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Abstract

Although attention weights have been com-
monly used as a means to provide explana-
tions for deep learning models, the approach
has been widely criticized due to its lack of
faithfulness. In this work, we present a sim-
ple approach to compute the newly proposed
metric AtteFa, which can quantitatively repre-
sent the degree of faithfulness of the attention
weights. Using this metric, we further validate
the effect of the frequency of informative input
elements and the use of contextual vs. non-
contextual encoders on the faithfulness of the
attention mechanism. Finally, we apply the ap-
proach on several real-life binary classification
datasets to measure the faithfulness of attention
weights in real-life settings.

1 Introduction

Attention mechanism (Bahdanau et al., 2015) has
become an indispensable part of many state-of-the-
art NLP models, and its application is becoming
more and more prevalent in non-NLP use cases.
In simple words and from a functionality perspec-
tive, attention can be described as a module which
generates outputs from the representations of input
elements by performing the following two steps:

1. Automatically compute weights correspond-
ing to each input element

2. Use the computed weights to run a weighted
average over the input representations

Due to attention’s explicit mechanism to assign
weights to input elements, attention weights have
been frequently used as explanations for model pre-
dictions. A common approach has been to provide
attention heat maps to which input elements the at-
tention component has attended to (e.g. Wang et al.,
2016; Lee et al., 2017; Lin et al., 2017; Ghaeini
et al., 2018).

However, the use of attention weights as expla-
nations has been widely challenged, with regards

to the observation that they are not faithful, mean-
ing that different attention weights can result in
similar model predictions (Jain and Wallace, 2019;
Serrano and Smith, 2019; Wiegreffe and Pinter,
2019). Therefore, the explanations provided by
the attention weights are neither unique nor closely
related.

In this work, we extend the work of Wiegreffe
and Pinter (2019) to a one-shot adversarial setup
that can be used to compute a quantitative metric
for the faithfulness of attention weights. We call
the metric AtteFa which simply stands for Attention
Faithfulness. We consider the adversarial training
setup one-shot in the sense that it can provide us
with the AtteFa metric by running the adversarial
training only once.

To perform a sanity check on AtteFa, we run
experiments in a controlled setting using syn-
thetic datasets and two types of encoders (a non-
contextual MLP and a contextual LSTM) that could
help us validate if the values of this metric reflect
what we expect it to. We later compute this metric
on some real-life binary text classification datasets
to validate how faithful the attention weights are in
those settings.

2 Related Work

Since the rise of deep learning models, researchers
have focused on devising techniques that could
provide an explanation for the functioning of these
so-called "black-box" models. Among different
classes of explainability techniques, the following
can be mentioned:

Gradient-based methods attribute model deci-
sions to input features using gradient signals (Sun-
dararajan et al., 2017; Selvaraju et al., 2017;
Aubakirova and Bansal, 2016; Karlekar et al.,
2018). Perturbation-based methods try to provide
an explanation for the model behavior by evalu-
ating its reactions to perturbations in input fea-
tures (Ribeiro et al., 2016; Zintgraf et al., 2017).
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Attention-based methods act as an intuitive way
of interpreting the model’s decision. They use the
probability distribution or weights provided by an
attention mechanism as a feature importance mea-
sure to find the features that the model is attending
to (Luong et al., 2015; Xie et al., 2017; Mullenbach
et al., 2018).

Despite the popularity of the attention-based
explainability approaches, the reliability of these
methods has been called into question, with the
special focus on the faithfulness of the explana-
tions provided by the attention mechanism. Jain
and Wallace (2019) perform different experiments
to evaluate the meaningfulness of explanations pro-
vided by attention weights. Their results show that
attention weights are not correlated with gradient-
based feature importance scores. Furthermore, they
show that it is often possible to have different atten-
tion probability distributions that result in a similar
output, arguing that a specific distribution cannot
be treated as the definitive cause behind a model
decision.

Serrano and Smith (2019) investigate the ability
of attention weights to act as importance measures
through a different lens. They state that it is not
sufficient for the weights to make sense to humans.
The weights should also provide a faithful explana-
tion for the model output in order to be considered
reliable. Through performing multi-weight tests,
they show that although there is a certain level of
correlation between attention weights and the im-
portance of features in the final prediction of the
model, these weights in many cases cannot suc-
cessfully identify the features that heavily impact a
model’s decision.

Wiegreffe and Pinter (2019) propose additional
tests for evaluating the ability of the attention mech-
anism to provide explainability. They challenged
the findings reported by Jain and Wallace (2019)
as they treated the attention as a stand-alone com-
ponent within a network that is independent from
the rest of the components. Through an end-to-end
adversarial setup to train models to similar outputs
while coming up with different attention distribu-
tions in binary classification tasks, they show that
the explanations provided by attention are not as
unfaithful as Jain and Wallace (2019) found them
to be.

In this paper, we extend the adversarial setup
by Wiegreffe and Pinter (2019) so that it can be
used in a one-shot pass, i.e. training the adversar-

ial models only once. This approach results in a
metric, which we call AtteFa, that can provide us
with a quantitative insight on how faithful the ex-
planations by the attention component are, given a
specific model and a specific dataset. To the best
of our knowledge, this is the first work that pro-
vides such a quantitative measure to evaluate the
faithfulness of attention.

3 Method

3.1 Base Model Training
First, we train a base model on the data. The base
model is comprised of an embedding layer, fol-
lowed by an encoder (LSTM or MLP), which is in
turn followed by an attention component, and fi-
nally a classification head. To train the base model,
cross-entropy loss is used, and training is done for
8 epochs. The final base model is the trained model
at the end of the epoch where the ROC-AUC score
on the test dataset is minimum.

3.2 Adversarial Model Training
With the base model at hand, we train an adversarial
model with the same architecture as the base model,
but with the following two characteristics:

1. Having predictions as similar as possible to
the base model, and

2. Having attention weight distributions as dif-
ferent as possible from the base model

In order to measure the difference between the
two models’ predictions, namely ŷa and ŷb, we use
Total Variation Distance (TVD), which is computed
using Equation 1:

TVD(ŷja, ŷ
j
b) =

1

2

|Y|∑

j=1

|ŷja − ŷjb | (1)

where |Y| represents the number of output heads
(which is equal to 1 in our binary classification
setting).

To compute the difference between attention dis-
tributions αa and αb, Jensen-Shannon Divergence
(JSD) is used, which is computed using Equation
2:

JSD(αa, αb) =
1

2
KL(αa||ᾱ) +

1

2
KL(αb||ᾱ) (2)

where ᾱ = αa+αb
2 and the Kullback–Leibler

(KL) divergence is computed using Equation 3:

KL(αa||αb) =
∑|α|

k=1 α
k
a ×

(
log(αk

a + ϵ)− log(αk
b + ϵ)

)

(3)
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where |α| corresponds to the size of the attention
weight vector. The inclusion of ϵ in the KL equa-
tion is to prevent the logs from becoming infinite in
cases where the values of α become equal to zero
due to mathematical underflow. In our experiments,
we set the value of ϵ equal to 1e-10.

Having the TVD of the predictions and the JSD
of the attention weight distributions, we design the
loss function so that it tries to minimize TVD and
maximize JSD. The final loss formula is given in
Equation 4:

L(Ma,Mb)
(i) = sTVD(ŷ(i)a , ŷ

(i)
b )−sJSD(α(i)

a , α
(i)
b )

(4)
In Equation 4, we use sTVD and sJSD to denote

the scaled values of TVD and JSD, respectively.
We apply the scaling in order to make sure that the
value ranges for the TVD and JSD components of
the loss are equal, and therefore the final value of
the loss is affected equally by the two components.
Knowing that the value of TVD is always between
0 and 0.5, sTVD is computed using Equation 5:

sTVD(ŷa, ŷb) = TVD(ŷa, ŷb)/0.5 (5)

To compute sJSD Equation 6 is used:

sJSD(αa, αb) = JSD(αa, αb)/JSDmax (6)

where JSDmax is the calculated upper-bound
for JSD when Equations 2 and 3 are used. JSDmax

is approximately equal to 0.6931, and is reached
when α1 and α2 in Equation 2 are two one-hot vec-
tors with the element 1 located in different indices.

The value of the loss is computed per sample.
In order to compute the backpropagated loss value
for each batch, we compute the average over the
per-sample losses in the batch.

The training process is continued until the loss
value on the test data does not improve for 10
consecutive epochs, or a maximum number of 80
epochs is reached. To calculate the total loss on
the test data, instead of computing the per-sample
losses and averaging them over the dataset, for sim-
plicity and to leverage the metric implementations
by Wiegreffe and Pinter (2019), we first average
over the per-sample TVD and JSD in this dataset,
and then compute the total loss using these aver-
ages. As the final adversarial model, we pick the
one from the training epoch with the lowest value
of loss on test data.

The key difference between our adversarial train-
ing setup with the one from Wiegreffe and Pinter

(2019) is in the way the adversarial loss is com-
puted. In Wiegreffe and Pinter (2019), KL diver-
gence is used instead of JSD to compute the distri-
bution divergence between the base model’s atten-
tions and the adversarial one. Since the value of KL
is un-bounded, it is mandatory to use an additional
hyperparameter λ to avoid the final value of the loss
getting dragged fully towards the attention diver-
gence. Knowing that JSD has a specific lower and
upper bound, including that in the adversarial loss
formula allows us to do away with the additional
hyperparameter λ, and to be able to do the adver-
sarial training in one shot, which in turn provides
us with an easy and systematic way to compute a
metric value for the attention faithfulness.

3.3 Computing AtteFa

Having the TVD of the predictions and the JSD of
the attention distributions on the test data between
the base model Mb and adversarial version of the
model Ma, we compute the faithfulness score At-
teFa of the attention module AM using Equation
7:

AtteFa(AM) = min

(
sTVD(ŷa, ŷb)

sJSD(αa, αb)
, 1

)
(7)

The formula is motivated by the assumption that,
the degree of attention faithfulness has a direct rela-
tion with the value of the TVD of predictions, and
an inverse relation with the value of the JSD of the
attention weights. In other words, if the attention
is faithful, meaning that the attention can find a
limited set of informative sources, the adversarial
setup will either converge to a point where both
the TVD of predictions and the JSD of attention
weights are low, or both of them are high. We be-
lieve that the second scenario is more probable, as
the adversarial model has a much higher degree of
freedom in order to converge to a different attention
distribution from the base model than to achieve a
similar output prediction. This will later be shown
in Section 6 that, with the current adversarial setup,
the adversarial model usually achieves a JSD close
to its maximum value.

With this assumption, we believe that in most
cases, the final value for sTVD(ŷa, ŷb) should be
lower than sJSD(αa, αb), but we still do not rule
out the opposite scenario, which is why we force
the value of AtteFa to be bounded between 0 and 1
through the use of the min function in Equation 7.
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4 Datasets

4.1 Synthetic Datasets

In principle, we hypothesize that the faithfulness of
the attention has a direct relation with the rareness
of the informative elements in the input. In the
task of text classification, considering the input el-
ements being textual tokens and with an attention
that assigns weight to each token, if there are very
few informative tokens that could help with the
task, our assumption is that the attention should
probably focus on those and not the other tokens,
and finding alternative attention weight distribu-
tions that would lead to a similar outcome would
be difficult. Whereas in cases when many input
tokens are informative and helpful to the task, the
attention can simply shift its focus from one set of
tokens to another, therefore the faithfulness will be
low.

In order to verify this scenario, we designed a set
of synthetic sentiment analysis datasets that include
different proportions of informative texts. To that
end, we synthetically created samples in a way that
a specific portion of their tokens are words with sen-
timent weights that align with the sentiment label of
the sample1, while filling the rest of the token slots
with the uninformative token "something". This re-
sults in a simple-to-classify sentiment dataset that
allows us to investigate the effect of the frequency
of informative input elements on the faithfulness
of attention, without the need to take into account
the effectiveness of attention for the task at hand.

Our Mock datasets are comprised of 8000 train-
ing and 1000 testing samples. The distribution of
the positive/negative labels is 50/50 in the datasets,
and each sample has a random length between 50
and 100 tokens. These synthetic datasets are com-
prised of Mock-1, Mock-2, Mock-5, and Mock-10
datasets with 1, 2, 5, and 10 informative tokens in
each sample, respectively, and Mock-1q, Mock-
2q, Mock-3q, and Mock-4q, in which 25%, 50%,
75%, and 100% of the tokens in each sample are
informative.

4.2 Real-life Datasets

The datasets used are the ones utilized in the work
of Jain and Wallace (2019) and Wiegreffe and Pin-

1We picked words with positive and negative sen-
timent from the following gazetteers, respectively:
https://ptrckprry.com/course/ssd/data/
positive-words.txt, https://ptrckprry.
com/course/ssd/data/negative-words.txt

ter (2019). The description of the datasets are pro-
vided in section 3 of Jain and Wallace (2019).

4.3 Dataset Statistics
Table 1 shows the average number of tokens across
samples, along with the distribution of the posi-
tive/negative samples for each dataset. Since all
the synthetic datasets include the same number of
samples, class distributions, and average number
of tokens across samples, we have included the
statistics for them under Mock-*.

Dataset Train Test
Size (neg/pos) Avg Len (Tokens) Size (neg/pos) Avg Len (Tokens)

Mock-* 4000/4000 75 500/500 75
Diabetes 6650/1416 1985 1389/340 2385
Anemia 1742/2912 2368 512/857 2396
IMDB 8673/8539 180 2189/2174 176
SST 3310/3610 17 912/909 17
AgNews 25508/25492 36 1900/1900 36
20News 612/624 159 192/195 206

Table 1: Summary statistics of the datasets.

5 Experimental Setup

The LSTM models are comprised of the following
components:

1. A 300d word embedding layer
2. A bidirectional LSTM layer (Hochreiter and

Schmidhuber, 1997) with 128 units
3. The attention module
4. A fully-connected layer

The MLP models include embedding, attention,
and fully-connected modules similar to the LSTM
models, but utilize a feed-forward projection layer
with 128 nodes followed by a tanh activation, in-
stead of the bi-LSTM layer.

The attention has a two layer fully-connected
network that first projects the input to half its size
in its first layer, applies a tanh activation, and then
maps it to a single logit in the second layer. A
softmax function is then used to convert the logit to
a probability distribution, which is used to compute
a weighted average over the inputs and form the
output of the attention.

Similar to Jain and Wallace (2019) and Wiegr-
effe and Pinter (2019), for the Diabetes and Anemia
datasets, 300d Word2Vec embeddings (Mikolov
et al., 2013) are pre-trained on the combined text
from the two datasets. The training is done using
CBOW with a window size of 10. For the rest
of the datasets, 300d publicly-pretrained FastText
embeddings (Bojanowski et al., 2017) are used.

Adam (Kingma and Ba, 2015) is used as the op-
timizer during training, and the learning rate and
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weight decay rates are set to 1e-3 and 1e-5, respec-
tively. Weight decay is applied to every component
in the network except the attention module.

6 Results and Discussion

First, we have included the F1 scores achieved
by the base models in Table 2. In order to ver-
ify the correctness of our experiments, we have
also included in the table the F1 scores reported by
Wiegreffe and Pinter (2019).

Dataset LSTM MLP
Reported Reproduced Reported Reproduced

Mock-1 - 0.974 - 0.975
Mock-2 - 0.988 - 0.989
Mock-5 - 0.999 - 1.000
Mock-10 - 1.000 - 0.999
Mock-1q - 1.000 - 1.000
Mock-2q - 1.000 - 1.000
Mock-3q - 1.000 - 1.000
Mock-4q - 1.000 - 1.000
Diabetes 0.775 0.733 0.699 0.665
Anemia 0.938 0.935 0.920 0.915
IMDB 0.902 0.908 0.888 0.882
SST 0.831 0.830 0.817 0.816
AgNews 0.964 0.959 - 0.956
20News 0.942 0.935 - 0.878

Table 2: F1 scores by the base model achieved on the
test datasets. The F1 scores reported by Wiegreffe and
Pinter (2019) have been included under the Reported
columns. The MLP setup is equivalent to the Trained
MLP setup from Wiegreffe and Pinter (2019).

Table 3 contains the results achieved by the ad-
versarial setup. It includes the F1 scores of the
adversarial models, the TVD of their predictions
from the base models, the JSD of their attention
distributions from the base models, the number of
epochs that resulted in the best loss on test, and
their attention faithfulness score AtteFa. The num-
bers are reported in terms of average and standard
deviation runs with 9 different random seeds. Indi-
vidual results for each seed is available in Tables 4
and 5 in Appendix A.

6.1 Effect of Contextualization
Comparing the AtteFa columns for the LSTM and
MLP models in Table 3, we can observe that the
attentions incorporated in models with LSTM as
their encoder are significantly less faithful than
their counterparts in the models with MLP as their
encoder. This observation was not surprising, as
a lower degree of contextualization in token repre-
sentations should inherently result in higher faith-
fulness in the attention that is applied on top of
those representations.

To better understand this, imagine the task of de-
tecting whether a text is about sports or fruits. Now
imagine that you want to classify the following
sample: football is life. We can simply
agree that the only informative word in the sample
is football, as it clearly indicates a sport. In
an ideal scenario, a faithful attention should have
a distribution highly centered on this word. Us-
ing an MLP encoder, the input tokens will retain
their information, therefore the representation of
token football retains its informativeness. This
is, however, not necessarily the case if a contex-
tual encoder such as LSTM is used to compute the
token representations, as it can simply manipulate
the tokens in a way that another word, such as is,
has the informative representation.

Going back to our adversarial setting, when
LSTM is used, the encoder has the capacity to ma-
nipulate the token representations so that a different
set of tokens bear the useful information to achieve
the task. In this setting, the attention can simply
focus on the new set and obtain similar information.
On the other hand, a non-contextual MLP encoder
does not have the capacity that LSTM holds, and
will retain the informativeness of the representa-
tion for each token. Therefore, it becomes more
challenging for the attention to find a new set of
tokens to attend to. That is why the prediction TVD
in the MLP models is significantly lower than the
LSTM ones, resulting in the MLP models having a
noticeably higher AtteFa.

Simply put, our results show that attention com-
ponents applied on top of contextual encoders are
generally less faithful than the ones on top of non-
contextual encoders.

6.2 Effect of the Frequency of Informative
Sources

Looking at the rows corresponding to the results on
the Mock-* datasets and the MLP model in Table
3, we can observe the general trend towards the
reduction of AtteFa as the number of informative
tokens increase. For the case of the MLP model, a
relatively high AtteFa of 0.82 is achieved on the
Mock-1 dataset, which only includes one informa-
tive token in each sample text, and the value drops
to close to 0 for the case of Mock-3q and Mock-4q
datasets. This shows that the faithfulness of the at-
tention mechanism has an inverse correlation with
the number of informative sources in the input.

The trend is still observable in the case of the
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dataset LSTM MLP
epoch F1 TVD JSD AtteFa epoch F1 TVD JSD AtteFa

Mock-1 12±5 0.947±0.020 0.015±0.009 0.693±0.000 0.0304±0.0176 20±24 0.221±0.312 0.231±0.012 0.393±0.000 0.8153±0.0425

Mock-2 9±7 0.977±0.010 0.016±0.005 0.693±0.000 0.0329±0.0096 1±0 0.221±0.312 0.246±0.003 0.670±0.000 0.5086±0.0064

Mock-5 7±5 1.000±0.001 0.002±0.000 0.693±0.000 0.0037±0.0008 9±11 0.147±0.275 0.247±0.001 0.686±0.000 0.4987±0.0027

Mock-10 14±8 1.000±0.000 0.001±0.000 0.693±0.000 0.0012±0.0000 23±31 0.147±0.275 0.249±0.001 0.686±0.000 0.5028±0.0027

Mock-1q 23±12 1.000±0.000 0.000±0.000 0.693±0.000 0.0006±0.0000 37±31 0.465±0.480 0.135±0.120 0.689±0.001 0.2721±0.2407

Mock-2q 35±32 1.000±0.001 0.000±0.000 0.678±0.004 0.0008±0.0010 42±35 0.751±0.324 0.099±0.109 0.691±0.000 0.1983±0.2188

Mock-3q 21±21 1.000±0.000 0.000±0.000 0.681±0.008 0.0003±0.0001 13±13 0.999±0.001 0.001±0.001 0.691±0.000 0.0013±0.0011

Mock-4q 8±4 1.000±0.000 0.000±0.000 0.680±0.004 0.0002±0.0003 3±0 1.000±0.000 0.000±0.000 0.690±0.000 0.0002±0.0000

Diabetes 22±5 0.729±0.003 0.018±0.001 0.693±0.000 0.0367±0.0020 42±27 0.134±0.076 0.147±0.004 0.691±0.000 0.2945±0.0072

Anemia 20±6 0.901±0.018 0.058±0.011 0.693±0.000 0.1164±0.0211 23±10 0.832±0.007 0.093±0.004 0.692±0.000 0.1861±0.0083

SST 21±6 0.823±0.002 0.034±0.002 0.626±0.006 0.0760±0.0034 23±15 0.605±0.028 0.173±0.001 0.656±0.002 0.3645±0.0024

IMDB 49±12 0.889±0.006 0.038±0.004 0.691±0.001 0.0769±0.0090 21±14 0.158±0.056 0.190±0.001 0.689±0.000 0.3826±0.0019

AgNews 49±18 0.958±0.001 0.007±0.001 0.683±0.002 0.0136±0.0015 24±12 0.610±0.032 0.172±0.005 0.671±0.001 0.3558±0.0097

20News 18±5 0.865±0.013 0.046±0.007 0.689±0.001 0.0931±0.0149 24±18 0.340±0.149 0.208±0.004 0.650±0.008 0.4444±0.0133

Table 3: Average and standard deviation of the results from our adversarial setup. The results for every row are
reported from 9 different runs with different random seed initializations. The column epoch includes the the number
of training epoch for each selected model.

Figure 1: Distribution of AtteFa across different models and real-life datasets.

LSTM models, but with a magnitude that is con-
siderably lower than what we have for the MLP
models, as the AtteFa on the Mock-1 dataset is
only 0.03. As discussed in Section 6.1, the con-
textualized LSTM encoder has the flexibility to
re-distribute the task-relative information across
different input tokens. Regardless of that, we can
still observe the general trend towards the drop of
AtteFa as we move from Mock-1 to Mock-4, which
shows that, even with the case of contextualization,
the frequency of informative elements in the source
input can still affect the faithfulness of the attention
mechanism.

We can observe anomalies in the trend men-
tioned before. For example, we can observe bumps
in the AtteFa in Mock-1 to Mock-2 and Mock-1q
to Mock-2q for the case of the LSTM model, and
from Mock-5 to Mock-10 in the case of the MLP
model. This can be partially justified by the behav-
ior of the base model in terms of how successful
it is in detecting informative tokens. An example
of this can be found in Table 2, where the MLP
model has achieved a lower F1 score on Mock-5
in comparison to Mock-10, meaning that the atten-

tion used in the MLP model was more successful
in identifying informative tokens in the Mock-5
dataset than in Mock-10.

We can also observe a 19% gap between the
AtteFa of the MLP model trained on the Mock-1
dataset and the maximum value of AtteFa (i.e. 1).
We argue that this is also related (at least partially)
to how the base model performs. We can see in
Table 2 that the base model trained on the Mock-1
dataset does not have an F1 score of 1 on the test
dataset. This could partially be due to the failure
of attention to detect the informative tokens and
highly focus on them.

Overall, we conclude that there is generally an
inverse relation between the frequency of informa-
tive sources in the input data and the faithfulness
of the attention module trained on it. But there
is still some noise in the AtteFa metric which is
attributed to how well the base model performs.
Although we do not think that this rules out AtteFa
as a suitable metric to compute the faithfulness of
attention, we believe there is room for exploring
alternative metrics that, for example, also incorpo-
rate the performance of the base models in their
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computation.

6.3 AtteFa on Real-life Datasets

Looking at Table 3, we can see that, for the case
of the MLP models, the values of AtteFa on all
the real-life datasets are significantly lower than
the ones on Mock-1 to Mock-10. As discussed in
Section 6.2, this could show that there is quite a
large number of informative tokens in the samples
belonging to these datasets, which allows the atten-
tion to shift its focus among them. This shows that,
the attention mechanism in MLP models trained on
all these datasets is not very faithful.

For the case of the LSTM model, however,
we can observe that the AtteFa on these real-life
datasets is comparable and sometimes higher than
their counterparts on the Mock-* datasets. How-
ever, focusing only on the real-life datasets, the
AtteFa of the LSTM models are still lower than the
MLP ones. This can also be visually observed in
Figure 1, which includes the violin plots of the dis-
tribution of AtteFa across the different datasets and
models. We hypothesize that, in real-life datasets,
we have a significantly lower number of completely
uninformative tokens as we had in the Mock-*
datasets. Although the LSTM encoder still retains
its flexibility to redistribute information across dif-
ferent tokens, the lower number of completely un-
informative tokens reduces the degree of the infor-
mation redistribution capacity. This is something
that we have not explored in our experiments with
the synthetic datasets, and therefore, leaves room
for more studies on this aspect.

One may argue that the number of input tokens
on its own can affect the distribution of attention
weights and can in turn affect the value of the at-
tention JSD of the adversarial models, hence the
final value of AtteFa. While we do not rule this out,
we believe that it is not merely the input lengths
that would affect the attention JSD, but rather the
frequency of informative input tokens that could
increase as the input lengths become higher. We
also believe that the way information is distributed
among their representations used by the attention
component also plays a big role here.

In Figure 1, we can see that for the case of the
MLP models, the values of AtteFa on datasets with
lengthier samples, namely Diabetes and Anemia,
are generally lower than the ones on the other
datasets. This is, however, not the case for the
LSTM models, as we can observe a relatively high

AtteFa on the Anemia dataset with respect to the
rest of the datasets. Even for the case of the MLP
model, we can see that the AtteFa on the 20News
dataset is higher than SST and AgNews that have
lower average input lengths (see Table 1).

We therefore conclude that the distribution of
task-related information across the input token rep-
resentations used by the attention component plays
a key role in the faithfulness of the attention.

6.4 Comparison of Our Adversial Setup with
Wiegreffe and Pinter’s

In Figure 2, we have plotted the prediction TVD
and attention JSD of our adversarial LSTM models
against the results reported in Wiegreffe and Pinter
(2019). The dotted lines in the plots resemble the
ones in figure 5 from Wiegreffe and Pinter (2019).

Figure 2: Visual comparison of averaged per-instance
test set JSD and TVD from base model for each model
variant between our adversarial setup and the one from
Wiegreffe and Pinter (2019). The • show results from
Wiegreffe and Pinter (2019), and the × show results
from our setup.

We can see that, with our adversarial setup,
we have achieved comparable prediction TVDs to
Wiegreffe and Pinter’s on the Anemia, SST and
IMDB datasets. However, on the Diabetes dataset,
our prediction TVDs are significantly lower than
Wiegreffe and Pinter’s. Given that our adversar-
ial setups are pretty similar, we believe that this is
mainly due to our inability to properly reproduce
their base LSTM model on the Diabetes dataset.
We can observe this from the 0.042 drop in the
F1 score of our model from what was reported in
Wiegreffe and Pinter (2019).

Looking at Figure 2, we can see that the adver-
sarial results that we have achieved are towards
the higher-end of the attention JSDs reported by
Wiegreffe and Pinter (2019). This is very close
to the calculated upper-bound for JSD, which is
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0.6931. Wiegreffe and Pinter used the hyperparam-
eter λ in order to reduce the effect of the attention
JSD in the value of their loss. With the removal
of this hyperparameter in our setup (which is the
equivalent of setting it to 1), the adversarial training
leads the model to primarily maximize the attention
JSD, as it is an easier objective than to minimize
the prediction TVD. Therefore, we usually end up
with an almost maxed-out attention JSD, and it
is mainly the prediction TVD that determines the
value of AtteFa. However, we argue that the JSD
is not always fully maxed-out (see the plot for the
SST dataset in Figure 2), and therefore, we cannot
simply disregard it in the computation of AtteFa.

7 Limitations

There are certain limitations with the current work,
in terms of both the methodology used to compute
AtteFa, and the different factors affecting the atten-
tion faithfulness. In this section, we explore the
ones that we believe are the most important:

The current methodology to compute AtteFa is
scoped solely on binary text classification. In or-
der to have AtteFa as a widely accepted metric in
the NLP community, the methodology needs to be
extended to other NLP tasks, such as multi-class
classification, text retrieval, question answering,
machine translation, etc.

In the current work, we have studied the effect of
the frequency of informative tokens on the faithful-
ness of attention through running experiments on
the Mock-* datasets, which are synthetic datasets
for sentiment classification. The current selection
of sentiment words and their positioning within the
input texts were done in a random fashion. A more
thorough experiment would explore the effect of
the distribution of informative tokens across the
input texts (centered towards the start/end/middle
vs. scattered evenly), along with a more careful
selection of the words to be used as the informative
tokens (e.g. differentiating between words with
strong vs. weak sentiments).

In terms of investigating the effect of encoder
contextualization on the faithfulness of attention,
we have explored using token-level MLP as a
non-contextual encoder and LSTM as a contex-
tual one. This can be extended to exploring other
encoder architectures, such as CNNs (LeCun et al.,
1999), GRUs (Cho et al., 2014), and transformers
(Vaswani et al., 2017).

Another aspect in the current study which has

room for exploration is the evaluation of the effect
of softmax temperature on the faithfulness of at-
tention. We believe that higher faithfulness may
be achieved by using lower temperatures in the
case of datasets with infrequent informative tokens,
and higher temperature in the case of datasets with
frequent informative tokens within their input.

Last, but not least, the experiments in this work
are only focused on a specific type of single-head at-
tention. We believe that the current approach does
not transfer properly to multi-headed attentions,
as we may still consider a multi-headed attention
faithful if the only way for the adversarial model
to come up with the same predictions as the base
model is to change the order of the attention heads
and not the attention weights computed by them.
Due to the frequent use of multi-headed attentions
in state-of-the-art NLP models, the extension of
AtteFa to multi-headed attentions would play a big
role in its widespread adoption by the NLP com-
munity.

8 Conclusion

In this paper, we presented an adversarial training
approach for binary text classification tasks, which
can provide us with the metric AtteFa that quanti-
tatively measures the degree of faithfulness in the
attention weights. We, then, measured the effect
of contextualization, as well as the effect of the
frequency of informative tokens on the attention
faithfulness. Finally, we computed and evaluated
AtteFa for models trained on several real-life binary
text classification datasets.

We hope that the presented approach can act as
a motivation for researchers to further explore au-
tomatic approaches to quantitatively measure the
degree of model explainability or its different as-
pects (e.g. faithfulness, plausibility, sufficiency,
etc.).

As future directions, we plan to address the lim-
itations specified in Section 7 to come up with a
more reliable and more widely applicable metric to
measure the faithfulness of attention. We also plan
to measure attention faithfulness in other settings,
e.g. the use of different types of attention such
as multi-headed and scaled dot-product (Vaswani
et al., 2017), the use of attention components in
different layers of a model, etc.
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dataset seed LSTM MLP
epoch F1 TVD JSD AtteFa epoch F1 TVD JSD AtteFa

Mock-1

10 7 0.923 0.025 0.693 0.050 47 0.662 0.222 0.393 0.784
50 16 0.971 0.004 0.693 0.008 1 0.000 0.244 0.393 0.860
257 15 0.943 0.017 0.693 0.033 1 0.000 0.219 0.393 0.774

500231 20 0.960 0.011 0.693 0.021 76 0.662 0.223 0.393 0.787
100078 13 0.968 0.006 0.693 0.011 9 0.000 0.247 0.393 0.872
12504 7 0.916 0.029 0.693 0.057 11 0.000 0.249 0.393 0.879

90754789 16 0.963 0.008 0.693 0.015 7 0.000 0.218 0.393 0.767
8988812 3 0.926 0.026 0.693 0.052 30 0.662 0.223 0.393 0.785

2 9 0.952 0.012 0.693 0.025 2 0.000 0.235 0.393 0.828

Mock-2

10 2 0.982 0.015 0.692 0.030 1 0.662 0.243 0.670 0.504
50 4 0.977 0.016 0.693 0.032 1 0.000 0.248 0.670 0.513
257 12 0.978 0.016 0.693 0.032 1 0.000 0.244 0.670 0.506

500231 5 0.964 0.024 0.693 0.047 2 0.662 0.242 0.670 0.502
100078 15 0.975 0.016 0.693 0.033 1 0.000 0.247 0.670 0.510
12504 19 0.960 0.024 0.693 0.048 1 0.000 0.250 0.670 0.519

90754789 3 0.978 0.017 0.693 0.034 1 0.000 0.242 0.670 0.502
8988812 4 0.984 0.012 0.693 0.024 1 0.662 0.243 0.670 0.504

2 19 0.997 0.007 0.693 0.015 1 0.000 0.250 0.670 0.519

Mock-5

10 12 1.000 0.002 0.693 0.003 1 0.662 0.249 0.686 0.504
50 3 1.000 0.002 0.693 0.003 17 0.000 0.246 0.686 0.497
257 2 0.998 0.003 0.693 0.006 4 0.000 0.246 0.686 0.497

500231 20 1.000 0.002 0.693 0.003 2 0.000 0.247 0.686 0.499
100078 5 0.999 0.002 0.693 0.004 16 0.000 0.246 0.686 0.497
12504 7 1.000 0.002 0.693 0.003 2 0.000 0.246 0.686 0.497

90754789 3 1.000 0.002 0.693 0.003 34 0.000 0.246 0.686 0.497
8988812 5 1.000 0.002 0.693 0.003 1 0.662 0.249 0.686 0.504

2 7 1.000 0.002 0.693 0.003 2 0.000 0.246 0.686 0.497

Mock-10

10 21 1.000 0.001 0.693 0.001 1 0.662 0.251 0.686 0.508
50 25 1.000 0.001 0.693 0.001 80 0.000 0.248 0.686 0.501
257 6 1.000 0.001 0.693 0.001 13 0.000 0.248 0.686 0.501

500231 8 1.000 0.001 0.693 0.001 2 0.000 0.249 0.686 0.503
100078 16 1.000 0.001 0.693 0.001 80 0.000 0.248 0.686 0.501
12504 4 1.000 0.001 0.693 0.001 6 0.000 0.248 0.686 0.501

90754789 9 1.000 0.001 0.693 0.001 24 0.000 0.248 0.686 0.501
8988812 28 1.000 0.001 0.693 0.001 1 0.662 0.251 0.686 0.508

2 12 1.000 0.001 0.693 0.001 4 0.000 0.248 0.686 0.501

Mock-1q

10 20 1.000 0.000 0.693 0.001 70 0.000 0.247 0.690 0.497
50 40 1.000 0.000 0.693 0.001 10 1.000 0.001 0.688 0.002
257 39 1.000 0.000 0.693 0.001 79 0.093 0.235 0.690 0.473

500231 13 1.000 0.000 0.693 0.001 80 0.093 0.235 0.690 0.473
100078 17 1.000 0.000 0.693 0.001 6 1.000 0.002 0.688 0.003
12504 14 1.000 0.000 0.693 0.001 6 1.000 0.002 0.689 0.003

90754789 12 1.000 0.000 0.693 0.001 44 0.000 0.247 0.690 0.497
8988812 15 1.000 0.000 0.693 0.001 28 0.000 0.247 0.690 0.497

2 39 1.000 0.000 0.693 0.001 6 1.000 0.002 0.689 0.004

Mock-2q

10 25 1.000 0.000 0.678 0.001 80 0.305 0.203 0.690 0.408
50 80 1.000 0.000 0.681 0.000 79 0.700 0.212 0.690 0.426
257 79 1.000 0.000 0.681 0.000 4 0.997 0.002 0.691 0.003

500231 5 0.998 0.002 0.678 0.003 40 0.995 0.003 0.691 0.005
100078 23 0.999 0.001 0.681 0.001 80 0.089 0.236 0.690 0.474
12504 8 1.000 0.000 0.682 0.000 79 0.683 0.230 0.690 0.461

90754789 12 1.000 0.000 0.681 0.000 4 0.998 0.001 0.691 0.002
8988812 3 1.000 0.000 0.670 0.000 10 0.997 0.002 0.691 0.004

2 79 1.000 0.000 0.670 0.000 6 0.999 0.001 0.690 0.001

Mock-3q

10 5 1.000 0.000 0.674 0.000 5 0.998 0.001 0.691 0.002
50 16 1.000 0.000 0.675 0.000 4 0.997 0.002 0.691 0.003
257 9 1.000 0.000 0.674 0.001 2 1.000 0.000 0.690 0.000

500231 12 1.000 0.000 0.691 0.000 44 1.000 0.000 0.691 0.000
100078 10 1.000 0.000 0.691 0.000 13 1.000 0.000 0.691 0.000
12504 4 1.000 0.000 0.689 0.000 5 0.999 0.001 0.691 0.001

90754789 46 1.000 0.000 0.675 0.000 11 1.000 0.000 0.691 0.000
8988812 71 1.000 0.000 0.686 0.000 25 0.999 0.001 0.691 0.001

2 12 1.000 0.000 0.674 0.000 5 0.998 0.001 0.691 0.002

Mock-4q

10 6 1.000 0.000 0.683 0.000 3 1.000 0.000 0.690 0.000
50 7 1.000 0.000 0.683 0.000 3 1.000 0.000 0.690 0.000
257 5 1.000 0.000 0.683 0.000 3 1.000 0.000 0.690 0.000

500231 12 1.000 0.000 0.683 0.000 2 1.000 0.000 0.690 0.000
100078 9 1.000 0.000 0.683 0.000 3 1.000 0.000 0.690 0.000
12504 16 1.000 0.000 0.682 0.000 3 1.000 0.000 0.691 0.000

90754789 7 0.999 0.001 0.670 0.001 3 1.000 0.000 0.690 0.000
8988812 8 1.000 0.000 0.674 0.000 3 1.000 0.000 0.690 0.000

2 4 1.000 0.000 0.683 0.000 4 1.000 0.000 0.690 0.000

Table 4: All results from our adversarial setup on the synthetic datasets.
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dataset seed LSTM MLP
epoch F1 TVD JSD AtteFa epoch F1 TVD JSD AtteFa

Diabetes

10 21 0.732 0.017 0.693 0.035 58 0.180 0.145 0.691 0.291
50 25 0.730 0.018 0.693 0.037 76 0.203 0.142 0.691 0.286

257 23 0.730 0.018 0.693 0.037 66 0.167 0.146 0.690 0.293
500231 22 0.730 0.018 0.693 0.035 21 0.112 0.147 0.690 0.295
100078 25 0.726 0.020 0.693 0.040 34 0.227 0.143 0.691 0.287
12504 20 0.735 0.019 0.693 0.038 80 0.159 0.146 0.691 0.292

90754789 31 0.728 0.018 0.693 0.035 24 0.151 0.145 0.691 0.291
8988812 10 0.723 0.020 0.693 0.040 15 0.006 0.153 0.690 0.307

2 18 0.729 0.017 0.692 0.034 5 0.000 0.153 0.691 0.308

Anemia

10 32 0.900 0.057 0.693 0.115 30 0.833 0.094 0.692 0.189
50 14 0.877 0.072 0.693 0.144 13 0.842 0.086 0.692 0.173

257 15 0.923 0.047 0.692 0.093 45 0.841 0.095 0.693 0.190
500231 19 0.914 0.049 0.693 0.098 11 0.829 0.091 0.693 0.182
100078 26 0.894 0.061 0.693 0.123 23 0.828 0.093 0.692 0.185
12504 14 0.877 0.077 0.693 0.155 29 0.817 0.103 0.693 0.206

90754789 26 0.912 0.052 0.693 0.104 19 0.835 0.093 0.692 0.186
8988812 19 0.888 0.062 0.693 0.124 23 0.831 0.091 0.692 0.183

2 17 0.927 0.046 0.692 0.092 14 0.834 0.091 0.693 0.182

SST

10 23 0.825 0.038 0.643 0.082 23 0.657 0.172 0.658 0.362
50 16 0.822 0.033 0.624 0.072 10 0.598 0.172 0.656 0.363

257 29 0.821 0.032 0.624 0.071 28 0.577 0.172 0.655 0.364
500231 11 0.823 0.033 0.624 0.073 22 0.580 0.173 0.657 0.365
100078 30 0.822 0.035 0.624 0.078 15 0.576 0.174 0.653 0.370
12504 20 0.828 0.033 0.624 0.074 61 0.590 0.173 0.660 0.365

90754789 18 0.818 0.035 0.624 0.078 21 0.630 0.173 0.657 0.364
8988812 24 0.823 0.035 0.624 0.077 9 0.636 0.173 0.654 0.366

2 18 0.823 0.035 0.624 0.078 14 0.599 0.172 0.656 0.363

IMDB

10 62 0.896 0.034 0.691 0.069 13 0.210 0.191 0.689 0.385
50 42 0.889 0.040 0.689 0.081 18 0.230 0.188 0.689 0.379

257 50 0.891 0.037 0.691 0.074 10 0.101 0.191 0.689 0.384
500231 26 0.893 0.038 0.691 0.077 45 0.073 0.190 0.689 0.382
100078 44 0.889 0.033 0.691 0.066 11 0.180 0.191 0.689 0.384
12504 41 0.892 0.035 0.691 0.070 12 0.195 0.190 0.689 0.382

90754789 60 0.890 0.040 0.691 0.081 29 0.100 0.191 0.690 0.384
8988812 65 0.875 0.049 0.691 0.098 45 0.215 0.189 0.689 0.380

2 54 0.890 0.038 0.691 0.077 10 0.120 0.191 0.689 0.385

AgNews

10 27 0.959 0.006 0.680 0.013 11 0.630 0.164 0.670 0.340
50 28 0.958 0.006 0.681 0.013 17 0.567 0.174 0.671 0.359

257 33 0.957 0.008 0.685 0.016 10 0.653 0.169 0.671 0.349
500231 60 0.958 0.006 0.680 0.012 49 0.639 0.172 0.670 0.356
100078 37 0.958 0.006 0.680 0.013 17 0.610 0.167 0.671 0.345
12504 78 0.957 0.008 0.685 0.016 19 0.597 0.176 0.672 0.362

90754789 68 0.959 0.007 0.685 0.015 27 0.633 0.171 0.671 0.352
8988812 66 0.958 0.007 0.686 0.014 23 0.549 0.179 0.673 0.369

2 47 0.958 0.006 0.680 0.012 39 0.611 0.179 0.671 0.370

20News

10 23 0.849 0.057 0.689 0.115 34 0.246 0.207 0.661 0.433
50 26 0.863 0.038 0.690 0.077 34 0.176 0.200 0.653 0.425

257 21 0.850 0.050 0.688 0.100 23 0.315 0.207 0.656 0.437
500231 17 0.858 0.050 0.687 0.101 57 0.397 0.206 0.659 0.434
100078 16 0.894 0.031 0.689 0.063 3 0.460 0.211 0.639 0.457
12504 13 0.859 0.052 0.689 0.105 4 0.440 0.211 0.641 0.456

90754789 16 0.874 0.049 0.688 0.099 44 0.043 0.205 0.654 0.435
8988812 7 0.863 0.047 0.688 0.094 11 0.495 0.214 0.644 0.461

2 19 0.875 0.042 0.689 0.084 10 0.492 0.213 0.642 0.461

Table 5: All results from our adversarial setup on the real-life datasets.130


