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Abstract

Recent work has shown that neural feature- and
representation-learning, e.g. BERT, achieves
superior performance over traditional manual
feature engineering based approaches, with e.g.
SVMs, in translationese classification tasks.
Previous research did not show (i) whether the
difference is because of the features, the classi-
fiers or both, and (ii) what the neural classifiers
actually learn. To address (i), we carefully de-
sign experiments that swap features between
BERT- and SVM-based classifiers. We show
that an SVM fed with BERT representations
performs at the level of the best BERT clas-
sifiers, while BERT learning and using hand-
crafted features performs at the level of an
SVM using handcrafted features. This shows
that the performance differences are due to the
features. To address (ii) we use integrated gra-
dients and find that (a) there is indication that
information captured by hand-crafted features
is only a subset of what BERT learns, and (b)
part of BERT’s top performance results are due
to BERT learning topic differences and spuri-
ous correlations with translationese.

1 Introduction

Translationese is a descriptive (non-negative) cover
term for the systematic differences between trans-
lated and originally authored text in same lan-
guage (Gellerstam, 1986). Some aspects of transla-
tionese such as source interference (Toury, 1980;
Teich, 2003) are language dependent, others are
presumed universal, e.g. simplification, explicita-
tion, overadherence to target language linguistic
norms (Volansky et al., 2015) in the products of
translations. While translationese effects can be
subtle, especially for professional human transla-
tion, corpus-based studies (Baker et al., 1993) and,
in particular, machine-learning and classifier based
studies (Rabinovich and Wintner, 2015; Volansky
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et al., 2015; Rubino et al., 2016; Pylypenko et al.,
2021) clearly reveal the differences.

While research on translationese is important
from a theoretical point of view (translation univer-
sals, specific interference), it has a direct impact
on machine translation research: (Kurokawa et al.,
2009; Stymne, 2017; Toral et al., 2018; Zhang and
Toral, 2019; Freitag et al., 2019; Graham et al.,
2020; Riley et al., 2020), amongst others, show
that translation direction in training and test data
impacts on results, that already translated test data
are easier to translate than original data, that ma-
chine translation and post-editing result in transla-
tionese, and that mitigating translationese in MT
output can improve results. Translationese impacts
cross-lingual applications, e.g. question answering
and natural language inference (Singh et al., 2019;
Clark et al., 2020; Artetxe et al., 2020).

In this paper we focus on machine-learning-
classifier-based research on translationese. Here,
typically a classifier is trained to distinguish be-
tween original and translated texts (in the same
language). Until recently, most of this research (Ba-
roni and Bernardini, 2005; Volansky et al., 2015;
Rubino et al., 2016) used manually defined, often
linguistically inspired, feature-engineering based
sets of features, mostly using support vector ma-
chines (SVM). Once a classifier is trained, feature
importance and ranking methods are used to rea-
son back to what aspects of the input is respon-
sible for (i.e. explains) the classification (and
whether this accords with linguistic theorisation).
More recently, a small number of papers explored
feature- and representation-learning neural network
based approaches to translationese classification
(Sominsky and Wintner, 2019). In a systematic
study Pylypenko et al. (2021) show that feature-
and representation-learning deep neural network-
based approaches (in particular BERT-based, but
also other neural approaches) to translationese
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classification substantially outperform handcrafted
feature-engineering based approaches using SVMs.
However, to date, two important questions remain:
(i) it is not clear whether the substantial perfor-
mance differences are due to learned vs. hand-
crafted features, the classifiers (SVM, the BERT
classification head, or full BERT), or the combina-
tion of both, and (ii) what the neural feature and
representation learning approaches actually learn
and how that explains the superior classification.
The contributions of our paper are as follows:

1. we address (i) by carefully crossing fea-
tures and classifiers, feeding BERT-based
learned features to feature-engineering mod-
els (SVMs), feeding the BERT classification
head with hand-crafted features, and by mak-
ing BERT architectures learn handcrafted fea-
tures, as well as feeding embeddings of hand-
crafted features into BERT. Our experiments
show that SVMs using BERT-learned fea-
tures perform on a par with our best BERT-
translationese classifiers, while BERT using
handcrafted features only performs at the level
of feature-engineering-based classifiers. This
shows that it is the features and not the clas-
sifiers, that lead to the substantial (up to 20%
points accuracy absolute) difference in perfor-
mance.

2. we present the first steps to address (ii) us-
ing integrated gradients, an attribution-based
approach, on the BERT models trained in var-
ious settings. Based on striking similarities
in attributions between BERT trained from
scratch and BERT pretrained on handcrafted
features and fine-tuned on text data, as well as
comparable classification accuracies, we find
evidence that the hand-crafted features do not
bring any additional information over the set
learnt by BERT. it is therefore likely that the
hand-crafted features are a (possibly partial)
subset of the features learnt by BERT. Inspect-
ing the most attributed tokens, we present evi-
dence of ’Clever Hans’ behaviour: at least part
of the high classification accuracy of BERT
is due to names of places and countries, sug-
gesting that part of the classification is topic-
and not translationese-based. Moreover, some
top features suggest that there may be some
punctuation-based spurious correlation in the
data.

2 Related Work

Combining learned and hand-crafted features.
(Kaas et al., 2020; Prakash and Tayyar Madabushi,
2020; Lim and Tayyar Madabushi, 2020) combine
BERT-based and manual features in order to im-
prove accuracy. (Kazameini et al., 2020; Ray and
Garain, 2020; Zhang and Yamana, 2020) concate-
nate BERT pooled output embeddings with hand-
crafted feature vectors for classification, often us-
ing an SVM, where the handcrafted feature vector
might be further encoded by a neural network or
used as it is. Our work differs in that we do not
combine features from both models but swap them
in order to decide whether it is the features, the clas-
sifiers or the combination that explains the perfor-
mance difference between neural and feature engi-
neering based models. Additionally, our approach
allows us to examine whether or not representa-
tion learning learns features similar to hand-crafted
features.

Explainability for the feature-engineering ap-
proach to translationese classification. To date,
explainability in translationese research has mainly
focused on quantifying handcrafted feature impor-
tance. Techniques include inspecting SVM feature
weights (Avner et al., 2016; Pylypenko et al., 2021),
correlation (Rubino et al., 2016), information gain
(Ilisei et al., 2010), chi-square (Ilisei et al., 2010),
decision trees or random forests (Rubino et al.,
2016; Ilisei et al., 2010), ablating features and ob-
serving the change in accuracy (Baroni and Bernar-
dini, 2005; Ilisei et al., 2010), training separate
classifiers on each individual feature (or feature set)
and comparing accuracies (Volansky et al., 2015;
Avner et al., 2016). For n-grams, the difference in
frequencies between the original and translationese
classes (Koppel and Ordan, 2011; van Halteren,
2008), and the contribution to the symmetrized
Kullback-Leibler Divergence between the classes
(Kurokawa et al., 2009) have been used.

Explainability for the neural approach to trans-
lationese classification. To date, explainability
methods for neural networks have not been widely
explored. Pylypenko et al. (2021) quantify to which
extent handcrafted features can explain the variance
in the predictions of neural models, such as BERT,
LSTMs, and a simplified Transformer, by training
per-feature linear regression models to output the
predicted probabilities of the neural models and
computing the R2 measure. They find that most of
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the top features are either POS-perplexity-based, or
bag-of-POS features. However, their method treats
the neural network as a black-box, whereas we use
a method that accesses the internals of the model.

Integrated Gradients (IG). In our work we use
the Integrated Gradients method (Sundararajan
et al., 2017) for explainability. This method pro-
vides attribution scores for the input with respect
to a certain class. IG calculates the integral of gra-
dients of the model F with respect to the input x
(token embedding), along the path from a baseline
x′ (in our case, PAD token embedding) to the input
x:

IntegratedGradsi(x) ::= (xi − x′i)×∫ 1

α=0

∂F (x′ + α× (x− x′))
∂xi

dα
(1)

The strength of the Integrated Gradients method
is that it satisfies two fundamental axioms (Sensi-
tivity and Implementation Invariance), while many
other popular attribution methods, like Gradients
(Simonyan et al., 2014), DeepLift (Shrikumar et al.,
2017) and LRP (Bach et al., 2015) violate one or
both of them. IG also satisfies the completeness
axiom, that is, IG is comprehensive in accounting
for attributions and does not just to pick the top
label (Sundararajan et al., 2017).

3 Experimental Settings

3.1 Data

For our experiments, we use the monolingual Ger-
man dataset in the Multilingual Parallel Direct Eu-
roparl (MPDE) (Amponsah-Kaakyire et al., 2021)
corpus. The set contains 42k paragraphs with half
of the texts German originals and the other half
translations into German from Spanish (see statis-
tics in Appendix A.1). We perform paragraph-level
classification with an average length of 80 tokens
per training sample.

We additionally use an in-domain Europarl-
based heldout corpus of around 30k paragraphs
for training language models and n-gram quartile
distributions on it. This corpus consists of original
German texts only.

3.2 Base Setup

We compare the traditional SVM-based feature en-
gineering approach, which has demonstrated high
performance in previous translationese research,

to the BERT model known to be very success-
ful for various NLP tasks, including classification.
As base setup, we reproduce the models from Py-
lypenko et al. (2021) for the two architectures and
a new baseline:

1. a linear SVM on 108-dimensional hand-
crafted feature vectors (with surface, lexi-
cal, unigram bag-of-PoS, language modelling
and n-gram frequency distribution features1).
[handcr.-features+SVM]

2. a linear classifier (BERT classification head,
simple linear FFN, except for difference
in input dimension) trained on the 108-
dimensional handcrafted feature vectors.
[handcr.-features+LinearClassifier]

3. off-the-shelf Google’s pretrained BERT-
base model (12 layers, 768 hidden dimensions,
12 attention heads) which we fine-tune on the
MPDE corpus for translationese classification.
[pretrained-BERT-ft]

4. a BERT-base model with the same settings
trained from scratch on MPDE for transla-
tionese classification. [fromScratch-BERT]

For 1, we estimate n-gram language models with
SRILM (Stolcke, 2002) and do POS-tagging with
SpaCy.2 For 3, we use multilingual BERT (Devlin
et al., 2019) (BERT-base-multilingual-uncased),
and fine-tune with the simpletransformers3 library.
We use a batch size of 32, learning rate of 4 · 10−5,
and the Adam optimiser with epsilon 1 · 10−8.

To ensure fair and comprehensive treatment,
we carefully explore many experiments and varia-
tions below: we exchange input features between
BERT and SVM architectures by (i) feeding BERT-
learned features into SVMs (Section 3.3), hand-
crafted features into the BERT classification head,
and (ii-a) letting the full BERT architecture learn
handcrafted feature vectors used by SVMs and (ii-
b) feeding handcrafted feature vectors as embed-
dings into the BERT model (Section 3.4).

3.3 SVM Classifier with BERT Features
We train an SVM with linear kernel on the features
learnt by the pretrained BERT model fine-tuned on

1See (Pylypenko et al., 2021) for the detailed list of fea-
tures.

2https://spacy.io/
3github.com/ThilinaRajapakse/

simpletransformers

283

https://doi.org/10.5281/zenodo.5596238
https://doi.org/10.5281/zenodo.5596238
https://spacy.io/
github.com/ThilinaRajapakse/simpletransformers
github.com/ThilinaRajapakse/simpletransformers


the translationese classification task. We use the
output of the BERT pooler, which selects the last
layer [CLS] token vector, with linear projection
and tanh activation as our feature vector. We use:

1. BERT’s 768-dim pooled vector output,
[pretrained-BERT-ft+SVM]

2. a 108-dim PCA projection of this vector.
[pretrained-BERT-ft+PCA108+SVM]

The PCA projection allows us to match the hand-
crafted feature vector dimensionality.

3.4 BERT with Handcrafted Features

Apart from feeding hand-crafted feature vectors
into a suitably adjusted BERT classification head
[handcr.-features+LinearClassifier], we care-
fully design two strategies to force the full BERT
architecture use the handcrafted features.

Pretraining on handcrafted feature prediction.
First, we train a BERT-base model from scratch
on the MPDE dataset to predict the handcrafted
features. This regression model [BERT-reg-full]
takes unmasked text as input and predicts continu-
ous values (the 108 dimension vectors representing
handcrafted features originally used in training the
SVM). The complete feature vector is predicted at
once, and the pretraining is done by minimizing
MSE loss between the predicted and the ground
truth vector. The weights of this model encode the
information of the handcrafted features. With this
pretrained model,

1. we freeze the weights, replace the regression
head (linear layer predicting 108 features)
with a linear classifier (a BERT classification
head predicting the original or translationese
label) and train the classifier on the MPDE
data for translationese classification, [BERT-
r2c-full-frozen]4

2. we do not freeze but fine-tune on MPDE for
the translationese classification task. [BERT-
r2c-full-ft]

The comparison between frozen and unfrozen
weights is designed to provide us insights on the
importance of representation learning in BERT.

We reproduce the same approach as above with a
smaller BERT model with only 6 layers instead of
12 [BERT-reg-half]. Interestingly, according to the

4r2c – regression-to-classification

Figure 1: Mapping handcrafted features to embeddings.

losses when training for predicting the handcrafted
features, the smaller BERT-reg-half performs com-
parably to BERT-reg-full (0.0041136 vs 0.0041148
MSE). We then load the weights of the small 6
layer model into the embedding layer and the first
6 layers of a 12 layer non-pretrained BERT-base
model and, similarly as before:

3. we freeze the loaded weights in the first 6
layers and train the remaining 6 layers and
classifier on the translationese classification
task, [BERT-r2c-half-frozen]

4. we do not freeze but fine-tune on the trans-
lationese classification task with randomly-
initialised weights for the other 6 layers.
[BERT-r2c-half-ft]

Mapping handcrafted features to embeddings.
Even though the very low MSE results indicate that
both versions of BERT-reg are able to learn hand-
crafted features well, using them in terms of frozen
layers in translationese classification leads to low
classification performance (Section 4). This could
be attributed to the fact that, not being an end-to-
end approach, information losses accumulate: first,
even though MSE is low in BERT-reg, we do not
have exactly the same features; and second, the fea-
tures are not used directly for classification, but are
encoded again by the network. This motivates us to
explore an alternative way of encoding handcrafted
features in an end-to-end manner.

We convert the single vector of handcrafted fea-
tures of dimension D (108 in our experiments) into
a sequence of embeddings in BERT’s layer format,
that is, length of feature embedding sequence L
times the dimension of the hidden states H (768),
while preserving the information of the single vec-
tor (Figure 1). To do this, we consider a batch of
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Model Accuracy (%)

handcr.-features+SVM 73.2±0.1
handcr.-features+LinearClassifier 72.0±0.4
pretrained-BERT-ft 92.2±0.2
fromScratch-BERT 89.3±0.3

pretrained-BERT-ft+SVM 92.0±0.0
pretrained-BERT-ft+PCA108+SVM 92.0±0.0

BERT-r2c-full-frozen+SVM 74.9±0.7
BERT-r2c-full-frozen+PCA108+SVM 70.3±0.1
BERT-r2c-full-frozen 59.6±0.1
BERT-r2c-full-ft 89.3±0.4
BERT-r2c-half-frozen 67.5±0.4
BERT-r2c-half-ft 89.0±0.3

BERT-f2c L = 1 57±10
BERT-f2c L = 80 72.8±0.2
BERT-f2c L = 256 72.7±0.2
pretrained-BERT-f2c L = 80 68.0±2.1

Table 1: Translationese classification accuracy for all
settings (average and standard deviation over 5 runs).
All of the models were trained/fine-tuned for the trans-
lationese classification task.

tokens with size B and take in the handcrafted fea-
tures as a (B ×D)-dimensional input to the BERT
model and generate feature embeddings by passing
the features through 2 linear layers as follows. We
first pass the (B × 1×D) input to the first linear
layer. The resulting (B ×L×D)-dimensional out-
put is fed as input to the second linear layer which
outputs a (B × L×H)-dimensional output as the
feature embeddings.

This reshaped handcrafted feature embedding
layer replaces BERT’s embedding layer. Weights
are randomly initialised and the modified BERT
model is trained on the translationese classification
task. We experiment with three different values
for sequence length L: 1, 80 (average length of
our training samples) and 256 (half of maximum
input for BERT). All three variants are trained from
scratch [BERT-f2c5 L=1, BERT-f2c L=80, BERT-
f2c L=256]. For further comparison, we also take
BERT-f2c L=80, load the weights of pretrained
BERT-base layers into the 12 layers of the modified
model and fine-tune on the task [pretrained BERT-
f2c L=80].

Training and hyperparameter settings for these
models are given in Appendix A.2.

4 Translationese Classification

Table 1 summarises results of the different transla-
tionese classification settings. For the base models,
BERT outperforms the SVM by 16% when trained

5f2c – feature-embeddings to classification

from scratch and 19% when finetuned.

Feeding pooled output of BERT into the SVM
model [pretrained-BERT-ft+SVM], accuracy in-
creases by 19% percentage points absolute over us-
ing handcrafted features [handcr.-features+SVM],
even when PCA is used to reduce the BERT vec-
tor dimensionality to match the size of the hand-
crafted feature vector. Feeding handcrafted fea-
tures directly to the linear BERT classification head
[handcr.-features+LinearClassifier] reduces ac-
curacy by about 20% points compared to pretrained
and fine-tuned BERT [pretrained-BERT-ft]. This
shows that features learnt by BERT are superior
to our set of manual features, as used in previ-
ous high performing classical feature engineering-
based approaches to translationese classification.
When BERT is trained from scratch on the MPDE
data [fromScratch-BERT], translationese classifi-
cation accuracy reduces by ∼ 3 percentage points,
compared to pretrained-BERT-ft. This suggests
that pretraining on large data helps to encode ad-
ditional information that turns out to be helpful in
the translationese classification task.

One can assume that BERT pretrained to pre-
dict the handcrafted features and subsequently
frozen [BERT-r2c-full-frozen] has learnt to en-
code the handcrafted features during pretraining
(Section 3.4). Nevertheless, its accuracy, albeit
higher than a random guess, is lower by ∼ 13 per-
centage points than the SVM classifier. We per-
form an additional experiment, in order to check
whether the difference in accuracy is due to BERT
failing to sufficiently encode the handcrafted fea-
tures during pretraining, or due to the SVM clas-
sifier being superior to the linear classification
head of the BERT model. Namely, we train the
SVM classifier on the pooled output of BERT-r2c-
full-frozen model [BERT-r2c-full-frozen+SVM]
and on the PCA-reduced dimensionality [BERT-
r2c-full-frozen+PCA108+SVM]. The accuracy is
around 75% for both settings which is as high as
using SVM on handcrafted feature vectors. We con-
clude that BERT encodes the handcrafted features
sufficiently well, but the linear classifier performs
worse than an SVM in these conditions.

Further fine-tuning BERT fully pretrained for
handcrafted feature prediction [BERT-r2c-full-ft]
for translationese classification results in accuracy
comparable to BERT that was not pretrained on
this task [fromScratch-BERT]. This could sug-
gest that our handcrafted feature set is either a sub-
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Figure 2: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: translation). Comparison of different models.

set of features learned by fromScratch-BERT, or
that the handcrafted features are discarded during
fine-tuning. The model where only the first 6 lay-
ers were pretrained [BERT-r2c-half-ft], achieves
similar accuracy, likely due to the same reasons.
By contrast, freezing the 6 handcrafted feature pre-
diction pretrained layers [BERT-r2c-half-frozen]
largely reduces the accuracy with respect to BERT-
r2c-half-ft, because the model only has access to
the 6th layer embeddings that supposedly encode
the information about the handcrafted features, and
does not have ability to extract its own features.
The remaining (higher) 6 layers are responsible for
the increment in accuracy with respect to BERT-
r2c-full-frozen.

The results of BERT-f2c models show that BERT,
when fed the handcrafted features in the form of
embeddings, can reach at most the same accuracy
as the hancdr.-features+SVM approach, which sug-
gests that the BERT architecture has no advantage

over the SVM classifier in utilizing the handcrafted
features for classification. This is again evidence
that the features, and not the classifier, cause the
better performance of the feature and representa-
tion learning method.6

5 Layer Integrated Gradients Saliency

We compare input attributions of the ground truth
classification label amongst pretrained-BERT-ft,
fromScratch-BERT and four different settings
of the translationese classification models pre-
trained on the handcrafted feature prediction task:
BERT-r2c-full-ft, BERT-r2c-full-frozen, BERT-
r2c-half-ft and BERT-r2c-half-frozen. We use
Layer Integrated Gradients from the Captum li-
brary (Kokhlikyan et al., 2020), which computes
the attribution for all the individual neurons in the

6As a sanity check, we ran an experiment using a gradient
boosting classifier instead of an SVM, with the exact same
108 hand-crafted features and obtain accuracy of 72.3%.
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Translationese Original
BERT-r2c-full-ft pretrained-BERT-ft BERT-r2c-full-ft pretrained-BERT-ft

Rank Token AAS Token AAS Token AAS Token AAS
1 sagte 0.60 entstand 0.70 ##wegen 0.61 situations 0.37
2 gebiet 0.46 virus 0.63 • 0.55 • 0.36
3 ##dies 0.44 inti 0.60 eu 0.49 ria 0.34
4 ansicht 0.43 sagte 0.58 daraufhin 0.49 ##lk 0.33
5 bezug 0.42 entdeckte 0.57 finde 0.45 ##iet 0.32
6 neige 0.40 gras 0.57 ##vo 0.45 golden 0.32
7 amt 0.40 nuts 0.56 gerne 0.43 sak 0.30
8 pre 0.40 nicaragua 0.55 ##abb 0.42 turm 0.30
9 spanien 0.39 rekord 0.53 ##hrte 0.42 ##emen 0.27
10 sprechen 0.38 bilbao 0.53 ausbau 0.42 orange 0.27
11 nuts 0.36 verfugte 0.53 ! 0.42 hang 0.26
12 barcelona 0.34 bol 0.51 bekommen 0.42 ##wald 0.25
13 ; 0.33 colombia 0.51 trips 0.41 1732 0.25
14 ##bien 0.32 nis 0.51 ez 0.41 dobe 0.24
15 spanischen 0.32 och 0.49 ##gemeinde 0.40 ##pas 0.23
16 wiederholt 0.31 vorkommen 0.49 vot 0.36 profits 0.22
17 einige 0.30 oecd 0.49 won 0.36 stuttgart 0.22
18 ##sprache 0.29 ; 0.46 geplant 0.35 soja 0.21
19 weder 0.29 erklarte 0.45 demnach 0.35 r 0.21
20 territorium 0.28 clinton 0.45 ja 0.35 ruth 0.21

Table 2: Top-20 tokens with highest average attribution score (AAS) towards original and translationese classes in
the test set. BERT-r2c-full-ft and pretrained-BERT-ft.

embedding layer, and calculate the salience score
for each token by averaging the attributions over
the embedding dimension.

Comparing Models. Figure 2 displays Inte-
grated Gradients attributions for a translated para-
graph across different BERT models. The trends
for the original paragraph are similar to those that
we observe for the translated paragraph, therefore
attributions for the original paragraph are given in
Appendix A.3.

Comparing the attributions of classification la-
bels to sample inputs amongst the various settings
of BERT, we observe that attributions are similar
for fromScratch-BERT and the fine-tuned models:
BERT-r2c-full-ft and BERT-r2c-half-ft. This sug-
gests that fine-tuning "dissolves" the pre-learned
information about the hand-crafted features in the
r2c models, no matter how much of the model was
pre-trained. By contrast, freezing the weights in
BERT-r2c-full-frozen and BERT-r2c-half-frozen
resulted in very different attributions compared to
the fromScratch-BERT. Since these frozen mod-
els only utilize the information they have learnt
about the handcrafted features, this shows that this
information is not identical to the information that
fromScratch-BERT learns for the translationese
classification task. For BERT-r2c-half-frozen the
attributions are more peaked than for other models,

with only a few tokens receiving large scores, and
most tokens having scores close to zero. Notably,
pretrained-BERT-ft displays a pattern that is over-
all similar to BERT trained from scratch, but some
attributions are reversed, and the peaks are on dif-
ferent tokens. This supports the observation that
off-the-shelf BERT pretrained on a large amount of
data encodes some useful additional information.

For BERT-r2c-full-frozen, a substantial number
of tokens with negative attributions have positive
attributions in the model trained from scratch and
also the fine-tuned models. However some attribu-
tions overlap, which suggests that fromScratch-
BERT may be using something like the hand-
crafted features. We investigate this further by
examining the fine-tuning checkpoints.

Comparing Checkpoints. We aim to study
how fromScratch-BERT learns information about
translationese classification over the epochs, and
how this compares to the fine-tuning of BERT-
r2c-full-ft, when the information about the hand-
crafted features is gradually modified over the
epochs turn into the final feature set used for trans-
lationese classification. In Appendix A.3 we pro-
vide additional results on examining training check-
points for fromScratch-BERT and BERT-r2c-
full-ft for an original and a translated paragraph.

Results indicate that for fromScratch-BERT

287



some attributions change into their opposite during
training, whereas for BERT-r2c-full-ft the pattern
appears to be already settled from the early check-
points onwards, and does not change much over the
course of fine-tuning. This supports the hypothesis
that the handcrafted features are a subset of features
learnt by fromScratch-BERT, and thus provide a
useful initialization of weights for fine-tuning for
translationese classification.

Highest Average Attribution. In order to make
the interpretation less local, and to generalize the
observations, we compute the top tokens with high-
est attribution on average across the test set. The
results for each class for best-performing models
(pretrained-BERT-ft and BERT-r2c-full-ft) are
given in Table 2.

For German translationese data translated from
Spanish, some top tokens correspond to the ge-
ographical areas, where Spanish is spoken, e.g.
"spanien", "barcelona", "spanischen" for BERT-
r2c-full-ft; "nicaragua", "colombia", "bilbao" for
pretrained-BERT-ft. (Moreover, in this example it
appears that off-the-shelf pretrained-BERT-ft, pre-
trained on the Wikipedia data, better utilizes the
non-European toponyms, unlike the BERT-r2c-full-
ft that was only trained on the European-focused
Europarl data.) Likewise for original German data,
some of the top tokens are German geographical
names, e.g. "stuttgart" for pretrained-BERT-ft. The
subword "##wald" also appears to be a common
German toponymic suffix. This suggests that topic
is one of the spurious clues that is used by BERT
to determine the correct translationese class. This
is also supported by the fact that some nouns that
likely correspond to certain recurring discussion
topics for only one class within our data sample,
receive high attribution, e.g. "virus", "soja", "clin-
ton", "orange" etc. The "ez" token, salient for the
original class, appears to be a starting subword
unit of the EZB abbreviation (Europäische Zentral-
bank).

The "•" token (bullet point) having a high attribu-
tion for the class originals for both models might
suggest a spurious correlation within the dataset,
that is apparently utilized by BERT. The ";" token
is deemed important for the translationese class by
both models, which might also be a spurious corre-
lation. Conversely, this could be an indication that
clauses in Spanish are more often joint with the
semi-colon, than in German, which was preserved
in the translation. This corroborates findings from

other works that deep networks exploit spurious
statistical cues for better performance (Mudrakarta
et al., 2018; Niven and Kao, 2019).

For both models the Präteritum forms "sagte",
"erklärte" etc. are also among the top tokens impor-
tant for recognizing translationese. One possible
explanation could be that the Perfekt form ("hat
gesagt") is more common in German spoken lan-
guage, and Präteritum is more common in writing.
Therefore the translators, while translating Spanish
speeches into German, may have preferred to use
the Präteritum form more common for writing.

6 Summary and Conclusions

We address two open questions in classification-
based translationese research: (1) are the substan-
tial performance differences between feature- and
representation-learning and classical handcrafted
feature based approaches is due to (i) the differ-
ence in the features, (ii) the classifiers, or (iii)
both, and (2) what do feature- and representation-
learning based approaches actually learn?

We address (1) by exchanging features from
both models, examining a broad variety of set-
tings, to ensure that this is done in a fair an un-
biased way. We show that SVMs perform as good
as BERT when fed with features learnt by BERT.
Likewise, the BERT classification head and the full
BERT architecture perform at the level of tradi-
tional SVM-based classification with handcrafted
features, when fed with handcrafted features only.
This shows that it is the feature and representation
learning and not the classifiers that are responsible
for the translationese classification performance
difference.

To address question (2), we examine BERT’s in-
put attributions using Integrated Gradients Saliency
for various settings and observe that attributions are
indeed similar for the model trained from scratch
(fromScratch-BERT) on just the text data and the
fine-tuned models that were pretrained on hand-
crafted feature prediction (BERT-r2c-full-ft and
BERT-r2c-half-ft). This suggests that pretraining
on the handcrafted features does not make a visible
difference in attributions, and, together with the
accuracy result that also does not change, suggests
that no extra information is learnt during pretrain-
ing on handcrafted features. Based on these find-
ings, and the fact that some attributions appear to
overlap for BERT pretrained on handcrafted fea-
tures and where the pretrained layers were subse-
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quently frozen (BERT-r2c-full-frozen), and BERT
trained from scratch (fromScratch-BERT), it is con-
sistent to assume that handcrafted features are a
(possibly partial) subset of the features automati-
cally learnt by BERT.

Finally, analysis of top activated tokens suggests
that at least part of BERT’s strong translationese
classification accuracy is based on topic differences
between the classes as well as on some spurious cor-
relations, rather than "proper" translationese phe-
nomena. We are currently working on quantifying
the ’Clever Hans’ behaviour using named entity
masking and cleaning/normalizing the data.
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A Appendix

A.1 Extra Information on the MPDE Dataset
We use version 2.0.0 of the MPDE dataset li-
censed under CC-BY 4.0. Specifically we use the
mono_de_es train/dev/test splits of the German-
Spanish language pair. Table 3 contains summary
statistics of the data.

Split Number of Examples
Train set 29580
Validation set 6366
Test 6344

Table 3: Dataset statistics.

A.2 Extra Information on BERT Models
With the exception of pretrained-BERT-ft, we use
the transformers library.7 Training is done across
4 NVIDIA GeForce GTX TITAN X GPUs with a
batch size of 8 per GPU. We use a learning rate of
3 · 10−5 and train or fine-tune for 5 epochs. Table
4 shows the number of parameters of the differ-
ent BERT variants. Parameter counts include the
embedding and respective prediction (classifier or
regression) layers.

Model Num. Params (M)
fromScratch-BERT 177.85
BERT-reg-full 177.94
BERT-reg-half 135.41
BERT-r2c-* 177.85
BERT-f2c L = 1 177.46
BERT-f2c L = 80 177.52
BERT-f2c L = 256 177.66
pretrained-BERT-f2c L = 80 177.52

Table 4: Number of parameters of the various BERT
models.

7https://huggingface.co/transformers/
model_doc/bert.html

291

https://www.aclweb.org/anthology/C08-1118
https://www.aclweb.org/anthology/C08-1118
https://doi.org/10.18653/v1/2020.semeval-1.141
https://doi.org/10.18653/v1/2020.semeval-1.141
https://doi.org/10.18653/v1/2020.semeval-1.141
https://doi.org/10.18653/v1/2020.semeval-1.141
https://doi.org/10.18653/v1/W19-5208
https://doi.org/10.18653/v1/W19-5208
https://doi.org/10.5281/zenodo.5596238
https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html


A.3 Additional Layer Integrated Gradients saliency maps

Figure 3: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: original). Comparison of different models.
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Figure 4: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: original). BERT trained from scratch for translationese classification. Changes in attribution over the
training checkpoints.
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Figure 5: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: original). BERT pretrained for handcrafted feature prediction, and fine-tuned for translationese
classification. Changes in attribution over the training checkpoints.
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Figure 6: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: translation). BERT trained from scratch for translationese classification. Changes in attribution over the
training checkpoints.
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Figure 7: Layer Integrated Gradient saliency maps of input tokens contributing to the ground truth translationese
label (here: translation). BERT pretrained for handcrafted feature prediction, and fine-tuned for translationese
classification. Changes in attribution over the training checkpoints.
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