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Abstract

We investigate to what extent a hundred pub-
licly available, popular neural language mod-
els capture meaning systematically. Sentence
embeddings obtained from pretrained or fine-
tuned language models can be used to perform
particular tasks, such as paraphrase detection,
semantic textual similarity assessment or natu-
ral language inference. Common to all of these
tasks is that paraphrastic sentences, that is, sen-
tences that carry (nearly) the same meaning,
should have (nearly) the same embeddings re-
gardless of surface form.

We demonstrate that performance varies greatly
across different language models when a spe-
cific type of meaning-preserving transforma-
tion is applied: two sentences should be iden-
tified as paraphrastic if one of them contains a
negated antonym in relation to the other one,
such as I am not guilty versus I am innocent.

We introduce and release SemAntoNeg, a new
test suite containing 3152 entries for probing
paraphrasticity in sentences incorporating nega-
tion and antonyms. Among other things, we
show that language models fine-tuned for natu-
ral language inference outperform other types
of models, especially the ones fine-tuned to pro-
duce general-purpose sentence embeddings, on
the test suite. Furthermore, we show that most
models designed explicitly for paraphrasing are
rather mediocre in our task.

1 Introduction

Large pretrained language language models have
pushed NLP forward in many sub-fields, and their
ability to embed essential linguistic properties
makes them applicable across a wide range of tasks.
However, it is still an open question how well they
cope with systematic compositionality and to what
level of abstraction they reflect the actual meaning
behind a given sentence.

This work is in line with other experiments based
on dedicated test suites that study specific linguis-

tic phenomena in connection with neural represen-
tation models. In particular, we publish a novel
benchmark called SemAntoNeg1, that tests the abil-
ity of language models to properly represent ex-
pressions that contain antonymy and negation, em-
bedded into a paraphrase task.

Our test suite consists of contrastive examples
where the task is to select the correct paraphrase
for a given input sentence among three candidate
expressions that include combinations of negated
sentences and antonym substitutions. To provide
a simple example, a semantic opposite to an in-
put sentence I am guilty would be I am not guilty,
where the opposite meaning is invoked by an in-
sertion of a negation marker. Similarly, instead of
inserting the negation marker, substituting the ad-
jective to its antonym inverses the meaning of the
sentence: I am innocent. To maintain paraphrastic-
ity with respect to the original sentence, performing
both of the operations is necessary, resulting in: I
am not innocent. Thus, for a model to succeed
in the SemAntoNeg test suite, the models need to
understand that insertion or deletion of a negation
accompanied with antonym substitution produces a
sentence that is semantically equivalent to the orig-
inal sentence, and the sentence embeddings should
represent this relationship.

Using this benchmark, we study the following
questions:

• How well do sentence embeddings from
general-purpose language models fare in this
task?

• Does fine-tuning on paraphrase tasks help to
improve the performance on our test suite?

• What is the best fine-tuning task that supports
our benchmark?

1The challenge set is available at: https://github.
com/teemuvh/antonym-substitution
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In order to answer those questions, we systemat-
ically evaluate a large number of publicly available
pretrained language models on the novel test suite.
We notice a large amount of variation between dif-
ferent models, mostly depending on the fine-tuning
objective and data, but, in some cases, also between
models fine-tuned for the same task. Selecting an
appropriate model becomes a challenge consider-
ing the sea of releases available on public model
hubs. Simply selecting among the most popular
ones might be a poor strategy, as we can see in
Table 1.

Model Accuracy
all-MiniLM-L6-v2 1.9
paraphrase-MiniLM-L6-v2 43.3
bert-base-nli-mean-tokens 83.3
all-mpnet-base-v2 31.9
distiluse-base-multilingual-cased-v2 1.5
all-MiniLM-L12-v2 8.2
multi-qa-mpnet-base-dot-v1 17.5
paraphrase-multilingual-MiniLM-L12-v2 61.8
paraphrase-mpnet-base-v2 76.1
distilbert-multilingual-nli-stsb-quora-ranking 47.1

Table 1: Testing our new benchmark on the ten most
downloaded models from the Hugging Face sentence-
transformers library in a descending order based on
download counts.

Our analysis below provides new insights into
the semantic abstraction abilities with respect to
antonyms and negation and gives additional guid-
ance for the selection of an appropriate model for
tasks that require proper inference with such con-
structions.

2 Description of the Task

The objective of our test suite is to test to what
extent sentence representation models succeed in
distinguishing sentences similar in meaning when
the change in semantics is realised only by a sub-
stitution of a distributionally similar (Grefenstette,
1992) word token (antonym in this case) or by an
insertion or deletion of a negation marker. Perform-
ing either of the operations results in a sentence
that conveys the semantic opposite of the original
sentence while maintaining a high lexical overlap
between both sentences.

We cast the benchmark in terms of a paraphrase
detection task: a model is confronted with three
alternatives of potential reformulations of an input
sentence and only one of them is a proper equiv-
alent on a semantic level. The candidates are de-
signed to include negations and antonyms of adjec-

tives to create the specific challenge of the test suite.
More details about the data sets and its creation are
given in Section 3 below.

The idea is not to fine-tune any model for this
particular task (because any model would quickly
overfit to such regular constructions) but rather
to test independently trained sentence embedding
models that can be used to measure semantic dis-
tance to make the decision. As such, it is in line
with other natural language understanding bench-
marks such as SentEval (Conneau and Kiela, 2018)
and GLUE (Wang et al., 2018) but it represents
a dedicated linguistic probing task rather than a
general-purpose evaluation framework.

The work is motivated by previous research that
identified deficiencies in the popular sentence repre-
sentation benchmarks. For instance, existing para-
phrase detection data sets (e.g., QQP2) lack exam-
ples that are characterised by a high lexical overlap
without paraphrastic meaning (Zhang et al., 2019).
Classification models can simply learn to measure
lexical overlap to make proper decisions and, there-
fore, Zhang et al. (2019) generate a more difficult
test suite of paraphrases and non-paraphrases with
a high bag-of-words overlap by word scrambling.
The same problem has been observed in natural
language inference, where contradicting sentences
typically exhibit low lexical overlap. Word permu-
tations have been proposed (Dasgupta et al., 2018)
to generate difficult cases that require better knowl-
edge of compositionality.

In our test suite, we go beyond the creation of
more challenging distractors (e.g., better negative
examples with high vocabulary overlaps) by intro-
ducing more challenging positive candidates that
are explicitly different from the source by adding
antonyms from a lexical resource. In connection
with negation, the model is now forced to disregard
surface features (such as matching tokens) and to
properly understand negated messages to make the
correct decision. Thus, we test not only for se-
mantic similarity but also evaluate the ability to
understand the relationship between antonyms as
well as the effect of negation on meaning represen-
tations.

Before discussing the experimental setup (Sec-
tion 4) and the results of our practical experiments
(Section 5), we will present details of the data set
and how it was created in the section below.

2https://www.kaggle.com/c/
quora-question-pairs
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Label Input Options
2 No, that’s true. {No, that’s false., No, that’s not true., No, that’s not false.}
2 I’m guilty. {I’m innocent., I’m not guilty., I’m not innocent.}
2 I’m not sure. {I’m not uncertain., I’m sure., I’m uncertain.}
2 That is good. {That is bad., That is not good., That is not bad.}
2 I know you’re not asleep. {I know you’re not awake., I know you’re asleep.,

I know you’re awake.}

Table 2: Examples from the test suite. Based on the input sentence, the model is supposed to select the equivalent
sentence from the alternative hypotheses in the Options column. Values on the Label column indicate the index of
the true paraphrase in the options column.

3 Data Creation

We created the test suite in a semi-automatic way.
First, we downloaded 1.5 million sentence pairs
from the English training set of the Opusparcus
paraphrase corpus (Creutz, 2018). Next, we re-
moved sentence pairs where the length of either
of the sentences was less than four tokens. Fur-
thermore, we retained only sentence pairs, where
either one, but not both, of the sentences contains
a negation (e.g., I’m innocent. – I’m not guilty.)
After this filtering process, our data consisted of
approximately 7500 sentence pairs. At this point
we realised that, even though many of the sentence
pairs were meaningful for our experiments, our fil-
tered set also contained pairs that were paraphrastic
but did not include antonymous relations, such as
Aren’t you cold? – Are you cold? Therefore, we
proceeded with a second round of filtering, where
we POS-tagged the sentences using NLTK (Bird
et al., 2009) and retained sentences containing ex-
plicit negation (not) as an adverb (RB) as well as
adjectives (JJ). Finally, we removed duplicate sen-
tences. This process resulted in 1317 sentences, all
of which included an explicit negation marker and
an adjective.

For each of the 1317 sentences, we generated
three hypotheses from which the model is supposed
to choose the one that conveys the same meaning
as the input sentence. First, we queried an antonym
for the adjective in the input sentence from the
WordNet Electrical Lexical Database (Fellbaum,
1998) to get a an opposing sentence. To obtain
the second contradicting sentence, we deleted the
negator from the input sentence. Finally, we substi-
tuted the adjective from the second contradicting
sentence to its antonym to obtain the paraphrase of
the input sentence. Examples of entries in the test
suite are provided in Table 2.

We reviewed the resulting test suite manually to

ensure its good quality. The antonym substitution
procedure introduced some grammatical errors to
the data, such as wrong agreement of articles (a
evil idea) or a question tag not agreeing with the
main clause (You’re not serious, aren’t you?). We
corrected such phrases manually. The sentences
also included some examples where the automat-
ically retrieved antonyms were not considered to
carry opposite meanings, such as Are you hungry?
– Are you not thirsty? We removed such examples
from the final test suite.

Eventually, we obtained 788 examples, from
which we permuted all possible input sentences to
result in 3152 test examples, containing 209 unique
adjectives, which constitute the SemAntoNeg test
suite.

4 Experimental Setup

To compare sentence representations derived from
different Transformer-based pretrained language
models, we ran 114 of the 120 pretrained Sentence-
BERT (Reimers and Gurevych, 2019) models that
are publicly available in the Hugging Face trans-
formers library (Wolf et al., 2020).3 We provide the
full list of the models we tested accompanied with
the accuracy they acquired on the SemAntoNeg test
suite in Appendix A.

We embed the sentences in our test suite using
the different language models. To create the em-
beddings we apply the same pooling strategy used
in training the original sentence-transformers. We
then evaluate each model by its ability to produce
embeddings such that the input sentence and its
true paraphrase are closest to each other in the vec-
tor space. To compare embeddings we use cosine
similarity.

Basically, we have run a systematic loop over all

3We did not include four image-to-text models, nor did we
include two T5-xxl models that we could not fit into the GPU.
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Figure 1: Results of the different model types. The
accuracy [%] of the models is labeled on the y-axis
and the different model types are labeled on the x-
axis. “Generic” refers to the general-purpose models
fine-tuned for a large range of transfer tasks. “Para-
phrase”, “NLI”, and “STSB” refer to models fine-tuned
for paraphrase detection, natural language inference,
and semantic textual similarity, respectively.

available models but we are especially interested in
specific groups of models, which we will discuss
next. First of all, we want to see the performance
of general-purpose models before looking at dedi-
cated paraphrase models. Finally, we discuss other
task-specific models before we present a detailed
error analysis and conclude with prospects for fu-
ture work.

5 Results

We analyse the results of our experiments by group-
ing the language models into four different cate-
gories, determined by the fine-tuning objective of
the models: general-purpose embeddings, as well
as embeddings specialised for paraphrasing, natural
language inference and semantic textual similarity.
Figure 1 shows average accuracies and variances
for these four types of models. Individual results
of all models are provided in Appendix A.

Since there are three possible choices in our task,
a random selection yields a baseline level of 33.3%
accuracy. We observe models that diverge clearly
from the baseline level, either positively or nega-
tively. This means that many tested models make
good or bad choices systematically. We return to
these findings in the error analysis in Section 6.
The following sections summarise the analyses of
the separate model groups.

Model Accuracy
sentence-t5-xl 81.2
sentence-t5-large 78.4
sentence-t5-base 67.2
all-roberta-large-v1 35.4
all-mpnet-base-v2 31.9
all-mpnet-base-v1 25.1
all-distilroberta-v1 18.5
all-MiniLM-L12-v1 9.7
all-MiniLM-L12-v2 8.2
all-MiniLM-L6-v1 3.1
all-MiniLM-L6-v2 1.9

Table 3: Results of the general-purpose models. The
dashed line represents results from random choice
(33.3%)

5.1 General-Purpose Sentence
Representations

Table 3 provides results on the general-purpose
sentence representation models. These mod-
els are trained to generate representations that
have the capacity to be highly useful for a large
range of natural language understanding tasks.
When extensively evaluated on different bench-
marks related to sentence embeddings and seman-
tic search, the aggregated results reported on the
sentence-transformers website indicate good per-
formance.4 The performance on the SemAntoNeg
test suite probing for understanding of negation
and antonymy, however, suggests that especially
the fine-tuned general-purpose models lack in this
crucial aspect of natural language understanding.

The T5 models (Raffel et al., 2020) are not fine-
tuned for any specific objective. The all-* models,
instead, are fine-tuned for a wide range of natural
language understanding tasks and are thus expected
to produce general-purpose sentence embeddings
that have the capacity to capture a diverse range
of linguistic properties in order to be successful in
different transfer tasks. Analysis of the predicted
sentences from the only fine-tuned general-purpose
model that outperforms the random baseline (all-
roberta-large-v1) suggests that the model is prone
to predicting the sentence with the highest lexi-
cal overlap while ignoring the negation. Thus, the
model often predicts the semantic opposite of the
input sentence by simply connecting lexical simi-
larity with semantic similarity, which explains the

4https://www.sbert.net/docs/
pretrained_models.html
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Model Accuracy
paraphrase-multilingual-mpnet-base-v2 79.9
paraphrase-mpnet-base-v2 76.1
paraphrase-TinyBERT-L6-v2 72.1
paraphrase-distilroberta-base-v2 68.4
quora-distilbert-base 67.2
paraphrase-multilingual-MiniLM-L12-v2 61.8
paraphrase-albert-small-v2 60.8
paraphrase-albert-base-v2 58.7
paraphrase-MiniLM-L12-v2 55.9
quora-distilbert-multilingual 47.1
paraphrase-MiniLM-L6-v2 43.3
paraphrase-xlm-r-multilingual-v1 23.9
xlm-r-distilroberta-base-paraphrase-v1 23.9
paraphrase-distilroberta-base-v1 19.4
paraphrase-MiniLM-L3-v2 0.03

Table 4: Results [%] of the models fine-tuned for para-
phrase detection. The dashed line represents results
from random choice (33.3%)

poor performance.

5.2 Paraphrase Models
We report the results of the paraphrase models on
the test suite in Table 4. One would expect the
paraphrase models, whose objective is to recognise
sentences that carry the same meaning but use a
different wording (Bhagat and Hovy, 2013) to be
successful on our test suite. This is, however, not
the case for all of the models, and none of the
models actually outperform the best performing
general-purpose model.

The paraphrase models seem to vary greatly in
their ability to generate representations that cap-
ture meaning regardless of surface form. Some of
the differences between the results can be traced
back to the data used for fine-tuning the models.
For instance, the two distilled implementations of
RoBERTa (Liu et al., 2019) perform very differ-
ently on the test suite (19.4% vs. 68.4%). How-
ever, “version 2” (paraphrase-distilroberta-base-
v2), which obtains the higher accuracy, was fine-
tuned with much more training examples5.

Some of the variation can be traced back to the
methodology, such as with the MiniLM models
(Wang et al., 2020). The difference in performance
between the MiniLM models may be explained by
the layer from which the representations are ex-
tracted. Previous research has demonstrated how
Transformer-based models accumulate different
types of knowledge on different layers, semantics
being predominantly encoded in the last layers of
the network (Jawahar et al., 2019). The results

5https://www.sbert.net/examples/
training/paraphrases/README.html

Model Accuracy
roberta-large-nli-mean-tokens 93.6
roberta-base-nli-mean-tokens 89.5
bert-large-nli-mean-tokens 87.4
nli-bert-large-cls-pooling 86.8
nli-bert-large-max-pooling 86.4
xlm-r-large-en-ko-nli-ststb 85.4
xlm-r-bert-base-nli-mean-tokens 83.9
bert-base-nli-cls-token 83.7
bert-base-nli-mean-tokens 83.3
nli-distilbert-base-max-pooling 83.2
distilbert-base-nli-mean-tokens 81.2
bert-base-nli-max-tokens 80.8
nli-roberta-base-v2 79.6
nli-mpnet-base-v2 74.1
nli-distilroberta-base-v2 66.6

Table 5: Results [%] of the models that are fine-tuned
for natural language inference.

obtained for the MiniLM models are in line with
the previous findings: embeddings from layer 12
outperform embeddings from layer 6, which in
turn outperform embeddings from layer 3. To
a smaller extent, the same effect is seen on the
general-purpose models (Table 3) where the repre-
sentations derived from the MiniLM models per-
form differently based on the layer they are ex-
tracted from.

5.3 Other Fine-Tuning Objectives

In addition to paraphrasing, we hypothesise that
models which have been fine-tuned on other similar
objectives could perform well on the SemAntoNeg
test suite.

Table 5 provides results for all models fine-tuned
for natural language inference (NLI) that are avail-
able in the sentence-transformers library. Natural
language inference probes the model for recognis-
ing whether an input sentence (the premise) entails,
contradicts or is neutral with respect to another
sentence (the hypothesis).

Compared to the general-purpose models (Table
3) and the paraphrase models (Table 4), the NLI
models are, for the most part, considerably more
successful on the test suite. The success of the NLI
models might arise due to a more prominent use of
negation in the training data, giving a model more
knowledge about the proper treatment of such con-
structions. Furthermore, models trained for NLI
have been shown to understand the effect of ex-
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Model Accuracy
stsb-bert-large 83.3
stsb-roberta-large 82.4
stsb-roberta-base 80.3
stsb-xlm-r-multilingual 79.8
stsb-bert-base 77.3
stsb-distilbert-base 76.5
stsb-roberta-base-v2 70.8
stsb-mpnet-base-v2 70.2
stsb-distilroberta-base-v2 58.7

Table 6: Results [%] of the models fine-tuned for the
Semantic textual similarity benchmark.

plicit negation (i.e., not) to the sentence semantics
rather well (Kim et al., 2019). Additionally, en-
tailment examples may get very close to instances
in our test suite and, in this way, provide better
support for the expressions we test. Paraphrase
data sets, on the other hand, tend to emphasise
the use of synonyms and therefore fail to learn a
better treatment of negation and antonyms. Even
though NLI models seem to be successful on our
test suite, they do not necessarily perform well on
other paraphrase tasks. BERT-large fine-tuned for
NLI obtains 87.4% accuracy on the SemAntoNeg
test suite, while only reaching 75.9% on the Mi-
crosoft Research Paraphrase Corpus (Reimers and
Gurevych, 2019), where the best-performing mod-
els fine-tuned explicitly for paraphrasing obtain
results exceeding 90% accuracy (e.g., fine-tuned
RoBERTa achieves 92.3% on that task (Liu et al.,
2019)). In future work, we will investigate the
qualitative difference in training data in more depth
in order to provide a better picture about the in-
fluence of fine-tuning objectives on SemAntoNeg
performance.

In addition to NLI, we believe that fine-tuning
sentence representation models on the Semantic
Textual Similarity Benchmark (STSB) data (Cer
et al., 2017) can produce embeddings that can dis-
tinguish between semantically similar sentences re-
gardless of their surface forms and be successful on
the test suite. The results of the models fine-tuned
for STSB are presented in Table 6. The STSB data
is designed to comprise sentences that share some
level of semantic similarity, and the task probes the
representations for “gradations of meaning overlap”
(Agirre et al., 2016; Cer et al., 2017). Fine-tuning
on the STSB data potentially encourages models to
learn more fine-grained (dis-)similarities from the

Model Accuracy
roberta-large-nli-mean-tokens 93.6
roberta-base-nli-mean-tokens 89.5
bert-large-nli-mean-tokens 87.4
nli-bert-large-cls-pooling 86.8
nli-bert-large-max-pooling 86.4
xlm-r-large-en-ko-nli-ststb 85.4
xlm-r-bert-base-nli-mean-tokens 83.9
bert-base-nli-cls-token 83.7
bert-base-nli-mean-tokens 83.3
stsb-bert-large 83.3
bert-large-nli-stsb-mean-tokens 83.3
distilbert-base-nli-max-tokens 83.2

Table 7: Results [%] of the best performing models.

sentence pairs, which is valuable for succeeding in
the SemAntoNeg test suite.

The sentence-transformers library also includes
models that are not suited to the SemAntoNeg task
by design. Such models include for instance mod-
els trained for machine reading comprehension and
question answering on the MS MARCO data set
(Bajaj et al., 2016). The results of these models are
included in Appendix A, and affirm the hypothesis
that the models are not suitable for this task.

6 Error Analysis

We have analysed misclassified examples from a
set of different models. Naturally, the errors the
best-performing models make differ from the ones
made by the worst-performing models.

We have studied an intersection of the examples
that were misclassified by all of the best models
(listed in Table 7). Antonym pairs that are rare
and highly contextual seem to be difficult for the
models. For instance, the antonym pair possible –
actual (e.g., in the sentence pair No, that’s actual. –
No, that’s not possible.) is very often misclassified.
The antonym pair possible – actual comprises the
majority of the common misclassified examples of
the best performing models: 70 out of 105 exam-
ples. The antonym pair is retrieved from WordNet,
but in the test suite they rarely occur in a natural
context (in which they would refer to a possibil-
ity, as opposed to an actual event). The example
would probably demand some contextual priming
for the models to be able to connect the relationship
between the antonyms.

Another frequently shared incorrectly predicted
antonym pair includes the words same and other
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Figure 2: The best and the four worst performing para-
phrase models. Labels in the test suite are presented on
the x-axis. The number of times the labels are predicted
by the models is presented on the y-axis. Labels 0 and 1
denote errors, 0 meaning sentences where only antonym
substitution is performed, and 1 meaning only polarity
swap (insertion or deletion of negation). Label 2 indi-
cates that both operations are performed, which is the
correct choice.

in the definite form, for instance: It is not the
same. – It is the other. Here, the definite form
the other could be the cause of incorrect predic-
tions, whereas a more suitable opposing relation
could be expressed using for example some as an
indefinite article as in some other. The antonym
pair the same – the other comprises 17 of the re-
maining 35 incorrectly predicted examples shared
by the best performing models.

A bar chart of the best paraphrase model and the
four paraphrase models that obtain accuracy below
random choice is presented in Figure 2. The results
indicate that the poor performance of the worst
paraphrase models is explained by them systemati-
cally preferring the sentence with the highest lexi-
cal overlap disregarding the negation completely,
which is reflected by a high proportion of label 1
in the figure. The trend seems similar for the other
models whose accuracies are below random choice.
Compared to the models that perform well, the
poorly performing models seem more prone to as-
sociating lexical similarity with semantic similarity,
leading them to predict the sentence with the oppo-
site meaning with respect to the input sentence.

7 Limitations

The test suite comes with some limitations that we
find important to discuss. We acknowledge that
the proposed task is not difficult to solve using a

simple rule-based model and that it is rather easy
to overfit a neural network-based model to the data.
Therefore, the kind of data the test suite instantiates
is supposed to be used for evaluating models by
probing sentence representations for the certain
kinds of linguistic phenomena exclusively.

The test suite includes overrepresentation of cer-
tain frequent adjectives. The adjective good occurs
more than 270 times in the input sentence, whereas
some rarer adjectives, such as opaque only occur
twice. Adding more unique adjectives to make the
data even more representative and balancing the
data is left for future work.

Another caveat of the test suite is that for now it
only probes the sentence representations for a set
of negated antonyms that belong to the adjective
class. As some of the other word classes also in-
clude words that have a related opposing concept
(e.g., accept – reject in the verb class), and it would
be equally important to assess how language mod-
els understand the relation of the words in other
word classes. Additionally, the test suite consists
only of one certain negation pattern: not + adjec-
tive. Adding examples with more variable negation
patterns would require an adapted filtering method
to extract the sentences from a paraphrase corpus
or more manual work to ensure high-quality para-
phrases of the sort (e.g., I walked – I didn’t stand
still.) Augmenting the test suite with test examples
of more varied negation patterns, as well as antony-
mous tokens from different word classes is left for
future work.

8 Related Work

Previous work has focused on understanding nega-
tion, on the one hand, and antonymy, on the other.

Kassner and Schütze (2020) show that pretrained
language models (Transformer-XL (Dai et al.,
2019), ELMO (Peters et al., 2018) and BERT (De-
vlin et al., 2019) in this case) are poor at recognis-
ing the difference between a sentence in affirmative
or negative form when they are queried with a neg-
ative cloze test, and are prone to predict the same
token regardless of the polarity of the sentence.
Ettinger (2020) study how BERT understands nega-
tion with similar minimal pairs to our test suite.
However, they probe BERT for predicting one word
token in a sentence pair where one sentence is a
negated version of the other (e.g., Most smokers
find that quitting is very __. – Most smokers find
that quitting isn’t very __.) BERT does not seem to
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be highly robust for the transformation, and it does
not seem that negation alone suffices to prime the
model for systematically predicting the opposite of
the prediction in the affirmative sentence (Ettinger,
2020).

Hossain et al. (2020) show that NLI models are
not robust to negation by analysing models on a
new benchmark designed to assess how models
understand negation. In a similar spirit, assessing a
multilingual language model fine-tuned for NLI on
a test suite of minimal pairs of label-changing and
label-preserving negations, Hartmann et al. (2021)
find that multilingual language models are not fully
aware of the effects that a negation marker can
have on sentence semantics. Furthermore, NLI
models’ difficulty to represent negations reliably
has been traced to training data, suggesting that
models trained on SNLI (Bowman et al., 2015) or
MNLI (Williams et al., 2018) do not properly learn
to reason with expressions that include negation
(Geiger et al., 2020; Richardson et al., 2020).

Kim et al. (2019) analyse different pretraining
objectives for predicting textual entailment on var-
ious function word probing tasks, one of which
assesses models’ understanding of negation in a
similar manner to our test suite. They find that
the natural language inference models outperform
other pretraining objectives in representing nega-
tion, mostly owing to NLI models’ capability to
represent explicit negation. However, analysis of
examples that were difficult for a state-of-the-art
NLI model has suggested that antonymy and nega-
tion are challenging phenomena to represent reli-
ably, as models do not recognise antonymous rela-
tions as semantically opposing and may associate
explicit negation to contradiction in neutral or en-
tailed examples (Naik et al., 2018).

In addition to analysing language models’ under-
standing of natural language in textual entailment,
representation of antonyms has been studied for
instance by comparing the mapping of negated ad-
jectives in vector space (Rimell et al., 2017). BERT
has also been adapted to perform a cloze problem
for predicting antonyms in context (Niwa et al.,
2021).

Additionally, previous research has focused on
learning vector-based representations of word se-
mantics that can model the relationship between
distributionally similar but semantically opposing
words better (e.g., Pham et al., 2015; Ono et al.,
2015). Jumelet and Hupkes (2018) study how lan-

guage models understand semantic compositional-
ity with respect to contrasting meanings but focus
on transformations of (negative) polarity items.

9 Conclusions

We have presented a novel test suite, SemAntoNeg,
designed to probe pretrained language models for
the understanding of the relationship between nega-
tion and antonymy. Contradicting examples in the
test suite are close to the input by design and lead
to a challenging benchmark. In order to succeed
on our test suite, a model needs to recognise the se-
mantic opposites invoked either by antonym substi-
tution or by an insertion or a deletion of a negation
marker. Equally, the model needs understanding of
semantic compositionality to understand how the
operations affect semantics of the sentence when
performed together.

We have evaluated publicly available pretrained
sentence representation models and reported re-
sults that display a large amount of variation when
assessed on the new test suite. Surprisingly, ded-
icated paraphrase models are not among the best
performing models and deliver rather poor results
in many cases, whereas fine-tuning to natural lan-
guage inference seems very beneficial for the task.
General-purpose models are overall not very good
at recognising our examples either, except for re-
cent very large multi-task models such as T5-xl.

Our findings highlight that models that fare
well in established natural language understanding
benchmarks may still have crucial deficiencies in
representing certain, rather typical, linguistic con-
structions and may produce critical mistakes. As a
result, more structured test suites are necessary for
assessing how the pretrained models understand
language. This paper provides another contribution
in that direction.

There are various avenues in future work we
would like to explore. First of all, we need to fur-
ther test the scaling effects when moving to very
large language models such as GPT-3 (Brown et al.,
2020). The T5 results already indicate that size mat-
ters but it is too early to draw general conclusions.
Furthermore, we plan to investigate prompting as
an alternative to vector similarity. However, prompt
engineering is a challenging task in itself and we
will need to explore the influence of prompts on
results we can expect. Finally, we would also like
to move to other languages and potentially cross-
lingual setups.
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A Results of All Models

Results of the 114 Transformer-based models from
the Hugging Face Transformers library on the test
suite.

Model Accuracy
msmarco-distilbert-base-tas-b 0.0
multi-qa-MiniLM-L6-cos-v1 0.3
all-MiniLM-L6-v2 1.9
multi-qa-distilbert-cos-v1 1.4
all-MiniLM-L12-v2 8.2
all-distilroberta-v1 18.5
multi-qa-mpnet-base-dot-v1 17.5
all-mpnet-base-v2 31.9
paraphrase-MiniLM-L3-v2 0.0
paraphrase-albert-small-v2 60.8
sentence-t5-base 67.2
distiluse-base-multilingual-cased 1.5
distilroberta-base-msmarco-v1 1.7
nli-bert-large-cls-pooling 86.8
xlm-r-base-en-ko-nli-ststb 79.5
bert-large-nli-cls-token 86.8
nli-distilbert-base-max-pooling 83.2
nli-bert-large-max-pooling 86.4
xlm-r-bert-base-nli-mean-tokens 83.9
msmarco-roberta-base-v2 4.3
distilbert-base-nli-max-tokens 83.2
xlm-r-100langs-bert-base-nli-mean-tokens 83.9
msmarco-MiniLM-L-12-v3 0.0
msmarco-MiniLM-L12-cos-v5 0.0
nli-distilbert-base 81.2
xlm-r-large-en-ko-nli-ststb 85.4
quora-distilbert-base 67.2
facebook-dpr-question_encoder-single-nq-base 6.8
facebook-dpr-question_encoder-multiset-base 5.9
nli-bert-base 83.3
bert-large-nli-max-tokens 86.4
msmarco-roberta-base-ance-firstp 3.1
bert-base-nli-cls-token 83.7
stsb-bert-large 83.3
facebook-dpr-ctx_encoder-multiset-base 9.4
bert-large-nli-stsb-mean-tokens 83.3
multi-qa-MiniLM-L6-dot-v1 0.5
msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch 0.0
nli-roberta-base-v2 79.6
nli-roberta-base 89.5
stsb-distilroberta-base-v2 58.7
bert-base-wikipedia-sections-mean-tokens 7.1
stsb-bert-base 77.3
paraphrase-albert-base-v2 58.7
msmarco-distilbert-base-dot-prod-v3 0.4
msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned 0.9
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bert-large-nli-mean-tokens 87.4
xlm-r-distilroberta-base-paraphrase-v1 23.9
msmarco-roberta-base-v3 3.1
bert-base-nli-max-tokens 80.8
distilbert-base-nli-stsb-quora-ranking 67.2
msmarco-MiniLM-L6-cos-v5 0.0
msmarco-distilroberta-base-v2 0.4
nli-distilroberta-base-v2 66.6
roberta-base-nli-mean-tokens 89.5
distilroberta-base-paraphrase-v1 19.4
msmarco-MiniLM-L-6-v3 0.0
distilroberta-base-msmarco-v2 0.4
nq-distilbert-base-v1 2.3
msmarco-distilbert-cos-v5 0.0
msmarco-distilbert-base-v2 0.7
msmarco-distilbert-base-v3 0.0
stsb-xlm-r-multilingual 79.8
allenai-specter 0.1
roberta-large-nli-stsb-mean-tokens 82.4
roberta-base-nli-stsb-mean-tokens 80.3
use-cmlm-multilingual 3.6
xlm-r-100langs-bert-base-nli-stsb-mean-tokens 79.8
stsb-roberta-base 80.3
msmarco-bert-base-dot-v5 0.0
quora-distilbert-multilingual 47.1
stsb-roberta-large 82.4
xlm-r-bert-base-nli-stsb-mean-tokens 79.8
paraphrase-MiniLM-L12-v2 55.9
clip-ViT-B-32-multilingual-v1 Image-text model
msmarco-distilbert-dot-v5 0.0
nli-mpnet-base-v2 74.1
paraphrase-TinyBERT-L6-v2 72.1
distiluse-base-multilingual-cased-v1 1.4
distilbert-base-nli-stsb-mean-tokens 76.5
stsb-roberta-base-v2 70.8
paraphrase-distilroberta-base-v1 19.4
bert-base-nli-stsb-mean-tokens 77.3
LaBSE 11.7
stsb-distilbert-base 76.5
paraphrase-distilroberta-base-v2 68.4
paraphrase-multilingual-mpnet-base-v2 79.9
distilbert-base-nli-mean-tokens 81.2
distilbert-multilingual-nli-stsb-quora-ranking 47.1
msmarco-distilbert-base-v4 0.0
paraphrase-xlm-r-multilingual-v1 23.9
distiluse-base-multilingual-cased-v2 1.5
paraphrase-mpnet-base-v2 76.1
paraphrase-multilingual-MiniLM-L12-v2 61.8
paraphrase-MiniLM-L6-v2 43.3
bert-base-nli-mean-tokens 83.3
clip-ViT-B-16 Image-text model
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clip-ViT-L-14 Image-text model
clip-ViT-B-32 Image-text model
sentence-t5-xxl –
sentence-t5-xl 81.2
sentence-t5-large 78.4
gtr-t5-large 17.4
gtr-t5-xl 17.4
gtr-t5-base 9.5
gtr-t5-xxl –
msmarco-bert-co-condensor 0.5
all-roberta-large-v1 35.4
all-mpnet-base-v1 25.1
all-MiniLM-L12-v1 9.7
all-MiniLM-L6-v1 3.1
multi-qa-mpnet-base-cos-v1 18.0
multi-qa-distilbert-dot-v1 1.5
stsb-mpnet-base-v2 70.2
roberta-large-nli-mean-tokens 93.6
nli-roberta-large 93.6
nli-bert-large 87.4
nli-bert-base-max-pooling 80.8
nli-bert-base-cls-pooling 83.7
facebook-dpr-ctx_encoder-single-nq-base 10.5
average_word_embeddings_levy_dependency –
average_word_embeddings_komninos –
average_word_embeddings_glove.840B.300d –
average_word_embeddings_glove.6B.300d –

Table 8: Results of the publicly available Transformer-
based models in the Hugging Face sentence-
transformers library.
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