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Abstract

There has been a lot of interest in under-
standing what information is captured by hid-
den representations of language models (LMs).
Typically, interpretation methods i) do not
guarantee that the model actually uses the in-
formation found to be encoded, and ii) do
not discover small subsets of neurons respon-
sible for a considered phenomenon. Inspired
by causal mediation analysis, we propose a
method that discovers a small subset of neu-
rons within a neural LM responsible for a
particular linguistic phenomenon, i.e., subsets
causing a change in the corresponding token
emission probabilities. We use a differentiable
relaxation to approximately search through the
combinatorial space. An L0 regularization
term ensures that the search converges to dis-
crete and sparse solutions. We apply our
method to analyze subject-verb number agree-
ment and gender bias detection in LSTMs. We
observe that it is fast and finds better solu-
tions than alternatives such as REINFORCE
and Integrated Gradients. Our experiments
confirm that each of these phenomena is me-
diated through a small subset of neurons that
do not play any other discernible role.

1 Introduction

The success of language models (LMs) in many
natural language processing tasks is accompanied
by an increasing interest in interpreting and analyz-
ing such models. One goal in this direction is to
identify how a model employs its hidden represen-
tations to arrive at a prediction (Belinkov and Glass,
2019; Jacovi and Goldberg, 2020). A popular line
of research studies LMs with “diagnostic classifiers”
or “probes” that are trained to predict linguistics
properties from hidden units, with the purpose of
analyzing what information is encoded by the net-
work and where (Alain and Bengio, 2017; Adi et al.,
2017; Hupkes et al., 2018; Voita and Titov, 2020).

*Equal contributions.

However, this method is sometimes criticized for
generating unfaithful interpretations (Barrett et al.,
2019) since the trained classifiers only measure the
correlation between a model’s representations and
an external property and not whether such property
is actually causing the model’s predictions. Indeed,
several studies pointed out limitations of probes
(Belinkov and Glass, 2019; Vanmassenhove et al.,
2017; Tamkin et al., 2020), including mismatches
between the performance of the probe and the orig-
inal model and the discrepancy between correlation
and causation of hidden units and model outputs.

In response to these limitations, several recent
studies have proposed to interpret neural models
with interventions which aim to measure causal ef-
fects by intervening in representations of the model
and observing a change in the model output (Giu-
lianelli et al., 2018; Elazar et al., 2021; Feder et al.,
2021). These techniques investigate directly if an
LM represents a certain linguistic phenomenon but
are limited when it comes to understanding where
and how this information is represented. There-
fore, an important question that they cannot an-
swer is to what extent modularity – often believed
to be a prerequisite for systematic generalization
(Goyal and Bengio, 2020; Dittadi et al., 2021) – is
a property that emerges naturally in such models.
An adaptation of causal mediation analysis (Pearl,
2001) by Lakretz et al. (2019); Vig et al. (2020);
Lakretz et al. (2021) makes an important step to-
wards enabling such investigations. They consider
neurons one by one by setting their activation to
zero and measuring their effect on the output. How-
ever, these techniques suffer from two major short-
comings: i) they are restricted to detecting single
neurons as systematically ablating combinations of
multiple neurons is computationally infeasible, and
ii) there is no guarantee that setting a unit activation
to zero corresponds to switching the corresponding
function on or off (Sturmfels et al., 2020).

Here, we use a differentiable relaxation of this
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search problem to overcome both these limitations.
More specifically, our goal is to identify neurons
responsible for shifting the probability from a word
to its alternative in examples exemplifying the phe-
nomena, without affecting other LM predictions.
For example, when investigating subject-verb num-
ber agreement, we want to redistribute the proba-
bility mass from the singular form of an upcoming
verb to the plural one (or vice versa), while dis-
couraging changes in the distributions for other
contexts. In this way, we ensure that the function is
mediated through the detected neurons, and these
neurons do not play any other discernible role.

Building on the framework of differentiable
masking (De Cao et al., 2020; Schlichtkrull et al.,
2021), we formalize this search for a sparse inter-
vention as a constrained optimization problem. We
aim to both detect the responsible neurons and learn
the values to assign them when intervening. We
use a continuous relaxation of the subset-selection
problem, but ensure discreteness and encourage
sparsity through L0 regularization. The L0 penalty
determines how many neurons we want to discover.
In our experiments, we use an LSTM-based LM,
previously investigated by (Gulordava et al., 2018;
Lakretz et al., 2019), and consider subject-verb
number agreement and gender bias detection. We
start with validating our method by showing that
we can replicate findings reported in these previous
studies and then dive into a deeper analysis. We
show that our proposed method is effective as well
as computationally efficient – it converges up to 7
times faster than REINFORCE (Williams, 1992)
and surpasses Integrated Gradients (Sundararajan
et al., 2017) in terms of accuracy/sparsity.

2 Related Work

The L0 regularization was proposed by Louizos
et al. (2018) in the context of pruning neural net-
work weights and biases. It has been used in a
variety of works in NLP as a tool for generating
rationales and attribution (Bastings et al., 2019;
De Cao et al., 2020; Schlichtkrull et al., 2021).
Masking weights and groups of weights was also
used by Csordás et al. (2021) to investigate the
functional modularity of neural networks.

Studies suggested that some of the linguistic phe-
nomena are encoded, at least to a large degree, in
a disentangled and sparse fashion. For example,
Radford et al. (2017) detected a neuron encoding
sentiment polarity and Dai et al. (2021) showed

that individual facts learned by an LM can be ma-
nipulated by modifying a small number of neurons.
In a similar spirit, Voita et al. (2019) observed that
many Transformer attention heads in a neural ma-
chine translation model are specialized; interest-
ingly, they also used L0 regularization but only to
prune less important heads; the roles played by the
heads were identified by studying their attention
patterns. Our technique can facilitate such studies
by effectively identifying sets of neural network’s
subcomponents playing a given function.

Bau et al. (2019) use different kinds of corre-
lations between neurons from different models to
measure their importance. The authors find that
many individual neurons capture common linguis-
tic phenomena, also showing how to control trans-
lations in predictable ways by modifying their ac-
tivations. Similarly to Lakretz et al. (2021), the
work of Finlayson et al. (2021) instead focuses on
models’ preferences for grammatical inflections,
as well as whether neurons process subject-verb
agreement. The authors include causal mediation
analysis in their methodology.

Conversely, Antverg and Belinkov (2022) criti-
cize recently proposed methodologies for analyz-
ing individual neurons in LMs. In particular, they
discuss methods that rely on an external probe to
rank neurons according to their relevance to some
linguistic attribute. They indicate two main pitfalls:
1) these methodologies confound probe quality and
ranking quality, and 2) they focus on encoded in-
formation rather than information that the model
uses. Their analysis does not apply to ours since
we do not use probes explicit.

Finally, we refer the reader to Sajjad et al. (2021)
for a recent survey of neuron-level interpretation of
NLP models, which includes methods to discover
neurons, evaluation methods, significant findings
and future research directions.

3 Method

We investigate if we can find groups of neurons for
which a modification of their value – which we call
an intervention – systematically leads to a change
of probability for the single token emission related
to a specific phenomenon. Because there is no di-
rect supervision for interventions, we need to learn
them with a proxy objective. Let’s assume we have
an autoregressive model (e.g., an LSTM; Hochre-
iter and Schmidhuber 1997) that assigns a prob-
ability to sequences. For a set of input tokens
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x = 〈x1, . . . , xn〉, we obtain the model’s proba-
bility of the token of interest p(xn|x<n) along with
the hidden states h = 〈h1, . . . , hn〉 where hi ∈ Rk
(one for each time step). We then intervene in
the model’s computation by modifying a group of
neurons from one or multiple hidden states. The
intervention at a certain time step i < n consists
of a binary mask m ∈ {0, 1}k indicating which
hidden units need intervention and which can be
left unchanged. The intervention is then made sub-
stituting the ith hidden state with the altered state

ĥi = (1−m)� hi +m� b , (1)

where � indicates the element-wise product and
b ∈ Rk is a learned baseline vector that will lead
the desired intervention. We denote p(xn|x<n, ĥi)
as the model’s probability of the target token when
its forward pass has been altered using ĥi.

In addition, as the main objective of this work,
we are looking for sparse interventions, which we
define as finding a defined small percentage (e.g.,
1-5%) of neurons where to apply an intervention to
while keeping all the rest untouched.

3.1 Learning to Intervene

Because there is no direct supervision to estimate
the mask m and the baseline b, we minimize

Lratio(ĥi, x) =
p(xn = d|x<n, ĥi)
p(xn = t|x<n, ĥi)

, (2)

where we want to identify neurons responsible for
a change in probability between a predicted word d
and a target word t (e.g., a singular and plural verb
form—where, independently from which form is
correct, d is the form that the model assigns the
highest probability to, and t to the other). In other
words, we optimize to assign more probability mass
to the token t rather than d. In addition, we desire
interventions to be as sparse as possible, because
we want to identify the least number of neurons
responsible for the decision. Such sparsity corre-
sponds to constraining most of the entries of m to
be 0, which corresponds to not interfering. We cast
this in the language of constrained optimization.

A practical way to express the sparsity constraint
is through the L0 ‘norm’. Our constraint is defined
as the total number of neurons we intervene on:

C0(m) =
k∑

i=1

1[R 6=0](mi) . (3)

The whole optimization problem is then:

min
m,b

∑

x∈D
Lratio(ĥi, x) s.t. C0(m) ≤ α , (4)

where D is a dataset and the margin α ∈ (0, 1]
is a hyperparameter that controls the desired spar-
sity (i.e., the lower α, the sparser the solution will
be). Since non-linear constrained optimization is
generally intractable, we employ Lagrangian relax-
ation (Boyd et al., 2004) optimizing

max
λ

min
mi,b

∑

x∈D
Lratio(ĥi) + λ(C0(mi)− α) , (5)

where λ ∈ R≥0 is the Lagrangian multiplier. Since
we use binary masks, our loss is discontinuous and
non-differentiable. A default option would be to
use REINFORCE (Williams, 1992), but it is known
to have a noisy gradient and thus slow convergence.
To overcome both problems, we resort to a sparse
relaxation to binary variables, namely using a Hard
Concrete distribution (Louizos et al., 2018) (see
Section 3.5 for more details).

3.2 Stochastic relaxation of the Mask
Our optimization problem poses two difficulties: i)
C0 is discontinuous and has zero derivative almost
everywhere, and ii) the altered state ĥi is discon-
tinuous w.r.t. the binary mask m. A simple way
to overcome both issues is to treat the binary mask
as stochastic and optimize the objective in expecta-
tion. In that case, one natural option is to resort to
score function estimation (REINFORCE; Williams,
1992) while another is to use a sparse relaxation
to binary variables (Louizos et al., 2018; Bastings
et al., 2019; De Cao et al., 2020; Schlichtkrull et al.,
2021). In Section 4 we discuss the two aforemen-
tioned options showing that the latter is much more
effective (results in Table 6). Thus we opt to use
the Hard Concrete distribution, a mixed discrete-
continuous distribution on the closed interval [0, 1].
This distribution assigns a non-zero probability to
exactly zero and one while it also admits contin-
uous outcomes in the unit interval via the repa-
rameterization trick (Kingma and Welling, 2014).
We refer to Louizos et al. (2018) for details, but
also provide a brief summary in Section 3.5. With
a stochastic mask, the objective is computed in
expectation, which addresses both sources of non-
differentiability:

C0(m) =
k∑

i=1

Ep(mi) [mi 6= 0] . (6)
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Note that during training the mask is sampled and
its values lies in the closed unit interval. After
training, we set the mask entries to exact ones when
their expected values are> 0.5 or to zero otherwise.
To prevent issues due to the discrepancy between
the values of the mask during training and during
inference, we add another constraint

C(0,1) =
k∑

i=1

E[mi ∈ (0, 1)] , (7)

to be ≤ β. C(0,1) during training constrains the
relaxed mask values not to lie in the open interval
(0, 1) but rather to concentrate in {0, 1}. β ∈ (0, 1]
is a hyperparameter (the lower the less discrepancy
is expected).

3.3 Single-step and Every-step intervention

We described how we apply an intervention at a cer-
tain time step i<n as an intervention that directly
modifies hi. We refer to this type as a single-step in-
tervention. The choice of the time step to intervene
should be carefully set to investigate a particular
phenomenon in the LM, and is task dependent; e.g.,
to explore subject-verb agreement, a reasonable
choice is to do the intervention at the hidden state
of the subject. As an extension, we also define
an every-step intervention when instead of altering
only hi we modify all h1, . . . , hn−1 with the same
m and b (similar to Lakretz et al. 2019). The two
types of intervention investigate different proper-
ties of an LM; we experiment with both variants.

3.4 Retaining other predictions

We train interventions to modify the model’s pre-
diction at a specific token position. However, there
is little guarantee that all the other token positions
will have the same output distribution as without
the interventions. This is important as, when in-
vestigating modularity, we would like to ensure
not only that a group of neurons plays a distinct
interpretable role but also that they do not fulfil
any other discernable role. For this reason, we
employ a regularization term in addition to the con-
strained objective. This corresponds to minimizing
a Kullback–Leibler divergence between the output
distributions of the original model and the one from
the model with interventions. The regularization
term is a KL divergence between the output distri-
butions of the original model pO and the one from
the model with interventions pI averaged at every

token position: LKL =

1

T

T∑

t=1

DKL (pO(xt|x<t) ‖ pI(xt|x<t)) (8)

We sum LKL to Equation 5 multiplied by a factor.
This factor is a hyperparameter that controls the
amount of regularization to apply, and we empir-
ically found that 1.0 is a good value. In practice,
as we will discuss in Section 5, the regularization
term does not play an important role.

3.5 The Hard Concrete distribution

The Hard Concrete distribution, assigns density
to continuous outcomes in the open interval (0, 1)
and non-zero mass to exactly 0 and exactly 1. A
particularly appealing property of this distribution
is that sampling can be done via a differentiable
reparameterization (Rezende et al., 2014; Kingma
and Welling, 2014). In this way, the C0 constrain
in Equation 3 becomes an expectation (Equation 6)
whose gradient can be estimated via Monte Carlo
sampling without the need for REINFORCE and
without introducing biases. We did modify the
original Hard Concrete, though only so slightly, in
a way that it gives support to samples in the half-
open interval [0, 1), that is, with non-zero mass
only at 0. That is because we need only distinguish
0 from non-zero, and the value 1 is not particularly
important.1

The distribution A stretched and rectified Bi-
nary Concrete (also known as Hard Concrete) dis-
tribution is obtained applying an affine transforma-
tion to the Binary Concrete distribution (Maddison
et al., 2017; Jang et al., 2017) and rectifying its
samples in the interval [0, 1]. A Binary Concrete
is defined over the open interval (0, 1) and it is
parameterised by a location parameter γ ∈ R and
temperature parameter τ ∈ R>0. The location acts
as a logit and it controls the probability mass skew-
ing the distribution towards 0 in case of negative
location and towards 1 in case of positive location.
The temperature parameter controls the concentra-
tion of the distribution. The Binary Concrete is then
stretched with an affine transformation extending
its support to (l, r) with l ≤ 0 and r ≥ 1. Finally,
we obtain a Hard Concrete distribution rectifying
samples in the interval [0, 1]. This corresponds to

1Only a true 0 is guaranteed to completely mask an input
out, while any non-zero value, however small, may leak some
amount of information.
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collapsing the probability mass over the interval
(l, 0] to 0, and the mass over the interval [1, r) to 1.
This induces a distribution over the close interval
[0, 1] with non-zero mass at 0 and 1. Samples are
obtained using

s = σ ((log u− log(1− u) + γ) /τ) ,

z = min (1,max (0, s · (l − r) + r)) ,
(9)

where σ is the Sigmoid function σ(x) = (1 +
e−x)−1 and u ∼ U(0, 1). We point to the Ap-
pendix B of Louizos et al. (2018) for more informa-
tion about the density of the resulting distribution
and its cumulative density function.

4 Experimental Setting

We study the pre-trained LSTM language model
made available by Gulordava et al. (2018)2, which
has been studied extensively in previous works and
therefore provides a good testing ground for our
method. The studied model is a standard two-
layered LSTM with a hidden dimension of 650.
The embedding layer also has dimensionality 650,
and it is not tied with the output layer. The vo-
cabulary size is 50, 000 and the model was trained
on English Wikipedia data (with around 80M to-
kens training tokens and 10M for validation). We
used this model to compare to previous findings
of Lakretz et al. (2019). We also pre-train this LM
several times with different weights initializations
to make sure our results generalize.

We study the original model, as well as newly
trained models with the same architecture, on two
tasks described below: subject-verb number agree-
ment and gender bias. The evaluation for tasks
naturally follows the defined objective Lratio(ĥi, x)
(see § 3.1). Without intervention, the ratio is al-
ways > 1. Thus, we define a successful interven-
tion when we find a mask and baseline values such
that the ratio becomes < 1. Then, we define the
accuracy of interventions as the average number of
times that the ratio is < 1 across all datapoints in a
given dataset/task. The accuracy thus reflects how
often we can flip the model’s decision.

Subject-verb number agreement Here, we
seek the neurons responsible for predicting the
number of verb forms: for a given sentence, we
wish the intervention to change the number of the
verb from singular to plural or vice versa. For this

2https://github.com/facebookresearch/
colorlessgreenRNNs

task, we employ data made available by Lakretz
et al. (2019)3. The data are synthetic and gener-
ated with a modified version from Linzen et al.
(2016) and Gulordava et al. (2018). Each synthetic
number-agreement instance has a fixed syntax and
varied lexical material. Sentences were randomly
sampled by choosing words from pools of 20 sub-
ject/object nouns, 15 verbs, 10 adverbs, 5 preposi-
tions, 10 proper nouns and 10 location nouns. We
used a total of 11,000 training sentences and 1,000
evaluation sentences. We apply the single-step in-
tervention to the subject of the (only) verb. We
apply two intervention here (i.e., two sets of mask
and baseline values): one where we train the model
to turn the verb into the singular form and one into
the plural one.

Gender bias detection In this task, we seek the
neurons responsible for setting pronoun genders:
for a given sentence, we wish the intervention to
change the pronoun that refers to a person with
a profession and an unspecified gender. For this
task, we employ data made available by Vig et al.
(2020)4. The data are synthetic and generated with
a list of templates from Lu et al. (2020) and sev-
eral other templates, instantiated with professions
from Bolukbasi et al. (2016) (17 templates and 169
professions, resulting in 2,873 examples in total).
We refer to Vig et al. (2020) for the full lists of
templates and professions. The templates have the
form “The [occupation] [verb] because [he/she]”.
Professions are definitionally gender-neutral. We
used a total of 2,673 training sentences and 200
evaluation sentences. Also for his task, we apply
the single-step intervention to the subject of the
sentence, using different interventions for flipping
the pronoun to “he” and to “she”.

5 Results

For the single-step intervention (with regulariza-
tion), our method achieves 91.5 and 93.9 accura-
cies for the number agreement and gender bias
tasks, respectively. On average, our method finds
5.7 and 5.3 units for the two tasks, respectively.
Considering that the LM has 1,300 hidden units,
this intervention is relatively sparse as desired (we
use < 0.41% of the total units). In Figure 1 and 2,
we show examples of hidden state activations with

3https://github.com/FAIRNS/Number_and_
syntax_units_in_LSTM_LMs

4https://github.com/sebastianGehrmann/
CausalMediationAnalysis
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0

Unit 79
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1

Unit 93

0
1

Unit 498

1
0

Unit 571

The kid behind the tree avoids
0
1

Unit 630 original
intervention

Figure 1: Activations of four units we intervene on
(single step intervention at “kid”) for changing number
agreement (at “avoids”).

1
0

Unit 193

0
1

Unit 208

1
0

Unit 288

0
1

Unit 456 original
intervention

The ranger yelled because
1
0

Unit 563

Figure 2: Activations of four units we intervene on (sin-
gle step intervention at “ranger”) for changing the pro-
noun (after “because”).

and without interventions for both tasks (see Ap-
pendix A for additional examples). From these
figures, we can see that only one time-step is heav-
ily affected (the one of the intervention) while the
others are minimally corrupted after that time step.
We hypothesize that the model stores the informa-
tion of number or gender in other units (or in cell
states), but the discovered units are the ones re-
sponsible for the initialization of such memory. In
Table 1 and 2, we report the full list of discovered
units and the learned baseline vectors for both tasks
on the single-step intervention.

For the every-step intervention, our method
achieved an almost perfect accuracy of 95.8 and
99.9 for the number agreement and gender bias
tasks, respectively, while using 3 units or less on
average for both tasks. This type of intervention is
much more effective and more intrusive—the num-
ber of changes is larger as it happens at every step).
In Table 3 we report the full list of discovered units
and the learned baseline vectors, comparing to the
one discovered by Lakretz et al. (2019) (every-step

Unit Singular Plural Prevalence

79 -0.96 ±0.02 0.99 ±0.01 100%
93 0.95 ±0.03 -0.84 ±0.09 100%

243 0.91 ±0.06 0.18 ±0.15 20%
357 -0.99 ±0.01 0.87 ±0.03 40%
498 0.98 ±0.01 -0.96 ±0.03 100%
571 -0.99 ±0.01 0.93 ±0.06 80%
630 0.95 ±0.03 0.11 ±0.26 100%
776 -0.81 ±0.05 0.96 ±0.01 20%
988 1.00 ±0.00 -0.99 ±0.00 10%

Table 1: Subject-verb number agreement task with
single-step interventions. Values are averages across
10 runs.

Unit He She Prevalence

193 -0.99 ±0.00 0.91 ±0.01 100%
208 0.99 ±0.00 -0.96 ±0.01 100%
288 -0.99 ±0.00 -0.47 ±0.14 100%
455 -0.99 ±0.00 0.10 ±0.01 20%
456 0.99 ±0.00 -0.98 ±0.00 100%
513 0.98 ±0.00 -0.74 ±0.00 10%
563 -0.99 ±0.00 0.96 ±0.01 100%

Table 2: Gender bias task with single-step interven-
tions. Values are averages across 10 runs.

intervention). Noticeably, we re-discover unit 776
which validates our method and confirm their find-
ings. Interestingly, we also discover an extra unit
on average, highlighting that one of the limitations
of Lakretz et al. (2019) was indeed an efficient way
to search units. For a summary of all results see
Table 4, and for the discovered units and baseline
on the gender task see Table 5.

Efficiency To demonstrate the efficiency and
efficacy of our estimation employing the Hard
Concrete distribution, we compare to the stan-
dard Score Function Estimation (aka REIN-
FORCE; Williams 1992) with a moving average
baseline for variance reduction (Botev and Ridder,
2017) and trying different values of α to achieve
a good trade-off between accuracy and number of
units used. We also compare to Integrated Gradi-
ents (Sundararajan et al., 2017) where we intervene
on the top-k influential neurons by setting them
to zero. In Table 6, we summarize the results for
the single-step intervention. REINFORCE takes at
least 7 times more time to converge, and it always
converges at using more units than our method with
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Unit Singular Plural Prevalence Found by Lakretz et al. (2019)

79 -0.76 ±0.023 0.99 ±0.003 100% 7

776 -0.99 ±0.002 0.99 ±0.002 100% 3

Table 3: Subject-verb number agreement task with every-step interventions. Values are averages across 10 runs.
“Found” indicates how many times our model decides to apply the intervention on a specific unit across runs.

Accuracy Units KL

Number agreement

Single 90.9 ±1.2 5.7 ±0.5 0.034 ±0.034

SingleR 91.5 ±0.7 5.7 ±0.9 0.035 ±0.006

Every 96.8 ±0.6 2.0 ±0.0 0.131 ±0.003

EveryR 95.8 ±0.4 2.0 ±0.0 0.084 ±0.002

Gender bias

Single 93.1 ±4.6 5.4 ±1.1 0.009 ±0.001

SingleR 93.9 ±3.7 5.3 ±0.5 0.009 ±0.001

Every 98.3 ±2.8 3.4 ±0.5 0.176 ±0.022

EveryR 99.9 ±0.3 3.0 ±0.0 0.117 ±0.004

Table 4: Summary of results for both the number agree-
ment and gender bias settings (average across 3 run
for each setting). R indicates KL regularization. Sin-
gle/ Every indicates single-step and every-step interven-
tions respectively.

Unit He She Prevalence

288 -0.98 ±0.00 0.53 ±0.05 100%
456 0.98 ±0.00 -0.98 ±0.01 100%

1184 -0.98 ±0.00 0.99 ±0.00 100%

Table 5: Gender bias task with every-step interventions.
Values are averages across 10 runs.

lower accuracy. Note that doing an exact search for
this problem has a time complexity ofO(2k) where
k is the number of neurons—this would amount to
> 1012 evaluations only for checking combinations
up to 4 neurons.

Robustness To demonstrate that our method is
robust, we tested it on 5 language models initial-
ized with different seeds and trained with the origi-
nal script by Gulordava et al. (2018). We run our
method for the single-step intervention 3 times for
each language model. The average accuracy at con-
vergence is 88.7± 2.6, and we discover 4.7± 0.5
units on average. The variability in both accuracy
and number of units is very low, indicating that our

Acc. (↑) Units (↓) Speed (↓)

SFE (α = 0.05) 100.0 20.0 5.2h
SFE (α = 0.02) 87.6 6.0 3.6h
IG (α = 0.005) 22.5 7.0 –
IG (α = 0.01) 28.1 13.0 –
IG (α = 0.02) 31.5 26.0 –
Ours (α = 0.02) 91.5 5.7 0.5h

Table 6: Comparison between the solutions found by
Score Function Estimation (SFE aka REINFORCE), In-
tegrated Gradients (IG; Sundararajan et al., 2017), and
our system (average across 10 runs on a single GPU de-
vice). Ours is much faster and finds a sparser solution
with better accuracy.

method is robust to different parameterizations of
the model we applied it to.

Effect of Regularization We ablated the KL reg-
ularization to see whether it affects learning and
the final convergence of our method. On the num-
ber agreement task, we found that the average
KL divergence with respect to the original model
predictions was 0.035/0.084 with regularization
and 0.034/0.131 without regularization (for single-
step and every-step intervention, respectively). We
used different regularization coefficients (i.e., dif-
ferent weights), but we did not observe a substantial
change in the convergence of our models. More-
over, the accuracy and the number of units found
with regularization was almost the same as without
regularization (see Table 4 for all results). This lack
of effect of the regularization suggests the studied
phenomenon is naturally captured by specialized
neurons. In the gender bias task, regularization has
a similar and negligible impact. The regularized
method converges to finding fewer units on average
and with worse accuracy (95.8 as opposed to 98.6)
in the single-step intervention. In the every-step
intervention, the accuracy stays invariant (for both
settings is 100) while the model converges to using
more units.
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6 Conclusions

In this work, we present a new method that employs
constraint optimization to efficiently find hidden
units that are responsible for particular language
phenomena of language models. We use an L0 reg-
ularization to find a sparse solution—., our method-
ology discovers few units in the order of 2-6 that is
< 0.41% of all units in the studied LM. We show
such sparse solutions can be found for multiple phe-
nomena (number and gender agreement) and is an
useful tool for analysis of what a LM has learned
and how units influence its token emissions. Al-
though this work focuses on LSTM models, the pro-
posed technique is not architecture-dependent and
thus easily applicable to transformers, convolution-
based models and many others.
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A Additional results
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Figure 3: Subject-verb number agreement: activations of four units we intervene on (single step intervention at the
second token from the left) for changing number agreement (at the last token).
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Figure 4: Gender bias: activations of four units we intervene on (single step intervention at the second token from
the left) for changing the pronoun (after “because” or “that”).
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