
on the analysis of pretrained models of code, from
the probing perspective, and complements these
results.

Recently created BIG-bench benchmark (Srivas-
tava et al., 2022) contains a number of challeng-
ing code-related probing tasks for testing large lan-
guage models capabilites, including programming
synthesis and code summarization tasks, which are
close to complex downstream tasks. In contrast, we
aim at developing simple probing tasks targeting
specific code understanding aspects.

7 Conclusion and discussion

We presented a diagnosis tool, based on probing
tasks, that can be used to estimate to which extent
deep learning models capture the information about
various properties of source code in their hidden
representations. Our results show that pretrained
models of code do contain information about code
syntactic structure, the notion of namespaces, data
flow, code readability and natural language-based
naming. However, pretrained models show limited
understanding of code semantics, which means that
their usefullness in applied tasks requiring semantic
understanding of code may be limited.

Using code-specific pretraining objectives
(CodeTS5, GraphCodeBert) enriches the understand-
ing of the code aspects addressed in the correspond-
ing objective. This result may suggest practition-
ers to choose pretrained models which pretraining
objectives are better aligned with the considered
applied task.

We also found that finetuning may deteriorate
the model’s understanding of code properties, espe-
cially in classification downstream tasks. This may
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suggest including code-specific objectives in fine-
tuning, especially if multi-stage finetuning (Pruk-
sachatkun et al., 2020) is used.

Limitations

In this section, we discuss the limitations of our
probing toolkit.

Our probing setup does not cover all possible
aspects of source code. However, we were aiming
at covering diverse properties of code.

Our experiments are limited to the two most
popular high-level languages, which are usually
used to evaluate pretrained model for code: Java (7
tasks) and Python (1 task). It would be interesting
to compare the models on low-level languages like
C/C++.

The linear models used for probings may ap-
pear limited in their capacity, however, they were
successfully used in a lot of NLP probing ap-
proaches (Belinkov, 2022) and are well suitable
for particular research questions considered in the
paper. Moreover, we also experiment with a 3-layer
MLP and find that our main results hold for MLP.

Finally, in this work, we only considered open-
sourced pretrained checkpoints. It would be inter-
esting to compare the performance of pretrained
models across a wide range of model sizes.
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A Ablation study

In this section we perform an ablation study of dif-
ferent code components to understand which com-
ponent of code is important for each of the probing
tasks, i. e. identifier names, language specific key-
words (e.g. “for", “if"), or punctuation (e.g. “(",
“" “<") . We experiments with two pretrained mod-
els: pretrained on code (PLBART) and text model
(BERT). For ablation of identifiers, we rely on the
methodology of (Chirkova and Troshin, 2021) and
apply syntax-preserving anonymization, replacing
identifiers inside a code snippet with placehold-
ers (“varl", “var2", “var3"). To ablate language-
specific keywords or punctuation, we simply re-
place them with “MASK".

The ablation results are presented in Figure 5.
Overall, for all tasks the most influential compo-
nent is punctuation: masking it hurts the quality the
most, except for the “Variable Name" task, where
anonymizing identifier leads to the worst quality.
With punctuation being masked, PLBART model
is close to the quality of the text BERT model or
performs even worse.

In contrast, masking language-specific keywords
does not hurt the performance significantly.

To conclude, the models pretrained on code rely
heavily on punctuation, for almost all tasks, and
also rely on identifier names for variable related
tasks.

B MLP

Linear probings may appear limited, thus we
also include the results for 3-layer MLP model
for comparison. We implement an MLP in Py-
Torch (Paszke et al., 2019) with ReLU nonlin-
earity and hidden size 128. We train it with
AdamW (Loshchilov and Hutter, 2019) optimizer
with batch size 512 and we use Optuna (Akiba et al.,
2019) with 10 trials to search over learning rate
(high=0.1, low=0.0001, log domain) and weight
decay (high=0.1, low=0.00001, log domain) min-
imizing error on validation set (0.1% of train set)
for regression/classification tasks. We reduce learn-
ing rate by factor 0.1 with patience 5, use early
stopping with patience 10, and maximum number
of update 5000.

The results for MLP (Figures 6,7) are very simi-
lar to the results with linear models, both quantita-
tively and qualitatively. For edge prediction in data
flow graph, MLP outperformes linear model signif-
icantly, but for other tasks the results are roughly

the same.

382



Token Path Type AST depth Is Variable Declared Edge Prediction in DFG

0.100

00075

]

<0.050

~

o null I'I
0.000 5 gART BERT Const

PLBART
Baseline Baseline Baseline

Basehne

Variable Name Is Variable Misused Algorithm Readability

0.4

] Qo3

- o] O
< <o.2

1 ¥3 1

2 — -
i I I ' 0.1
0.0 0.0 . . 0.0

PLBART BERT BOW PLBART BERT BOW

Figure 5: The results for ablation study: no ablation (default), anonymization of identifiers (ident), masking
keywords (keyword), and masking punctuation (punct). Metrics are the lower the better.

= default
0.4 mm ident
== keyword
-—

punct

1-ACC
°
=
°
1-ACC
o

o

0.0

0.20 Token Path Type AST depth Is Variable Declared Edge Prediction in DFG
) 0.10
15 0.4
g y g g
. <10
Jo10 < <o.05 Foa
— — —
L o I 1] T mml
0,00 M BN e i s 00 0.00 oo 1l mm I I B
Code GrapIPLBARTCode Code BERT Const Code GrapIPLBARTCode Code BERT Const Code GrapWLBAR‘I‘CUde Code BERT Const Code GraplPLBARTCode Code BERT Const
BERT Code GPT2 T5 Baseline BERT Code GPT2 T5 Baseline BERT Code Baseline BERT Code GPT2 T5 Baseline
BERT BERT
Variable Name Is Variable Misused Algorithm Readability
0.4
0.4
Q Q Q
Q Q O
o2 To. Foz
— . — . . — .-4 0 2
0.0 0.0 Nl mm HN -
Code Grap}PLBARTCode Code BERT BOW Code GraptPLBARTCode Code BERT BOW Code GrapI?LBARTCode Code BERT BOW Code Grap}PLBARTCode Code BERT BOW
BERT Code BERT Code GPT2 BERT Code BERT Code
BERT BERT

Figure 6: Results for the best performing layer representations, for all probing tasks, 3-layer MLP. Metrics are the
lower the better.
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Figure 7: Results on the effect of finetuning, 3-layer MLP. Pre-train (leftmost bar): pretrained-only checkpoint. The
following bars: dark — finetuned models, semi-transparent — models trained from scratch. Results for 5 downstream
tasks: Code Translation, Code Generation, Code Summarization, Defect Prediction, Clone Detection.
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