Intermediate Entity-based Sparse Interpretable Representation Learning

Diego Garcia-Olano'** Yasumasa Onoe'
Joydeep Ghosh' Byron C. Wallace?
1University of Texas at Austin, 2Northeastern University, 3Meta Al
diegoolano@meta.com, {yasumasa,ghosh}@utexas.edu, b.wallace @northeastern.edu,

Abstract

Interpretable entity representations (IERs) are
sparse embeddings that are “human-readable”
in that dimensions correspond to fine-grained
entity types and values are predicted probabil-
ities that a given entity is of the correspond-
ing type. These methods perform well in zero-
shot and low supervision settings. Compared
to standard dense neural embeddings, such in-
terpretable representations may permit analysis
and debugging. However, while fine-tuning
sparse, interpretable representations improves
accuracy on downstream tasks, it destroys the
semantics of the dimensions which were en-
forced in pre-training. Can we maintain the
interpretable semantics afforded by IERs while
improving predictive performance on down-
stream tasks? Toward this end, we propose
Intermediate enTity-based Sparse Interpretable
Representation Learning (ItsIRL). ItsIRL re-
alizes improved performance over prior IERs
on biomedical tasks, while maintaining “inter-
pretability” generally and their ability to sup-
port model debugging specifically. The latter is
enabled in part by the ability to perform “coun-
terfactual” fine-grained entity type manipula-
tion, which we explore in this work. Finally, we
propose a method to construct entity type based
class prototypes for revealing global semantic
properties of classes learned by our model.'

1 Introduction

Deep pre-trained models yield SOTA performance
on a range of NLP tasks, but do so by learning and
exploiting dense continuous representations of in-
puts which complicate model interpretation. That
is, the dimensions in learned representations have
no a priori semantics, and consequently are not
directly human readable. Indeed, this has inspired
an entire line of work on “probing” dense repre-
sentations to recover the implicit knowledge stored
* Work completed during PhD at UT Austin

!Code for pre-training and experiments available at
https://github.com/diegoolano/itsirl

within them (Petroni et al., 2019; Poerner et al.,
2019).

An alternative is to design architectures that ex-
plicitly imbue embeddings with semantics. To
this end, recent work has proposed learning high-
dimensional sparse interpretable entity representa-
tions (IERs) for general and biomedical domains
(Onoe and Durrett, 2020; Garcia-Olano et al.,
2021). IERs are composed of a Transformer-
based (Vaswani et al., 2017) entity typing model
with a corresponding fine-grained static type sys-
tem that accepts an entity mention and its context,
and outputs individual probabilities that the men-
tion is an instance of the respective types. These
embeddings may then be used as features for down-
stream tasks.

IERs afford a variety of model transparency (di-
mensions have semantics) which may facilitate
model debugging and/or instill confidence in model
outputs. For example, if one defines a linear layer
on top of entity-type representations, learned coef-
ficients are interpretable as weights assigned to spe-
cific entity types. One could learn rules or manually
debug models by reviewing incorrect predictions
and inspecting the corresponding induced represen-
tations to identify potentially systematic erroneous
type assignments. In addition to providing this
type of interpretability, IERs have been shown to
perform comparatively well in zero- and few-shot
settings (Onoe and Durrett, 2020; Garcia-Olano
et al., 2021).

A limitation of IERs is that they do not naturally
permit fine-tuning, because doing so destroys the
semantically meaningful entity typing representa-
tions learned during pre-training. This requirement
is a limitation because fine-tuned models will in
general achieve stronger predictive performance
when supervision is available.

In this work we aim to improve the predictive
performance of IERs without sacrificing their inter-
pretability. Specifically, we propose Intermediate
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enTity-based Sparse Interpretable Representation
Learning (ItsIRL). We show that this model out-
performs prior IERs by a substantial margin on
experiments over biomedical datasets — a domain
where interpretability is often paramount — while
providing natural mechanisms for model debug-
ging by virtue of the representational semantics
inherent to the architecture.

We then propose a counterfactual analysis of
our intermediate interpretable layer to measure the
effect of entity type manipulation on downstream
predictions. This intervention is made possible by
virtue of the model design. Using manually con-
structed, class-specific entity type sets we show
that this intervention can be used to fix errors made
by the proposed ItsIRL model automatically, ul-
timately allowing the model to outperform dense
(uninterpretable) models in terms of test accuracy.
We then propose a method in which we combine
entity types over classes on training data to create
positive and negative class prototypes that can be
used to better understand the “global” semantics
learned by ItsIRL for downstream tasks.

Our specific contributions are as follows:

* We introduce an intermediate interpretable
layer into IERs; this layer output (represen-
tation) is then “decoded” into a dense layer
which can be used for downstream predictions.
The decoding step can be fine-tuned for spe-
cific tasks.

* We show that this approach empirically out-
performs prior IER methods on two diverse
biomedical benchmark tasks, often by a sub-
stantial margin.

* We propose a counterfactual entity type ma-
nipulation analysis made possible by our ar-
chitecture which facilitates model debugging
in an automated fashion with minimal, noisy
supervision. This analysis allows our model
to outperform dense (uninterpretable) models
in terms of test accuracy and shows that the en-
tity typing layer affects output classifications
in an interpretable and intuitive way.

* We show how combining entity types over
classes on the training set to create positive
and negative class prototypes can be used to
reveal task specific global semantics learned
by our model.

2 Background: Interpretable Entity
Representations Model

We first review the IER model architecture. Much
of the material and notation here comes directly
from (Onoe and Durrett, 2020; Garcia-Olano et al.,
2021). Let s = (wy, ..., wy) denote a sequence of
input context words, m = (wj, ..., w;) denote an
entity mention span in s (over positions 7 through
4), and t € [0,1]I7! denote a vector whose val-
ues are predicted probabilities corresponding to
fine-grained entity types 7 from a predefined type
system.

Given a labeled dataset D =
{(m, s,t")D ... (m,s,t*)*)} the IERS’ ob-
jective is to estimate parameters ¢ of a function
fo that maps the mention m and its context s to a
vector t that captures salient features (fine-grain
types) of the entity mention within its context. The
entity embedding t whose individual dimensions
have explicit semantics can then be used directly
as input for downstream tasks using standard
similarity measures (e.g., dot products). Note that
fine-tuning these representations would destroy
their interpretability because dimensions would no
longer be readable as the probability of the input
representing specific entity types.

The model fy that produces these embeddings
is depicted as the “encoder"” in Figure 1. First, a
BERT-based encoder (Devlin et al., 2019) maps
inputs m and s to an intermediate dense vector
representation. The encoder input is a token se-
quence x = [CLS] m [SEP] s [SEP], where
the mention m and context s are segmented into
WordPiece tokens (Wu et al., 2016). The vector out-
put [CLS] token serves as a d-dimensional dense
mention and context representation: hcrs; =
BERTENCODER(x) € R

The key ingredient of IERs is a fype embedding
layer, which projects this intermediate representa-
tion to a vector whose dimensions correspond to
the entity types in 7 using a single linear layer
with parameters E € R|71*¢. Finally, each dimen-
sion (individually) is passed through the sigmoid
function, yielding the predicted probabilities that
form the interpretable entity representation t (the
“intermediate layer” in Figure 1). More concisely:
t = 0(E-hcpsy). To estimate parameters we
optimize the sum of binary cross-entropy losses
entity types 7 over training examples D.
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Figure 1: ItsIRL uses a LM and type supervision during

pre-training to encode entity mention and context inputs for

learning a matrix of entity type embeddings, an intermediate interpretable layer of type scores and a decoder to
reconstruct the initial LM representation. The decoder can be fine-tuned on downstream tasks for better performance
than IERs while keeping the semantics of the type layer.

3 Intermediate Entity-based Sparse
Interpretable Representation Learning

We modify the IER model just described as follows:

* We project down the sparse entity typing layer
and add pass its output through a three layer
feed forward “decoder” network.

* We add an additional reconstruction compo-
nent to our loss which is simply the mean
squared error between the model’s output and
the initial [CLS] representation given by the
Transformer based model.

This proposed model architecture — which we
have called ItsIRL — is depicted in Figure 1. Dur-
ing pre-training, we adopt a loss £ that combines
entity typing loss over the sparse intermediate in-
terpretable layer L¢; and the reconstruction loss of
the output representation Lecon

L= £recon + )\Eet

where ) is a hyperparameter to be tuned.

The motivation behind the additional reconstruc-
tion loss is to pre-train a sort of auto-encoder with a
sparse, high dimensional, interpretable latent space
and rich dense output representations. Here the
encoder induces a sparse embedding of entity types
as in prior work on IERs, but now for downstream
tasks we can freeze the encoder (which yields in-
terpretable entity representations) and fine-tune the
decoder. That hope is that this allows for both

interpretable entity types and improved task perfor-
mance.

In contrast to prior IER work in which sparse
entity type representations were used directly for
downstream tasks, here we pass the intermediate
interpretable representation into a feed forward de-
coder network that produces a new representation
which is used for prediction. This choice leads to
differences in interpretability between IERs and
our proposed architecture. We explore this in Sec-
tion 5, along with how these intermediate predicted
entity types affect task performance and how user
or automated mechanisms to manipulate (i.e., up
or down weight) these intermediate types affects
performance.

This approach in some ways resembles con-
cept bottleneck models (Koh et al. 2020; Chen
et al. 2020; reviewed further in Section 6). How-
ever, these methods generally use low dimensional,
human-labeled concept supervision to guide learn-
ing for a single task. By contrast, in our approach
we exploit large-scale, possibly noisy entity type
supervision to learn to induce interpretable repre-
sentations which might be useful across tasks, i.e.,
for general pre-training.

We could pre-train such models in a few ways:
(i) Train them end-to-end, or, (ii) Use existing IER
models as points of initialization. In the latter case,
we freeze the IER model originally trained using
only L and train/update the rest of the model
weights using only Liecon as the loss on our pre-
training data.

For our experiments we use the publicly avail-
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able biomedical IER model checkpoint, entity type
system, and pre-training data from (Garcia-Olano
et al., 2021). The model checkpoint is based on an
underlying PubMedBERT model (Gu et al., 2020).
The type system contains 68,304 entity types and
the training data consists of 37,357,141 triples
of the form (mention, context, [list of
entity types]) derived from PubMed linked
Wikipedia pages where entity types are Wikipedia
categories.

4 Experimental Setup

We evaluate the proposed ItsIRL architecture on
two biomedical benchmark tasks: Entity label clas-
sification for Cancer Genetics (Pyysalo et al., 2013)
and sentence similarity regression for the BIOSSES
dataset found in the BLURB benchmark (Gu et al.,
2020).

4.1 Cancer Genetics Entity Label
Classification

The Cancer Genetics dataset (Pyysalo et al., 2013)
consists of 10,935 training, 3,634 dev, and 6,955
test examples from 300, 100, and 200 unique
PubMed articles, respectively. Given an article
title/abstract and an entity mention, the objective is
to categorize the entity into one of 16 classes which
cover different subdomains in cancer biology.

For the downstream task we simply add a lin-
ear layer that accepts as its input the output of our
pre-trained ItsIRL model and we then fine-tune the
ItsIRL decoder and linear layer to minimize cross
entropy loss. We stop training when the model ac-
curacy ceases to improve on the dev set. We also
provide numbers for how ItsIRL performs if we
fine-tune on training data in an end-to-end fashion
(ItsIRL E2E; i.e., unfreezing and updating the en-
coder weights and intermediate type layer); this de-
stroys the interpretability of the intermediate layer
enforced in pre-training. Results for using the prior
Biomedical Interpretable Entity Representations
(BIERs) dot product based model and PubMed-
BERT dense model are from (Garcia-Olano et al.,
2021). We provide ablations to explore the effect
of decoder network layer size and pre-training.

Results We report task results in Table 1. Com-
pared to the prior IERs work (87.5%), the ItsIRL
model gives improved performance (91.9%) while
keeping the semantic interpretable entity type layer
intact. ItsIRL E2E realizes performance compa-
rable to fine-tuning PubMedBERT alone (95.7%

and 96.1%, respectively), but in both cases we no
longer have interpretable models which can be di-
agnosed and fixed at run time.

As a point of reference, we also report results
achieved by dense models. However, we emphasize
that these do not provide the transparency afforded
by ItsIRL; we are interested in achieving both accu-
racy and interpretability — models which strictly
optimize the former may be viewed as a reasonable
“upper-bound” with respect to accuracy alone, and
in general we expect that realizing interpretability
(and specifically in our case, “debuggability”) will
entail some trade-off in accuracy.’

We observe this expected trade-off here (ItsIRL
performs better than BIER, but worse than end-to-
end models which lack semantic representations).
We also confirm that the proposed model can be
fine-tuned end-to-end to achieve the same accu-
racy as the dense PubMedBERT model, at the
expense of interpretability. Perhaps more inter-
estingly, in section 5 we show that leveraging en-
tity type manipulation at inference time allows the
ItsIRL model to outperform both uninterpretable
models.

We perform a few ablations to assess which
parts of ItsIRL affect performance. We perform
fine-tuning on the task data using a decoder whose
weights are randomly initialized to test the effect
of pre-training on 37 million triples. The bottom
of Table 1 shows that this degrades performance
(88.9% vs. 91.9%) and suggests that pre-training
the decoder network is important for task perfor-
mance.

We additionally explored varying layer depths
for our decoder (3, 5, 8) and observed similar per-
formance across them; we therefore opted to use
the smaller decoder network of 3 layers. We note
that prior work (Garcia-Olano et al., 2021) explored
adding a single linear layer on top of the entity type
representation (which is identical to ours) and fine-
tuning it for the task. This single layer “decoder”
yields 68.1% test accuracy, indicating that the addi-
tional network capacity and pre-training are both
important.

4.2 BIOSSES sentence similarity regression

The Sentence Similarity Estimation System for
the Biomedical Domain (Sogancioglu et al., 2017)

2Related works (e.g., Koh et al. 2020; Alvarez Melis and
Jaakkola 2018 have tended to report results for only other
“interpretable” models as baselines; we include standard dense
models here for completeness.
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Model Q  Test Acc
BIER-PMB* v 87.5
ItsIRL v 91.9
ItsIRL E2E* - 95.7
PubMedBERT - 96.1
Ablations Test Acc
ItsIRL - random init 88.9
ItsIRL - 1 layer decoder 68.1

Table 1: Cancer Genetics results
Q = interpretable types

(BIOSSES) contains 100 pairs of PubMed sen-
tences, each annotated by five expert annotators
with an estimated similarity score in the range from
0 (no relation) to 4 (equivalent meanings). Pre-
dicting these scores (averaged over annotators) is
a regression task used in the BLURB benchmark
(Gu et al., 2020).

We use the train/dev/test splits from the BLUE
benchmark (Peng et al., 2019). We feed each sen-
tence pair with a SEP between them as input and
use mean squared error as our loss and for eval-
uation purposes amongst our model variants. In
contrast to the Cancer Genetics task which has
>10k training samples, this dataset is small, com-
prising 64, 16, and 20 train, dev, and test instances,
respectively. We also evaluate the sparsity of the
entity type layer induced by ItsIRL using different
thresholds to numerically quantify the interpretabil-
ity of these entity types, where having fewer types
is more easily human interpretable.® Entity types
whose weights are larger than a threshold are se-
mantically meaningful at that threshold.

Results We show results for the sentence simi-
larity regression task in Table 2. The pattern in
our results is similar to above: ItsIRL outperforms
BIERs due to its being fine-tuned on task specific
data. ItsIRL is competitive with, but slightly un-
derperforms, the end-to-end fine-tuned ItsIRL E2E
variant and the dense PubMedBERT model (nei-
ther of these offer an interpretable entity layer after
fine-tuning).

In Table 2 we also observe that the number of
entity types shown to be semantically meaningful
is much less and hence more interpretable when
comparing ItsIRL with ItsIRL E2E which removes

3As the prior BIER-PubMedBERT and ItsIRL share the
same model checkpoint and hence interpretable entity typing
layer, BIER-PMB will have the same type sparsity as ItsIRL.

Type Sparsity
Model Q MSE @01 @1 @25
BIER-PMB* v 505 336 81 44
ItsIRL v 159 336 8.1 44
ItsIRL E2E* - 1.15 5723 780 330
PubMedBERT - 1.14 - - -

Table 2: BIOSSES sentence similarity results.

PMB#* = PubMedBERT
E2E* = End-To-End fine-tuned

the semantic meaning of the entity types space. Fig-
ure 4 in the Appendix shows this sparsity value as
a percentage over many different thresholds, show-
ing the fine-tuned ItsIRL is more sparse and inter-
pretable than both the ItsIRL E2E model and the
dense non-interpretable PubMedBERT model.

5 Entity Type Counterfactual
Manipulation and Global Explainability

We have claimed that (sparse) entity type represen-
tations permit “interpretability”, but this is an ill-
defined term in general. Here we demonstrate that
ItsIRL provides a specific type of “interpretability”
in that it can help facilitate model understanding
and error analysis via “counterfactual” entity type
manipulation, made possible by the intermediate
entity type layer. Specifically, we consider the
Cancer Genetics classification task (Pyysalo et al.,
2013), and focus on revealing learned global struc-
ture of classes. We then show how manipulating
predicted types on erroneous test cases affects the
ItsIRL model’s performance.

5.1 Entity Type Global Explainability

To better understand the representations learned by
ItsIRL for each class, we apply the task, decoder
fine-tuned model over the training data. We gather
all correctly predicted instances for each class, sum
their interpretable entity type representations and
normalize them.* We refer to each of these as a
positive class prototype.

Results In Table 3 we show the “top" entity types
— those with the highest weights — for 7 of 16 class
prototypes (for space); on inspection, these intu-
itively seem semantically meaningful with respect

*Positive class prototype = #”:m(v) where v is the
sum of entity type representations for correctly predicted train-

ing instances of a given class.
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Figure 2: Positive Class Prototypes in 2D via PACMAP

to the classes. In Appendix Table 7 we also show
the weights and index of each entity type in the 68k
type system, with lower indices denoting types that
appeared more often in pre-training data. We also
provide the F1 scores and support of these classes
on the test set. Looking at the indices of top en-
tity terms per class prototypes, we note that they
tend to be in the tens or hundreds range, imply-
ing that more frequent entity types in the training
data dominate the positive prototypes. However,
consider two classes for which we observe lower
than average F1 scores: Multi-tissue structure and
Tissue. These prototypes include rare “top” entity
types (e.g., “soft tissue”, “nephron” and “barcode”)
with indices in the 1000s (3067, 1951 & 2351) that
were seen less during pre-training which shows the
model may have learned weaker representations for
entity types that appeared less frequently.

Similarly, we can gather all training predictions
that were incorrect, group them by the true labels,
and then sum and normalize their entity type layers
to generate negative prototypes. In Appendix Table
9 we show the most common error patterns and
their negative prototypes’ most important entity
types. We note the negative prototypes predicted
align with the positive prototypes true classes.

Finally, in Figure 2 we use PACMAP (Wang
et al., 2021) to visualize our positive prototypes
in two dimensions.> The distance between classes
aligns well with the most common error patterns
(i.e., Cell, Cancer, Chemical, and Gene cluster near
each other) while “anatomical” and “organism” re-
lated classes also cluster near each other.

SPacMAP is a dimensionality reduction method shown to
preserve the global and local structure of the data in its original
space better than techniques such as TSNE and UMAP.

5.2 Counterfactual Entity Type Manipulation

To explore how intermediate entity types affect
downstream performance, and more specifically
how predictions would have changed had relevant
types been manipulated, we first construct sets of
entity types for each class as approximations of
what a non-expert might come up with by simple
string matching per class against the 68K entity
types in the type system provided in (Garcia-Olano
et al., 2021). These terms for inclusion and exclu-
sion from the sets along with the resulting type set
sizes are provided in Appendix Table 6. We em-
phasize that these were easy to assemble and are
coarse, noisy sets that roughly approximate entity
types we would expect to be associated with each
class.

Some classes such as Organism, Organism sub-
stance, Organism subdivision and Organ have sets
containing the same entity types to show even quite
noisy sets can be useful. Our intent here is not to
obtain the maximum possible accuracy we can get
via entity type manipulation for error cases, but
rather to show the utility of this model even when
paired with noisy term sets.

After constructing coarse sets of entity types, we
identify three strategies of interest for manipulating
entity types during inference time:

* “Fixing” bad entity types (i.e., minimize the
weights of entity types from the incorrectly
predicted class’s coarse type set).

* “Promoting” good types (i.e., maximize the
weights of entity types associated with the true
label’s type set).

* Using both the fix and promote strategies to-
gether.

For our experiment, we take test error cases and
for each, run them through our model and either
lower (“fix”) types associated with the incorrect
class set, increase (“promote”) types associated
with the true class set or do “both” to the corre-
sponding entity type weights in the intermediate
entity types layer. We then observe how the final
class probabilities for the task are affected by the
manipulation. Appendix Figure 3 shows how a
single test example’s class prediction distribution,
derived from its original inferred types and logits,
are changed by these techniques.
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Gene or Cell Cancer Simple Organism Multi-tissue Tissue
gene product chemical structure
1 protein cell disease ingredient taxonomy blood tissue
2 ingredient elementary  neoplasm acid mammals angiology cell
particle in 1758
3 human human cells oncology rtt humans soft tissue human body
4  gene battery tissue who essential  tool-using nephron connective
medicines mammals tissue
5  coagulation  gene abnormality chemical anatomically blood endocrine
compound modern humans  vessel system
6 cell protein cancer measurement postmodernism  human body epithelium
7 cell growth pancreas syndrome calcium patient lymphatic sys angiology
8  endothelium system malignancy hydroxyl medical term. lymphoid org.  blood vessel
9  homology carboxylic  cell glucose prothrombin mononuclear  histology
acid growth time phagocyte sys
10 oncogene ester paraneoplastic methyl group bbc gland barcode
syndromes

Table 3: Top 10 Entity Types by weight for 7 most frequent positive Prototype class embeddings

Model Test Accuracy
ItsIRL 91.48
+ Fix types 93.91
+ Promote types 95.74
+ Both fix & promote 95.68
+ Best of 3 “oracle” 96.78
PubMedBERT* 96.10

Table 4: Entity type manipulation results using class-
specific coarse type sets

Results In Table 4 we report the results for our
three entity manipulation techniques using coarse
term sets including the best accuracy that could
have been achieved amongst them for each error
pattern. The model predicting Gene when the true
class label was Chemical is the most common
test error pattern and in Table 5 we show the most
frequent error patterns observed on the test set. Pro-
moting entity types of the true class improves our
model results from 91.48 to 95.74, while both pro-
moting and fixing leads to a similar 95.68. These
strategies give results on par with using a dense non-
interpretable PubMedBert model while using the
best among them outperforms PubMedBert. For
future work, determining the best method for each
error case could be done by observing performance
of the techniques on a holdout set. Fixing incor-
rect entity types alone under performs the other
techniques possibly since down weighing incorrect
types alone does not necessarily push the embed-
ding towards the correct class. We note these au-
tomated methods require knowledge of if and in
what way initial predictions may be erroneous, and

our intent is to show that manipulating entity types
in ItsIRL affects classification in an intuitive way
which amongst other things allows them to be used
with the rule based diagnostics from prior IERs.

In Table 5 we show how the entity type manipu-
lation techniques perform on each error pattern. Us-
ing the best technique for each error pattern allows
us to correct 361 out of 592 test errors (~61%).
“Promoting" types is best or tied 11 out of 15 times,
“Both" gives 10 out of 15 while “Fixing" gives 6
out of 15. Given the coarse type sets, all meth-
ods work poorly on the following error patterns
(True Class-Predicted): Pathological Formation-
Cancer, Organism-Cell, Organism-Gene, Organ-
Multi-Tissue, and Multi-Tissue-Cancer. This sug-
gests these sets should be edited in order to bet-
ter discriminate between these classes. Resolving
errors is dependent on the distance between two
classes and for Cell-Cancer, Cell-Gene, Cancer-
Cell and Cancer-Organism subdivision, fixing in-
correct types does poorly (O errors resolved out of
101) while at the same time, promoting types from
the true class does very well resolving 99 out of 101
error cases. We note that this process was entirely
automated and having experts edit or choose better
terms to form type sets associated with each class
would easily improve its performance in particular
with regard to error patterns where all strategies
performed poorly.

6 Related Work

In this work we introduced an architecture with an
encoder that uses supervision from a pre-defined
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True Predicted Errs TI1+2 T1 T2 Best%
Chemical Gene 65 64 48 59 98.4
Cell Cancer 41 31 41 0 100
Cell Gene 34 34 34 0 100
Multi-Tis  Tissue* 22 0 0 7 31.8
Gene Chemical 17 3 3 10 58.8
Organ Tissue 16 12 10 12 75
Cancer Cell 16 0 14 0 87
Gene Organism 15 6 0 15 100
Cell Chemical 14 14 14 4 100
Amino Gene 14 14 14 14 100
Pathol Cancer 14 0 0 0 0
Organism Cell 14 0 0 0 0
Organism Gene 12 0 2 0 16.7
Organ Multi-Tissue 10 0 1 0 10
Multi-Tis  Cancer 10 0 0 0 0
Chemical Amino 10 10 10 10 100
Cancer Org. Sub. 10 10 10 0 100
Cell Tissue 10 10 10 5 100
Cell Celu Comp* 10 10 10 0 100

Raw Total 592 292 296 169 361

Percent 100 493 50 46.8 61

Table 5: Most frequent error patterns and manipulation
results on test data for “Promote" (T1), “Fix" (T2) and
“Both" (T1+2) techniques. * means the term sets are
equal and as “Fix" is first applied followed by “Pro-
mote", the “Both" results for these cases are identical to
the “Promote" ones.

static entity type system to learn an intermediate, in-
terpretable high dimension, sparse entity type layer
which is then used by a decoder network for down-
stream tasks. The most similar area of work to ours
is that of Concept Bottlenecks (CBs) (Chen et al.,
2020; Koh et al., 2020) which use an encoder and
supervision to learn a low dimensional, dense repre-
sentation for a single task. Supervision for CBs are
hand collected by experts, dense (mostly nonzero)
and exist in a low dimensional space (tens to hun-
dreds of dimensions). For the two experiments in
(Koh et al., 2020) 112 binary (CUB) and 10 ordinal
(OAI) concepts were gathered from experts. On
the other hand, IERs and our work use static, noisy
entity systems gathered via weak supervision that
exist in a high dimensional space (68,340 entity
types) and are pre-trained for use in downstream
tasks. Due to its size compared to layers in the rest
of the network, our intermediate entity type layer
is not a “bottleneck” in the usual sense of latent
spaces of autoencoders, such as those from the CB
literature.

Our use of the intermediate interpretable entity
layer to represent classes for global explainability
is reminiscent of work for learning prototypes for
images (Li et al., 2018), timeseries (Garcia-Olano

et al., 2019) or text (Das et al., 2022), however
in our case constructing the prototypes of each
class is done post-hoc and as such the prototypes
are used for analysis rather than classification or
learning. Additionally, our method is interpretable
at the vector component level whereas the latent
representations used for constructing prototypes
are not. Also, our pre-trained representations are
not tied to a classification task like prototypes and
as such can be used for various different tasks.

Our model could be viewed as including an in-
ternal Probing task which tests a models’ ability to
induce type information by measuring the accuracy
of a probe (Peters et al., 2018; Hewitt and Man-
ning, 2019; Hewitt and Liang, 2019). However,
probing is usually a post-hoc means of revealing
the information implicitly stored within internal
dense output representations, whereas our model
was defined and pre-trained in such a way as to
explicitly provide intermediate interpretable entity
type representations.

7 Conclusions

In this work we proposed Intermediate Entity-
based Sparse Interpretable Representation Learn-
ing (ItsIRL), an extension to the IERs architecture
which provides an intermediate interpretable layer
whose decoded dense representation output can
be fine-tuned and leveraged for performance on
downstream tasks. Empirically we show the model
substantially outperforms prior IERs work on two
diverse benchmark biomedical tasks.

To demonstrate the utility of the kind of inter-
pretability afforded by ItsIRL, we proposed a coun-
terfactual entity type manipulation analysis which
allows for modeling debugging. This is a fine-
grained, human interaction inquiry made possi-
ble by the proposed model architecture and pre-
training scheme. Using coarse class type sets, we
show this technique can allow ItsIRL to surpass per-
formance against dense non-interpretable models.
This analysis establishes that entity type manipula-
tion works intuitively as expected in ItsIRL, which
is important for future work on methods for flag-
ging when a predicted answer should be inspected
and possibly manipulated at the entity type level.

We finally show how combining entity types
over classes on the training set to create positive
and negative class prototypes can be used to explain
task specific global structure and semantics learned
by our model.
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Ethical Considerations

NLP models are increasingly used in biomedicine,
where some applications can be quite high-stakes.
Establishing trust in such models is therefore
paramount; unfortunately, deep neural networks
tend to be opaque in their operations, potentially
precluding their use in certain areas of biomedicine
where they might otherwise be beneficial. This
work is a step towards more transparent NLP mod-
els.
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Figure 3: Class shifts using type manipulation techniques for single example
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Figure 4: Entity Type Sparsity at various thresholds on BIOSSES test set
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Class

Term Rules Inclusion/Exclusion

Terms in Set

Cell [cell] 357
Cellular component [cell] 357
Cancer [cancer, neoplasm] 155
‘ gene’, ‘gene ’, ‘ genes’, ‘genes ']
Gene or gene product [ &€ . gene | g . g’ ] , 434
not in [‘generation’, ‘general’]
Simple chemical [ chemical, chemical ] 80
. ‘organ’, ‘organ ’, ‘organism’
Organism L 'g ] g ., £ 1 172
not in [‘organization’]
. ‘organ’, ‘organ ’, ‘organism’
Organism substance [ 'g ) g . ’g 1 172
not in [ ‘organization’]
. s ‘organ’, ‘organ ’, ‘organism’
Organism subdivision L 'g ) g . ’g I 172
not in [ ‘organization’]
‘organ’, ‘organ ’, ‘organism’
Organ [ 8 . gan , & ] 172
not in [ ‘organization’]
Tissue [ tissue, tissue ] 15
Multi-tissue structure [ tissue, tissue ] 15
Amino acid [ amino, amino , amino acid] 22
Pathological formation [pathological] 3
Immaterial anatomical entity [anatomical , anatomical, anatomical] 11
Developing anatomical structure [anatomical , anatomical, anatomical] 11
Anatomical system [anatomical , anatomical, anatomical] 11

Table 6: Terms used to create coarse Class specific
Entity Type sets
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Gene or Cell Cancer Simple Organism Multi-tissue  Tissue
gene product chemical structure
protein cell disease ingredient taxonomy blood tissue
(1.0, 5) (biology) 1.0, 2) (1.0, 1) (biology) (1.0, 47) (biology)
(1.0, 3) (1.0, 45) (1.0, 34)
ingredient elementary  neoplasm acid mammals angiology cell
(0.742, 1) particle (0.897, 8) (0.304, 18) described (0.843,857)  (biology)
(0.346, 314) in 1758 (0.878, 3)
(0.943,169)
human human cells oncology rtt humans soft tissue human
(0.729,7) (0.201, 145) (0.684, 28) (0.301, 4) (0.943,187)  (0.792,3067) body
(0.814, 30)
gene battery tissue world health  tool-using nephron connective
(0.679, 6) (electricity)  (biology) organization = mammals (0.761, 1951) tissue
(0.192, 485) (0.646, 34) essential (0.943, 186) (0.385,937)
medicines
(0.269, 25)
coagulation gene abnormality chemical anatomically  blood endocrine
(0.361, 37) (0.184, 6) (behavior) compound modern vessel system
(0.604, 56) (0.206, 14) humans (0.682,327)  (0.345, 482)
(0.943,188)
cell protein cancer measurement  post- human epithelium
(biology) (0.177,5) (0.582,9) (0.19, 12) modernism  body (0.325, 144)
(0.353, 3) (0.943,177)  (0.538, 30)
cell pancreas syndrome calcium patient lymphatic angiology
growth (0.167,498) (0.492, 48) in (0.863, 13) system (0.322, 857)
(0.314, 46) biology (0.52, 789)
(0.175, 40)
endothelium system malignancy hydroxyl medical lymphoid blood
(0.265, 192) (0.166, 166) (0.467, 20) (0.16, 76) terminology  organ vessel
0.84,11) (0.498, 1640) (0.319, 327)
homology carboxylic cell glucose prothrombin  mononuclear histology
(biology) acid growth (0.142,278)  time phagocyte (0.317,391)
(0.241, 111) (0.164,577) (0.466, 46) (0.836, 22) system
(0.493,979)
oncogene ester paraneoplastic methyl bbc gland barcode
(0.24, 285) (0.164,208) syndromes group (0.739,180) (0.471,174)  (0.311, 2351)
(0.458,380) (0.131,72)
Flscore - 96.29  90.71 92.73 90.24 94.10 81.65 74.94
Support - 2520 1054 925 727 543 303 190

Table 7: Top 10 Entity Types for 7 most frequent positive Prototype classes with weights and index of type. F1
score and support for each class over test data is given in final two rows.
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Cellular Organ Pathological ~ Organism Amino Immaterial Organism Anatomical ~ Developing
component formation substance acid anatomical subdivision system anatomical
entity structure
dna tongue disease blood ingredient  cell anatomy  anatomical organ embryology
(1.0, 127) (1.0, 158) (1.0,2) (1.0,47) (1.0, 1) (1.0, 464) terms of (1.0, 138) (1.0, 3496)
location
(1.0, 373)
ingredient ecosystem wound tetrahydro-  amino acid  cell biology  human body system childbirth
097, 1) (0.88,268) (0.85,2492)  gestrinone (0.97, 98) (0.99, 84) (0.93, 30) (0.91, 166) (0.07, 101)
(0.51, 828)
molecule organs medical nitrous glucogenic cell leg nervous midwifery
(0.89, 82) (0.75, 321) emer- oxide amino acids 0.77, 3) (0.91, 2382) system (0.07, 1835)
gencies (0.48, 16) (0.96, 757) (0.72, 566)
(0.77, 532)
acid human injury psychosis protein- intra- limb central health issues
(0.89, 18) body (0.75, 463) (0.48, 26) ogenic cellular (0.85, 3675) nervous in pregnancy
(0.69, 30) amino acids  (0.74, 328) system (0.07, 2873)
(0.96, 657) (0.59, 721)
biotech- organ morph- hematology acid molecular tongue central health care
nology (0.64, 138) ology (0.39,236) (0.93, 18) biology (0.71, 158) african (0.07,272)
(0.89, 140) (0.75, 137) (0.73, 55) republic
(0.58, 4155)
polymer articles injuries ingredient calcium in middle east  lower limb chemical fetus
(0.89,1204)  containing  (0.75, 3237) 0.32,1) biology (0.28, 1229) anatomy structure (0.07, 1172)
video clips (0.90, 40) (0.67, 8420) (0.57, 1315)
(0.54, 19)
helices human acute pain articles measure- route of anatomy cerebro- obstetrical
(0.87, 2487) anatomy (0.75, 923) containing ment admin- (0.63, 287) spinal procedures
by organ video clips (0.83, 12) istration fluid (0.0, 146)
(0.44, 1430) (0.29,19) (0.24, 209) (0.56, 2756)
nucleic acids gland first aid cell amine abdomen animal musical blood cells
(0.89, 1426)  (0.43,174)  (0.74,5588)  anatomy (0.67, 61) (0.24,503)  locomotion quintets (0.0, 2195)
(0.27, 464) 0.62,672) (0.5, 1926)
cell digestion physical tissues isomer drug foot radiophar  developmental
(0.83,3) (0.39, 607) therapy (0.27,791)  (0.48, 800) (0.19, 24) (0.59,5959)  macology biology
(0.73, 1765) (0.49, 3611) (0.0, 352)
cell tissue tongue body fluids  ketogenic pharma- animal earache transformation
membrane (0.38, 34) (0.37,158)  (0.19,617) amino acids ceutical (0.59, 273) records (genetics)
(0.58, 288) (0.42, 1974) drug (0.48, 5219) (0.0, 752)
(0.18, 17)

Table 8: Top 10 Entity Types for remaining 9 positive Prototype classes with weights and index of type. F1 score
and support for each class over test data is given in final two rows.
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Truth Cell Chemical Cell Organism Tissue Gene Cancer

Pred  Cancer Gene Gene Gene Multi-tissue  Chemical Cell

1 cancer ingredient gene gene histology ingredient cell
(1.0,9) (1.0, 1) (1.0, 6) (1.0, 6) (1.0, 391) (1.0, 1) (biology)

(1.0, 3)

2 disease protein protein protein blood acid neoplasm
(0.87,2) 0.61,5) (0.65,5) (0.93,5) (0.96, 47) (0.58, 18) 0.41, 8)

3 neoplasm receptor human human blood chemical disease
(0.73, 8) (biochemistry) (0.50, 7) (0.65,7) vessel compound (0.38,2)

(0.53,52) (0.96,327)  (0.53, 14)

4 malignancy gene allele allele angiology derivative t

(0.66, 20) (0.49, 6) (0.34,71) 0.43,71) (0.92,857)  (chemistry) cell
(0.42,58) (0.36, 429)

5 rtt human ingredient apoptosis nephron protein lymphocyte
(0.55, 4) 0.41,7) 0.28, 1) (0.37, 87) (0.74,1951) (0.34,5) (0.35, 112)

6 oncology enzyme receptor wild circulatory  purine cancer
(0.46, 28) (0.34, 29) (biochemistry) type system (0.32,781) 0.25,9)

(0.25, 52) (0.35,159)  (0.64, 664)

7 squamous-  blood transcription ingredient tongue deciduous lymphoblast
cell (0.29, 47) factors (0.34,1) (0.58, 158)  teeth (0.25, 1200)
carcinoma (0.25, 219) (0.28, 3292)

(0.37, 163)

8 tissue receptor coagulation fas heart cell thymus
(biology) antagonist 0.23,37) receptor (0.54,353)  (biology) (0.23, 506)
(0.35, 34) (0.28, 922) (0.33, 5278) 0.27, 3)

9 cell enzyme cell tumor kidney tooth human
(biology) inhibitor growth necrosis (0.52,430) (0.27, 2205) 0.22,7)
(0.31,3) (0.28, 41) (0.23, 46) factor

alpha
(0.30, 604)

10 infectious antigen dna antigen soft tissue receptor precursor
causes of (0.27, 64) 0.21, 127) (0.23, 64) (0.51,3067) (biochemistry) cell
cancer (0.27,52) (0.17, 2220)
(0.30,73)

Table 9: Top 10 Entity Types for 7 most frequent negative Prototypes
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