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Abstract
Models able to generate free-text rationales that
explain their output have been proposed as an
important step towards interpretable NLP for
“reasoning” tasks such as natural language in-
ference and commonsense question answering.
However, the relative merits of different archi-
tectures and types of rationales are not well un-
derstood and hard to measure. In this paper, we
contribute two insights to this line of research:
First, we find that models trained on gold ex-
planations learn to rely on these but, in the case
of the more challenging question answering
data set we use, fail when given generated ex-
planations at test time. However, additional
fine-tuning on generated explanations teaches
the model to distinguish between reliable and
unreliable information in explanations. Second,
we compare explanations by a generation-only
model to those generated by a self-rationalizing
model and find that, while the former score
higher in terms of validity, factual correctness,
and similarity to gold explanations, they are
not more useful for downstream classification.
We observe that the self-rationalizing model is
prone to hallucination, which is punished by
most metrics but may add useful context for the
classification step.

1 Introduction

Adding free-text explanations to NLP models is ap-
pealing as such explanations are easy to understand
to human users and can include richer reasoning
than methods that assign relevance scores to the in-
put, such as LIME (Ribeiro et al., 2016) or saliency
maps (Simonyan et al., 2014). Therefore, several
commonsense reasoning data sets have been en-
riched with natural language explanations (Cam-
buru et al., 2018; Rajani et al., 2019; Aggarwal
et al., 2021). However, there is also significant
scepticism, as the association between the model’s
predictions and its generated explanations is un-
clear. Bommasani et al. (2021) note that explana-
tions may seem plausible but do not provide true

insight into the model’s reasoning, which fits the
observation that open-ended generation models are
prone to hallucinating unfaithful content (Maynez
et al., 2020). Also, human explanations are not de-
signed to be valid (or even complete) mechanisms
leading to a correct prediction (Tan, 2022).

In this work, we study the effects of different de-
sign choices and properties of automatically gener-
ated explanations on the predictive performance of
rationale-augmented models. To this end, we make
targeted modifications to the model architecture
and compare with gold-standard explanations. A
common architecture for rationale-augmented mod-
els is a pipeline that maps the input to a rationale
and the rationale to the output (I → R; R → O).
Pipeline models are faithful by construction, but
inferior in their performance. Self-rationalizing
models that generate the rationale along with the
output (I → OR) show good performance, but it
is hard to assess the faithfulness of their explana-
tions (Wiegreffe et al., 2021). We focus on a less-
studied usage of free-text explanations, a rationale-
enriched pipeline mapping the input to the ratio-
nale and the input along with the rationale to the
output (I → R; IR → O). This architecture was
originally proposed by Rajani et al. (2019) in their
CAGE (Commonsense Auto-Generated Explana-
tions) model. In the taxonomy of Hase et al. (2020),
we are dealing with serial-task reasoning models.
While not inherently faithful, as a causal path from
input to predicted label remains open, these models
allow us to study interactions between inputs and
explanations more directly than self-rationalizing
models because they allow for interventions at the
explanation level, prior to the classification step.
At the same time, Wiegreffe et al. (2021) show that
the performance is superior to R → O, particu-
larly when annotators are not instructed to provide
self-contained explanations.

We use the framework of rationale-enriched
pipelines to generate insights along two lines:
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1. We compare classification models solely trained
on ground-truth explanations with models ad-
ditionally fine-tuned on generated explanations.
We find that the latter always perform notably
better, while the former fail completely on the
more challenging of our data sets.

2. We ask how explanations generated by a serial-
task model (I → R) compare to those generated
by a multi-task model (I → OR). We find that,
while the serial-task explanations are more sim-
ilar to gold explanations and their validity and
factual correctness are ranked higher by human
annotators, there is no clear difference in terms
of utility for the classification step (IR → O).

2 Background

Annotating free-form explanations for NLP data
sets has gained attention in recent years as language
generation models became stronger. The popular
natural language inference dataset SNLI (Bowman
et al., 2015) has been enriched with crowd-sourced
text explanations, resulting in e-SNLI Camburu
et al. (2018). Two extensions were created for
CommonsenseQA (Talmor et al., 2019), called
CoS-E (Rajani et al., 2019) and ECQA (Aggarwal
et al., 2021). In SemEval-2020 Task 4, a subtask
was to generate a reason why a natural language
statement does not makes sense to humans (Wang
et al., 2020). Ling et al. (2017) solve algebraic
word problems and generate a series of small steps
necessary to derive the answer. Textual explana-
tions have also been proposed for self-driving ve-
hicles (Kim et al., 2018). The need for manual
annotations of natural language explanations cre-
ates challenges, such as annotation costs (Belinkov
and Glass, 2019). Also, human explanations can
take various forms and have different goals (Miller,
2019) and do not necessarily verbalize valid rea-
soning paths (Tan, 2022).

2.1 Automatic Evaluation and Diagnostics
Two main characteristics are commonly included
into the evaluation of explanations: Similarity with
human-generated explanations and faithfulness to-
wards the model’s true decision-making process.
Evaluating extractive explanations is straightfor-
ward at the first glance: If overlap with human
importance assignments is desired, classical met-
rics such as Fn-scores can be used. Distinguish-
ing between faithful and unfaithful explanations is
harder, as there is no ground truth to compare to

(Jacovi and Goldberg, 2020). Faithfulness is often
evaluated by testing the model’s performance af-
ter perturbing the input in relevant parts; see e.g.
DeYoung et al. (2020) and Atanasova et al. (2020).
The results obtained from such metrics are however
not always consistent (Chan et al., 2022).

The evaluation of free-text explanations, which
typically include input-external facts and reasoning,
is a topic of ongoing discussion. Surface-level text
generation metrics that measure the textual simi-
larity of the generated explanation with the gold
explanation have been employed, like BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004), which
measure n-gram overlap, or BERTScore (Zhang
et al., 2020), which sums cosine similarities be-
tween the BERT (Devlin et al., 2019) embeddings
of the tokens in two sentences. BERTScore has
been reported to correlate better with human judge-
ment than other metrics in generation tasks (Zhang
et al., 2020). The inconsistency of free-form expla-
nations presents an obvious problem however, as
there can be a large number of valid explanations
that differ not only in surface form but also in rea-
soning paths. Also, humans and models may prefer
different reasoning paths, resulting in a disconnect
of generated explanations and model decisions.

To evaluate the faithfulness of explanations,
Hase et al. (2020) suggest the Leakage-Adjusted
Simulatability (LAS) metric, where the perfor-
mance of a classifier with access to explanations
is compared to its input-only version. In addition,
they control for label leakage in the explanations by
grouping data for which the label can be predicted
solely with the explanation. Wiegreffe et al. (2021)
show that a self-rationalizing T5 model (Raffel
et al., 2020) fulfills two necessary conditions for
faithful explanations: the robustness of output and
explanations to input noise is correlated, and la-
bels and rationales have a high feature importance
agreement. While such approaches to evaluate the
connection between explanations and predictions
are insightful first steps, we are still scratching the
surface. Evaluating faithfulness remains an un-
solved problem.

2.2 Human Evaluation

While human evaluation is costly, it can provide
important insights about properties such as factual
correctness, which are not caught by automated
metrics. A manual evaluation of explanation plau-
sibility conducted by Marasovic et al. (2021) shows
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that the qualitative difference of human and gener-
ated explanations remains substantial even with the
largest available models. Wiegreffe et al. (2022)
show that humans often prefer explanations gen-
erated by GPT-3 (Brown et al., 2020) over crowd-
sourced explanations. While the automatically gen-
erated explanations were rated low on qualitative
criteria such as support of the label and novelty of
information by default, a supervised acceptability
filtering model based on human ratings of explana-
tions improved explanation quality.

Other Domains Abstractive summarization is
an insightful use case to evaluate generation faith-
fulness, as it is straightforward to judge if facts
were in the original text. Maynez et al. (2020)
show that the majority of summaries contain erro-
neous hallucinated content. Monsen and Rennes
(2022) conduct a user study on abstractive versus
extractive summaries. Their results show that ab-
stractive summaries are much worse aligned with
the meaning of the original text, resulting in fac-
tual incorrectness. Kryscinski et al. (2019) also
report factual inconsistencies in a large number of
abstractive summaries with a manual evaluation,
and weak correlation between human ratings and
ROUGE scores.

3 Experimental Setup

We generate and evaluate explanations in reasoning
pipeline models using the following setups:

3.1 Data Sets

We use two English-language commonsense rea-
soning data sets that include human-annotated free-
text explanations: ECQA and e-SNLI.

ECQA The Explanations for CommonsenseQA
(ECQA) dataset (Aggarwal et al., 2021) extends
the multiple-choice commonsense question answer-
ing data set CommonsenseQA (Talmor et al., 2019).
For each question, five answer choices are provided.
While Rajani et al. (2019) proposed the first exten-
sion of CommonsenseQA, their CoS-E data set has
been reported to be of low quality: answers are
ungrammatical (Narang et al., 2020) and rated ex-
ceptionally bad by humans (Wiegreffe et al., 2022).
Explanations in ECQA are more detailed than in
CoS-E. ECQA also includes refuting explanations
for incorrect answer choices.

In our models, we provide one answer option
with the respective explanation at a time, and use

the target label justify if the answer is the correct
one and refute if it is a wrong one. We create
one training example for each annotated positive
property and sample the data to get a ratio of 50/50
for positives/negatives during training.

e-SNLI The second data set we use is the natural
language inference data set e-SNLI (Camburu et al.,
2018). It is based on the popular SNLI (Bowman
et al., 2015) that classifies the logical relation be-
tween a premise and a hypothesis sentence. It has
three labels: entailment, neutral and contradiction.
SNLI has been shown to contain annotation arti-
facts (label-specific lexical choices and the length
of the hypothesis) that allow for correct classifica-
tions without solving the task (Gururangan et al.,
2018), making explanation annotations to guide
the model even more interesting. In fact, Cam-
buru et al. (2018) show that correct explanations
are much less likely to emerge from artifacts than
correct labels. Explanations in e-SNLI are largely
self-contained: Camburu et al. (2018) report that
the classification accuracy conditioned only on the
explanation is 96.83%.

3.2 Models
As previously mentioned, our reasoning models
consist of a generator and a classifier. We imple-
ment all models on top of the PyTorch (Paszke
et al., 2019) and Hugging Face Transformers (Wolf
et al., 2020) libraries and follow standard fine-
tuning strategies.1

3.2.1 Generation Models
We use two models to collect explanations.

• Our single-task model (called GPT-ST in the fol-
lowing sections) is a GPT-2 (Radford et al., 2019)
model that we fine-tune on the task-specific data
using a language modelling head.

• The multi-task model (GPT-MT) is a GPT-2
model with two heads, one for language mod-
eling and one for label classification. We use a
weighted additive loss to combine the LM and
the classification loss.

The prompt for the GPT-2 components is: “State-
ment: + Question or Premise + Statement: + An-
swer Option or Hypothesis + Explanation: + Ex-
planation”. We only account for tokens in the

1All code with dependencies and parameters is avail-
able at https://github.com/martinjirenius/
reasoning-pipeline-models
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Figure 1: Experimental setup for training (upper half)
and testing (lower half) on gold versus generated ex-
planations as a causal graph (Pearl, 1995). Itrain , Idev ,
Etrain , Ltrain and Ldev are the inputs, explanations and
labels from the train and dev set, respectively. Egen are
generated explanations from the GPT-models, M is the
BERT classification model, Lpred are the labels pre-
dicted by M . All variables affected by the intervention
on Etrain are marked with a red border line.

generated explanation when calculating the cross-
entropy loss.

3.2.2 Classification Models
For classification, we use fine-tuned BERT base
models (Devlin et al., 2019) and present the input
in the format “[CLS] + Question or Premise +
[SEP] + Answer Option or Hypothesis + [SEP]
+ Explanation + [SEP]”. We evaluate six different
setups for each data set as specified in Table 1.

BERTnone is a lower-bound baseline that does
not use any explanations. BERTgold is an upper-
bound baseline that uses gold explanations both for
training and at test time. BERTST uses gold expla-
nations for training and the explanations generated

Trained with: Tested with:

BERTnone – –
BERTgold Gold Gold
BERTST Gold GPT-ST
BERTST-ft GPT-ST GPT-ST
BERTMT Gold GPT-MT
BERTMT-ft GPT-MT GPT-MT

Table 1: Overview of our classification setups. The table
indicates the source of the explanations that the model
is trained and tested with.

by GPT-ST at test time. BERTST-ft uses explana-
tions of GPT-ST at test time, but different from
BERTST it is also fine-tuned on GPT-ST explana-
tions. BERTMT uses gold explanations for training
and the explanations from GPT-MT at test time.
BERTMT-ft is fine-tuned and tested on GPT-MT ex-
planations.

Figure 1 illustrates the latter four models with
regard to the intervention of fine-tuning the model
on generated explanations, i.e. going from BERTST
to BERTST-ft and from BERTMT to BERTMT-ft.

3.3 Evaluation
Quantitative Metrics Our primary evaluation
criteria are the similarity between the generated
explanations and the gold explanations, as well as
the predictive performance of the complete pipeline.
To quantify the similarity, we use BERTScore (F1).
To evaluate the classifiers, we compute their macro-
averaged F1 score and accuracy on the test data.

Note that the native labels for our ECQA models
are justify and refute for each possible answer. To
make our evaluation comparable to other work, we
calculate accuracy based on the answer with the
highest score for justify.

Human Evaluation To assess qualitative prop-
erties of the generated explanations, we conduct
a human evaluation over 200 random samples for
each of the data sets. Inspired by the human eval-
uation studies by Monsen and Rennes (2022) and
Wiegreffe et al. (2022), we ask annotators the fol-
lowing questions for each e out of the gold, GPT-ST
and GPT-MT explanations of each sample:

• Is e a well-formed sentence?

• Does e support the label?

• Is the content of e factually correct?

• Does e provide a valid reasoning path for the
label?

• Does e add new information, rather than re-
combining information from the input?

The possible answers for each question are yes or
no. Each sample is rated by three persons familiar
with the tasks (the first three authors). We report
the average score across reviewers as well as Krip-
pendorf’s α (n = 3, interval from −1 to 1) for
inter-rater agreement (Krippendorff, 2011). The
full instructions for the annotators can be found
in Appendix A. The data is available at https:
//github.com/jekunz/bbnlp22_human.
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GPT-ST GPT-MT

ECQA 0.3108 0.2502
e-SNLI 0.3989 0.4009

Table 2: BERTScores (F1) for the single-task (GPT-ST)
and multi-task (GPT-MT) models.

4 Results

We present our main results together with some
additional follow-up experiments.

4.1 BERTScores and Surface Features
First, we test if GPT-ST or GPT-MT generates bet-
ter explanations as evaluated by BERTScores. We
see in Table 2 that GPT-ST explanations are more
similar to the human reference explanations than
GPT-MT solutions, at 0.3108 vs. 0.2502. For e-
SNLI, the BERTScores for both models are very
close, and much higher than those for ECQA, at
0.3989 resp. 0.4009.

We also compare the generated explanations
in terms of simple surface features: explanation
length, vocabulary size and vocabulary overlap
with gold explanations (Table 3), and find that for
e-SNLI, GPT-ST and GPT-MT explanations have
almost identical characteristics. For ECQA, the
difference is more substantial: While GPT-ST ex-
planations are shorter than both GPT-MT and gold
explanations, the former’s vocabulary is larger than
that of GPT-MT. The overlap with gold explana-
tions is slightly higher for GPT-MT.

4.2 Classification
Results for the classification models are reported
in Tables 4 and 5 (macro-averaged F1, accuracy).

GPT-ST GPT-MT Gold

ECQA: Words 9.14 10.28 10.54
ECQA: Chars 48.08 49.74 57.48
ECQA: Vocab 7,946 4,436 11,033
ECQA: Overl. 0.772 0.735 –

e-SNLI: Words 11.79 11.77 13.32
e-SNLI: Chars 60.11 60.01 68.75
e-SNLI: Vocab 9,398 9,346 14,935
e-SNLI: Overl. 0.860 0.860 –

Table 3: Surface features: average word and character
length, vocabulary size and vocabulary overlap with
gold explanations for each set of explanations (dev. set).

Baselines As expected, the baseline BERTgold
performs best across all metrics, models and data
sets. For e-SNLI, BERTnone performs better than
all models that utilize generated explanations. For
ECQA, BERTST and BERTMT get a classification
accuracy below the BERTnone accuracy, with 0.253
and 0.231 compared to a random baseline of 0.2.
However, looking at the F1 scores, we see that the
BERTnone baseline is outperformed by all ECQA
explanation models.

Fine-tuning on generated explanations improves
results When fine-tuning on generated explana-
tions in the BERTST-ft and BERTMT-ft models, the
explanation models outperform the BERTnone base-
line for ECQA consistently, showing that the ad-
ditional supervision with generated explanations
is helpful. While for e-SNLI BERTnone is not out-
performed, the ft models still perform consistently
better than the models trained on gold explanations,
although the gap is smaller than for ECQA.

As an ablation, we also train two ECQA BERT
models (BERTST-abl and BERTMT-abl) on generated
explanations only, and evaluate them on gold expla-
nations. BERTST-abl achieves an accuracy of 0.522
on gold explanations and BERTMT-abl achieves
0.479, improving over comparable models that
utilize generated explanations by at least 0.062
(BERTST-ft: 0.460) and 0.011 (BERTMT-ft: 0.468).
The accuracies of the ablation models on gener-
ated explanations are 0.406 (BERTST-abl) and 0.469
(BERTMT-abl ). Still, the gap to the gold-trained and
gold-evaluated model remains substantial.

Single-task versus multi-task explanations
While the BERTScore differences between GPT-
ST and GPT-MT explanations are large for ECQA,
using these explanations downstream in the classifi-
cation model gives very similar results. For ECQA,
the MT model even appears to have a slight advan-
tage at least for the ft models, while for e-SNLI, it
is the other way round.

4.3 Human Evaluation
The results of the human evaluation are reported
in Table 6. In the case of ECQA, we see that the
annotators have a preference for the GPT-ST ex-
planations, giving them considerably higher scores
for support, correctness and validity. The GPT-MT
model adds more novel information. A closer look
at the novel information shows that in the exam-
ples that were flagged to contain novel information,
the majority (0.637) are factually incorrect. The
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BERTnone BERTgold BERTST BERTST-ft BERTMT BERTMT-ft

ECQA 0.378 0.906 0.514 0.631 0.489 0.634
e-SNLI 0.898 0.980 0.836 0.861 0.836 0.861

Table 4: Results for the classification models, macro-averaged F1 scores.

BERTnone BERTgold BERTST BERTST-ft BERTMT BERTMT-ft

ECQA 0.338 0.945 0.253 0.460 0.231 0.468
e-SNLI 0.898 0.993 0.844 0.866 0.843 0.863

Table 5: Results for the classification models, accuracy.

annotators anecdotally report a large amount of
nonsensical hallucinations in the GPT-MT model;
we include examples in Appendix B.1. The overall
scores are low, with shares of yes answers to the
validity criterion being only 0.285 (GPT-ST) and
0.107 (GPT-MT). However, the gold answers do
not get good scores either, with a yes share of 0.49.
The highest-scoring criterion is well-formedness,
where GPT-MT gets scores comparable to the gold
explanations. With 0.607 vs. 0.603, the share of
well-formed answers is however still low, with the
generation models probably mirroring sloppy ex-
planations in the training set.

For e-SNLI, the scores for all criteria except
novelty are considerably higher. There is a slight
preference for GPT-MT in the criteria support, cor-
rectness and validity, and a slight preference for
GPT-ST in well-formedness, where GPT-ST even
surpasses the gold explanations (0.868 vs. 0.833).
Annotators noted that the ease of creating well-
formed explanation may be due to the explana-
tion often following clear templates; examples are
given in Appendix B.2. e-SNLI explanations al-
most never add new information; the highest share
is in the gold set with only 0.052.

For both data sets we note that the inter-annotator
agreement on gold explanations is much lower than
on both sets of generated explanations.

5 Discussion

We now discuss or results and method.

5.1 Results

The downstream utility of explanations is not re-
flected by BERTScores or human ratings The
rationale-enriched pipeline helps us to better under-
stand interactions between predictions and expla-
nations by comparing the usefulness of different

sets of explanations. Perhaps not surprisingly, we
see that BERTScores do not reflect the usefulness
of the explanations generated by different models.
Large drops in BERTScores go along with at most
very slight drops in the model’s performance on the
respective predictions. This is in line with results
by Hase et al. (2020), who report that BLEU scores
are not correlated with LAS.

Perhaps surprisingly however, the same effect is
observed for the interplay of the human ratings and
the downstream usefulness: Large differences in
the human ratings of the validity and factual cor-
rectness of the explanations are not at all reflected
in the downstream utility of the explanations. We
hypothesize that a key property that leads to this
behavior is the tendency of GPT-MT to halluci-
nate in ECQA (§ 4.3): While novel but factually
incorrect information is punished in human ratings
and BERTScore, the new information can still help
the downstream model by adding possible context.
GPT-ST on the other hand tends to “play safe” by
creating more template-like explanations, with of-
ten sensible results but without novel information,
and thereby without additional features for the clas-
sifier. Consider this example:

Q: The archaeologist was seeing artifacts that he knew
were fake, how did he feel?
A: painful memories
Label: refute
GPT-ST: Painful memories is not a feeling.
GPT-MT: A person who is in fear of being embarrassed
is called a bad person.

The GPT-ST explanation is reasonable but
merely re-combines words from the question and
answer. GPT-MT on the other hand creates an
off-topic explanation that could, however, help the
reasoning of the classifier by giving hints on al-
ternative answers (like embarrassed or fear). We
leave an investigation of this to future work.
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Well-formed Support Correctness Validity Novelty

ECQA gold 0.603 (+0.22) 0.682 (+0.13) 0.593 (−0.03) 0.490 (+0.18) 0.173 (+0.20)
ECQA GPT-ST 0.573 (+0.25) 0.513 (+0.45) 0.443 (+0.19) 0.285 (+0.48) 0.126 (+0.28)
ECQA GPT-MT 0.607 (+0.32) 0.320 (+0.43) 0.333 (+0.15) 0.107 (+0.43) 0.211 (+0.23)

e-SNLI gold 0.833 (+0.04) 0.873 (+0.06) 0.860 (+0.08) 0.772 (−0.06) 0.052 (−0.02)
e-SNLI GPT-ST 0.868 (+0.10) 0.807 (+0.57) 0.755 (+0.73) 0.670 (+0.65) 0.018 (+0.26)
e-SNLI GPT-MT 0.830 (+0.24) 0.813 (+0.56) 0.813 (+0.56) 0.688 (+0.54) 0.012 (−0.01)

Table 6: Human evaluation: average share of yes answers across all samples that were not flagged as invalid. The
numbers in parentheses show Krippendorf’s α (n = 3, interval from −1 to +1) for inter-rater agreement.

Fine-tuning on generated explanations is cru-
cial Another important finding is the failure of
BERTST and BERTMT when encountering gener-
ated explanations in ECQA, which shows that our
generator models do not catch the relevant seman-
tic aspects sufficiently well for the classifier to rely
on them. However, after fine-tuning with generated
explanations, the BERT classifier can improve over
the baseline without access to explanations. This
shows that the model can still profit from the im-
perfect explanations if it learns to handle their limi-
tations better. Our ablation with a model trained on
generated and evaluated gold explanations suggests
that it is not surface differences that make the trans-
fer hard: The ablation model can in fact handle
the gold explanations quite well, performing even
better than on generated explanations. The fact
that it still performs much worse than BERTgold on
gold explanations shows that the model is far from
perfect in identifying reliable information in the
explanations; however, it is able to differentiate to
some extent.

In previous work, Rajani et al. (2019) use a simi-
lar model consisting of GPT-2 and BERT, and suc-
ceed with gold-explanation training and generated-
explanation testing for CoS-E. One reason for the
contradictory results could be a more sophisticated
optimization of their model, but we find it worth
discussing that the success does not necessarily
come by default. Another hypothesis is that the
cause is the (reportedly) low-quality annotations
in CoS-E (Narang et al., 2020) having a similar
noise-adding effect as the generated explanations,
and therefore allow the model to transfer.

e-SNLI is easy, ECQA problematic to explain
On e-SNLI, all models get higher scores in all met-
rics than on ECQA. The only exception is novelty
in the human evaluation: Novel information is not
necessary to explain e-SNLI instances; it is suffi-
cient to re-combine parts of premise and hypothesis.

This is commonly done in a template-like manner:

– [Part of premise] is [part of hypothesis] for the
entailment label,

– Not all [part of premise] are [part of hypothesis]
for neutral, and

– [Subject] cannot [part of premise] and [part of
hypothesis] at the same time for contradiction.

For full examples containing these patterns, we
refer to Appendix B.2. The template-like explana-
tions in e-SNLI have also been noted by Camburu
et al. (2018) and Brahman et al. (2021). Such obser-
vations could raise the question if templates could
be a more appropriate form of explanation for this
data set, as they would improve clarity and reliabil-
ity. Wiegreffe and Marasovic (2021) review expla-
nation data sets and question the popular perception
that template-like explanations are generally dis-
missed as uninformative. The authors suggest to
instead embrace naturally occurring structures.

ECQA explanations rarely follow simple pat-
terns and more often include external information.
The low validity scores even for the gold explana-
tions show that the data set is rather hard to explain.
Our annotators noted that “incorrect” answer op-
tions in ECQA are not generally implausible but
often just less likely than the “correct” option. This
makes it hard to write explanations that do not
explicitly consider the correct answer option in a
contrastive manner (arguing why it is more likely
than the current candidate). Examples are given in
Appendix B.3. ECQA contains a notable number
of uninformative explanations for the refute label
both in the gold and the generated explanations, e.g.
[Answer] is not a correct option (see Appendix B.4
for examples). This is possibly a result of annota-
tors not being able to formulate satisfying reasons
why the answer option is incorrect. ECQA also has
a large amount of ungrammatical and low-quality
annotations, which affects the generation models
negatively.
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5.2 Limitations

We conclude this section with a discussion of the
limitations of our study.

Model An obvious limitation of our work is that
our results on SNLI and CommonsenseQA are be-
low the current state of the art, due to the moderate
size of our models. While combining GPT-2 and
BERT is a common setup for free-form explanation
generating models (Wang et al., 2020), Hase et al.
(2020) report much higher results using T5 models,
and Marasovic et al. (2021) clearly document the
effect of scale in a few-shot setup, with e-SNLI
climbing from 79.2% to 87.4% and ECQA from
41.4% to 65.9% in classification accuracy when
going from T5-base to T5-3B. While repeating the
experiments with larger models could lead to differ-
ent conclusions, we believe that investigating the
smaller, more accessible and widely used models
remains valuable.

Evaluation Another limitation in our analysis
is the possibility that the multi-task explanations
are affected by error propagation when the system
makes wrong predictions.2 This issue may affect
both BERTScores and human evaluations. We sug-
gest that a promising fix to this potential problem is
to over-generate explanations and randomly choose
one that accompanies a correct prediction.

Data sets That explanations do not increase the
overall performance of SNLI models is known
in the literature. Camburu et al. (2018) report a
decline in accuracy with explanations: 84.01%
for SNLI, but 83.96% for the best explanation
model. Note that their models were BiLSTM mod-
els trained from scratch, as their work preceded
current pre-trained models. Another work reports
an improvement in accuracy, but with 0.3% it is
extremely slight (Zhao and Vydiswaran, 2021). As
pre-trained models get a superhuman performance
on SNLI, and because of the known presence of
annotation artifacts (Gururangan et al., 2018), re-
cent improvements may however not be meaningful
for solving the actual task. In addition, the high
performance of models is not aligned with human
agreement on natural language understanding tasks.
In a human evaluation of SNLI by (Bowman et al.,
2015), all annotators agree only on 58% of the
labels.

2This limitation was rightfully noted by one of the review-
ers of this paper, which we gratefully acknowledge.

Both data sets we use consist of crowd-sourced
explanations of mixed quality. Doing a manual in-
spection of either of them, it is easy to find incorrect
and logically inconsistent explanations, or explana-
tions that contribute no additional information (§§
B.3, B.4). Our low inter-annotator agreement on
gold explanations is an indicator of these problems.
Related observations have also been raised in pre-
vious evaluations (Wiegreffe et al., 2022). Besides
data quality, the tasks of natural language inference
and multiple-choice question are arguably artifi-
cial. It is unclear how the results would transfer to
explanation generation in general.

The status of free-text explanations We believe
it is appropriate to remain sceptical about the utility
of generated free-text explanations. Large mod-
els produce better explanations by all metrics, but
there is still a huge qualitative difference of hu-
man and generated explanations (Marasovic et al.,
2021). The acceptability filtering system proposed
by Wiegreffe et al. (2022) improves human ratings
of model-generated explanations substantially, but
may, as these authors state themselves, be more
relevant for goals such as creating trust in the sys-
tem than for creating explanations faithful to the
model’s prediction process. In fact, generating
explanations without guarantees of a causal con-
nection between explanation and label is not faith-
ful, and evidence that there is such a connection
is sparse. Still, while we would strongly advise
against using generated explanations as evidence
about how a prediction was made, we argue that
they can generate valuable insights into the “rea-
soning” capabilities of models, and thereby help
improving models, task formulations and data sets.
Unfortunately, the current lack of high-quality an-
notated data sets with explanations for diverse tasks
makes it hard to fully assess their potential.

6 Conclusion

In this paper we compared free-text explanations
in variants of a rationale-enriched pipeline: using
a single-task versus a self-rationalizing generation
model, and training the classifier on gold expla-
nation only versus doing further fine-tuning with
generated explanations. An extensive evaluation
with similarity-based metrics, utility in downstream
classification, and human ratings based on five dif-
ferent criteria shows limitations but also chances of
free-text explanations. We see indications that hal-
lucinations occur more frequently in explanations
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by a self-rationalizing generation model. However,
they do not appear to be generally harmful, and
may even be useful for downstream predictions
in rationale-enriched pipelines if the classification
model has the chance to learn to differentiate be-
tween reliable and unreliable information. Further
investigation of hallucinations in rationale-enriched
pipelines, e.g. with extractive explanation methods,
is an interesting avenue for future research.

That human ratings do not reflect classification
utility indicates that it is crucial to design anno-
tations and models targeted towards a use case:
Explanations that convince human raters are not
ideal for the goal of performance improvements by
providing useful guidance to the model. However,
the latter goal is not explicitly accounted for in pop-
ular data sets, but the former is not sufficiently met
either, as particularly for ECQA, human annotators
rate gold explanations low. Specialized explana-
tions that maximize one goal at a time would help
us understand the differences between human and
model “reasoning”, and thereby allow us to move
towards more faithful free-text explanations.
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If you disagree with the label or find the example
to be non-sense: Flag the example with N/A.

Step 1: Look only at e internally:

• Is e a well-formed sentence? (e is grammat-
ical and structurally sensible.)

• Is the content of e factually correct? (e it-
self is a true statement about the real world.
e is factually and logically correct.)

Step 2: Look at e and the label:

• Does e support the label? (Looking at e
alone, it is reasonable that the label is cor-
rect.)

Step 3: Use all available context:

• Does e provide a valid reasoning path for
the label? (e convincingly explains how to
get from the context to the label.)

• Does e add new information? (Rather than
re-combining information from the context,
e comes up with new information.)

B Anecdotical Examples for Observed
Characteristics

In this appendix section we provide further ex-
amples for four phenomena mentioned in this pa-
per that raters noticed during the human evalua-
tion. These phenomena were not systematically
reviewed at evaluation time but are anecdotal ob-
servations.

B.1 Hallucinations in GPT-MT
The following five examples from GPT-MT
include novel, “hallucinated” information that has
no connection to the question or answer option.

Q: When old conservative people observe a
changing society, what do the experience?
A: acceptance
Label: refute
GPT-MT: The experience of dying is a feeling

Q: Where can I put a coin to stop my car
from being towed?
A: piggy bank
Label: refute
GPT-MT: A person can put a coin in a cowgy
bank to stop his car from being washed from the

water.

Q: After I urinate and flush the toilet and
wash my hands, what should I do next?
A: zip pants
Label: refute
GPT-MT: A person should not put bag under shirt.

Q: The stud bull was brought in to breed
with the prize winning what?
A: female
Label: refute
GPT-MT: Cats are not called horses

Q: Who might wear dark glasses indoors?
A: ray charles
Label: refute
GPT-MT: A person might wear dark glasses in a
ring in the house.

B.2 Template-like explanations in e-SNLI

In the following we provide six examples from
e-SNLI, two for each label, where the explanations
follow a clear template that is consistently followed
by all explanation models.

Premise: A dog biting a man’s rear
Hypothesis: An animal is biting a man.
Label: entailment
GPT-ST: A dog is an animal.
GPT-MT: A dog is an animal.
Gold: A dog is an animal.

Premise: A group of men playing music,
the man holding a guitar is talking to a man with
drums.
Hypothesis: A band is playing music.
Label: entailment
GPT-ST: A group of men playing music is a band.
GPT-MT: A group of men playing music is a
band.
Gold: A group playing music together is know as
a band.

Premise: Man holding torch of fire.
Hypothesis: The fire is large.
Label: neutral
GPT-ST: Not all fires are large.
GPT-MT: The fire is not necessarily large.
Gold: Not all the fires are large.
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Premise: A woman in a bright pink and
green skirt carries a large wicker basket on her
back up a stone-cobbled street.
Hypothesis: The woman is carrying a basket down
the street in Nepal.
Label: neutral
GPT-ST: Not all stone-cobbled streets are in
Nepal.
GPT-MT: Not all stone-cobbled streets are in
Nepal.
Gold: Just because a woman is carrying a basket
does not mean that she is in Nepal.

Premise: A woman in a teal apron pre-
pares a meal at a restaurant.
Hypothesis: A woman is walking in park
Label: contradiction
GPT-ST: The woman cannot be walking and
preparing a meal at the same time.
GPT-MT: The woman cannot prepare a meal at a
restaurant and walk in a park at the same time.
Gold: A restaurant is not a park.

Premise: A man in a blue shirt, blue jeans, and a
red apron standing at a grill.
Hypothesis: A man bakes a cake.
Label: contradiction
GPT-ST: A man cannot bake a cake and stand at a
grill at the same time.
GPT-MT: The man cannot be standing at a grill
and baking a cake at the same time.
Gold: Standing at a grill cannot be done
simultaneously with baking a cake.

B.3 Plausible but “incorrect” answer options

The answer options in the following five examples
are plausible, but not the most likely option.
Reasons include too general or rather far-fetched
but still possible options.

Q: Sean was a native English speaker, a
fact that he found helpful. Ludwig didn’t speak the
language well because he was what?
A: alien
Label: refute
GPT-ST: Alien is not a person.
GPT-MT: A person cannot speak the language
well if he is an island.
Gold: A human being is not an alien.

Q: Billy found that his toilet was overflow-

ing. Water was splashing onto the floor and
making a huge mess. He got a mop and tried to
clean it up. Where might the toilet be located?
A: apartment
Label: refute
GPT-ST: Apartment is a community having 10 to
20 homes or a block of apartments. Apartment is
not where toilet overflowed.
GPT-MT: Apartment is a room or set of rooms
or a building where people live permanently,
especially as a member of a family or household.
Gold: His toilet was not in the apartment.

Q: They really needed the information pris-
oner, so they did the least human thing and began
to what the prisoner?
A: hurt
Label: refute
GPT-ST: Prisoners do not hurt when they are
being hurt
GPT-MT: When a person is hurt, he gets hurt.
Gold: Hurt is not the least human thing they can
do.

Q: When old conservative people observe
a changing society, what do the experience?
A: acceptance
Label: refute
GPT-ST: Acceptance is not related to changing
society
GPT-MT: The experience of dying is a feeling
Gold: Acceptance is not an emotion

Q: How can one’s views change after learning
about science?
A: appreciation of nature
Label: refute
GPT-ST: One can’t change his views after
learning about science.
GPT-MT: A person can change his ideas by
learning about science.
Gold: Appreciation of nature is the act of
recognising or understanding that nature is
valuable, important or as described. Appreci-
ation of nature is the act of recognising that
nature is valuable while learning about science
is all about greater knowledge and not appreciation.
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B.4 Uninformative “refute” answers
These five examples show explanations that do
not contain incorrect facts, but are completely
uninformative and therefore unfit as explanations.

Q: What can happen as a result of a busi-
ness spending money and having to make a
declaration?
A: poverty
Label: refute
Gold: Poverty is not an appropriate option.

Q: What animal has quills all over it?
A: calligraphy
Label: refute
Gold: Calligraphy dont suits in this sentence.

Q: What is unlikely to get bugs on its wind-
shield due to bugs’ inability to reach it when it is
moving?
A: car
Label: refute
GPT-MT: Car is not a correct option.

Q: There was a cloud or two out but overall
it was very what?
A: bringing rain
Label: refute
GPT-MT: Rain is not a correct option.

Q: Sam tried to go to sleep, but he couldn’t. He
suffered from what?
A: bed
Label: refute
GPT-ST: Bed is not a correct option.

Q: The coach decided to make a lineup change,
the team’s effort was suffering from what?
A: paper money
Label: refute
GPT-ST: Paper money is not a correct option.
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