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Abstract

Pretrained language models have served as im-
portant backbones for natural language process-
ing. Recently, in-domain pretraining has been
shown to benefit various domain-specific down-
stream tasks. In the biomedical domain, natural
language generation (NLG) tasks are of critical
importance, while understudied. Approaching
natural language understanding (NLU) tasks
as NLG achieves satisfying performance in
the general domain through constrained lan-
guage generation or language prompting.We
emphasize the lack of in-domain generative
language models and the unsystematic gener-
ative downstream benchmarks in the biomedi-
cal domain, hindering the development of the
research community. In this work, we intro-
duce the generative language model BioBART
that adapts BART to the biomedical domain.
We collate various biomedical language gen-
eration tasks including dialogue, summariza-
tion, entity linking, and named entity recogni-
tion. BioBART pretrained on PubMed abstracts
has enhanced performance compared to BART
and set strong baselines on several tasks. Fur-
thermore, we conduct ablation studies on the
pretraining tasks for BioBART and find that
sentence permutation has negative effects on
downstream tasks.

1 Introduction

Since the advent of ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019), the new pretrain-then-
finetune paradigm has brought great performance
improvement and dominated the methodology re-
search of the natural language processing (NLP)
field. Previous research has illustrated that pre-
training language models on the domain-specific
corpora can improve the model performance on
domain-specific tasks further (Gururangan et al.,
2020). With the large-scale publicly accessible
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corpora from PubMed, researchers have already
proposed biomedical domain pretrained language
models such as BioBERT (Lee et al., 2020) and
PubMedBERT (Gu et al., 2022) to aid the later
research.

Natural language generation (NLG) tasks such
as dialogue system (Chao et al., 2017) and ques-
tion answering (Jin et al., 2022) are of critical im-
portance for the biomedical artificial intelligence
research, and there is also a trend to approach nat-
ural language understanding as NLG tasks in the
general domain (Sun et al., 2021; Yan et al., 2021).
For example, an entity retrieval task can be solved
by constrained natural language generation (Cao
et al., 2021). However, there exist two gaps in
the research of the biomedical NLG. On the one
hand, the architectures of the biomedical pretrained
language models are almost all encoder-only trans-
formers. Such architecture is incapable of generat-
ing natural languages auto-regressively. A decoder
is necessary for language generation (Liu and La-
pata, 2019). On the other hand, there are very
few in-domain generative language models for bio-
medicine (Phan et al., 2021). Models pretrained
on biomedical corpora may further enhance the
performance of current biomedical NLG methods.

To bridge the gaps mentioned above, we propose
a biomedical auto-regressive generative language
model, BioBART, pretrained on the biomedical
corpora. In our work, we adopt BART (Bidirec-
tional and Auto-Regressive Transformers), a gen-
erative pretrained language model which achieves
state-of-the-art results on different NLG tasks in
the general domain (Lewis et al., 2020a). We con-
tinuously pretrain BART on PubMed abstracts to
achieve biomedical domain adaption only using the
text-infilling task. We also collate and evaluate Bio-
BART on the existing biomedical NLG tasks. The
in-domain BioBART outperforms BART model
and sets strong baselines for several NLG tasks.

The main contributions of our work are summa-
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rized as follows1:

1. In aid of the research concerning the biomedi-
cal NLG tasks, we collate existing biomedical
NLG tasks along with corresponding data and
experimental settings. The archived biomedi-
cal tasks will be released.

2. We further analyze the influence of the
pretraining task of sentence permutation in
BART, and we find it brings degradation on
the biomedical NLG tasks.

3. We evaluate our BioBART models on various
NLG tasks and demonstrate the superb perfor-
mance over BART. We will release the codes
and weights to help reproduce our results.

2 Related Work

2.1 Auto-regressive Language Model

Most of the prestigious language models such
as BERT, RoBERTa (Liu et al., 2019) are auto-
encoding transformers. The encoder-only archi-
tecture prevents the direct implementation of the
seq2seq language generation. Several generative
auto-regressive language models are proposed to
mitigate the problem. The serial GPT models
(Radford and Narasimhan, 2018; Radford et al.,
2019; Brown et al., 2020) adopt the decoder-only
transformer architecture which is a left-to-right lan-
guage model. They pretrain the models by auto-
regressively predicting the upcoming word of sen-
tences. UniLM1 (Dong et al., 2019) and UniLM2
(Bao et al., 2020) implement attention masks to
the transformer encoder to achieve unidirectional
language modeling. They pretrain their models
with a mixture of masked language modeling and
auto-regressive language generation. T5 (Raffel
et al., 2020) and BART (Lewis et al., 2020a) ap-
ply the full transformer architecture, the encoder is
used for input sequence encoding and the decoder
is used for language generation. T5 and BART are
both pretrained by denoising the corrupted corpora.
Such models achieve many state-of-the-art results
on various NLG tasks and some NLU tasks.

2.2 Biomedical Domain Pretraining

Existing work has shown that pretraining the lan-
guage models on the domain-specific corpora can

1Our codes and pretrained checkpoints can be found at
https://github.com/GanjinZero/BioBART.

bring better model transferability on the corre-
sponding downstream tasks (Gururangan et al.,
2020). There are endeavors to adapt language
models to the specific domain. BioBERT (Lee
et al., 2020) pretrained BERT model using biomed-
ical corpora from PubMed abstracts and PubMed
Central (PMC) full-text articles. BlueBERT (Peng
et al., 2020) and clinicalBERT (Alsentzer et al.,
2019) add electronic medical record (EMR) cor-
pora from MIMIC-III (Johnson et al., 2016) to
the pretraining data. Instead of continuous train-
ing from the general BERT checkpoint, SciBERT
(Beltagy et al., 2019) and PubMedBERT (Gu et al.,
2022) are trained from scratch using scientific pa-
pers from Semantic Scholar (Ammar et al., 2018)
and PubMed articles respectively. (Shin et al.,
2020) releases BioMegatron, a larger-size BERT-
style language model pretrained on PubMed ab-
stracts, PMC and MIMIC-III. The aforementioned
work all use the model architecture of BERT. Other
researchers are exploring different language mod-
els.

BioELMo (Jin et al., 2019) is pretrained on
biomedical corpora based on stacked bidirectional
LSTM language model ELMo (Peters et al., 2018).
BioELECTRA (Kanakarajan et al., 2021) applies
an adversarial training scheme consisting of a dis-
criminator and a generator. They use PubMed ab-
stracts and PMC articles as in-domain pretraining
corpora. BioMed-RoBERTa (Gururangan et al.,
2020) is initialized from RoBERTa (Liu et al.,
2019), with additional training on the scientific pa-
pers from Semantic Scholar. Bio-lm (Lewis et al.,
2020b) is pretrained on data from PubMed, PMC,
and MIMIC-III based on the RoBERTa model. Ke-
BioLM (Yuan et al., 2021) uses Entity as Experts
(Févry et al., 2020) model to inject biomedical en-
tity knowledge into the language model, starting
from the weights of PubMedBERT. Coder (Yuan
et al., 2022b) and SapBERT (Liu et al., 2021) take
advantage of the synonyms resource from biomed-
ical knowledge base UMLS (Bodenreider, 2004)
and enhance the model with entity knowledge by
contrastive pretraining.

Due to the nature of model architecture, encoder-
only language models have limited performance on
the NLG tasks, such as summarization and question
answering. In recent research, SciFive (Phan et al.,
2021) is proposed for biomedical NLP tasks. Sci-
Five is pretrained on PubMed abstracts and PMC
articles based on T5 architecture. While T5 is avail-

https://github.com/GanjinZero/BioBART
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able for NLG tasks, SciFive is focused on evaluat-
ing NLU tasks. Compared to SciFive, we choose
to use BART as our model backbone and evalu-
ate more on NLG tasks to leverage the power of
decoders.

2.3 Biomedical Natural Language Generation

In the biomedical domain, most of the NLP tasks
are natural language understanding (NLU) tasks.
There are well-archived benchmarks for the evalua-
tion of biomedical NLU, such as BLUE (Gu et al.,
2022) and CBLUE (Zhang et al., 2021). NLG tasks
are relatively less studied. (Ju et al., 2020) collects
the patients and doctors’ dialogues and forms a
benchmark for Covid-19 related dialogue system.
(Ben Abacha et al., 2021) is an annual biomedical
NLP competition containing NLG tasks such as
medical question (or answer) summarization and
figure captions.

Moreover, with the success of GPT-3, there is a
novel trend that unifies all the NLP tasks as NLG
tasks (McCann et al., 2018; Brown et al., 2020).
The traditional NLU tasks can be approached by
constrained language generation. Much attention
is paid on the NLG methods recently. In the
biomedical domain, entities are of primary concern.
GENRE (Cao et al., 2021), Yuan et al. (2022a) and
BARTNER (Yan et al., 2021) reach the new state-
of-the-art by auto-regressive language model on
entity linking and named entity recognition tasks.
Such methods can be adapted to the biomedical
domain.

3 Biomedical Domain Pretraining

BART is a sequence-to-sequence model with a
bi-directional encoder and a left-to-right auto-
regressive decoder. The model architecture is con-
sistent with the Transformers (Vaswani et al., 2017)
except for changing the ReLU activation functions
to GeLUs (Hendrycks and Gimpel, 2016). BART
is pretrained by denoising the corrupted input doc-
uments. The work ablates five different types of
corruption noise: text masking, text deletion, text
infilling, sentence permutation, and document ro-
tation. As a result, the pretraining documents are
corrupted in two ways: 1) Text Infilling: For each
document, a number of token spans are sampled,
and each sample span is replaced with a single
mask token. 2) Sentence Permutation: A docu-
ment is split into sentences and sentences are shuf-
fled in random orders. The pretraining objective

is to minimize the negative log-likelihood of the
original documents.

Prior work has shown that continuous-pretrained
models can get competitive results compared with
those trained from scratch (Gu et al., 2022). In
our work, we continuously pretrain BART on the
biomedical domain corpora. We revisit the methods
to corrupt input texts. BART keeps the sentence
permutation noise because of the significant perfor-
mance gain on the summarization task, although
this noise may lead to slight degradation on other
tasks. We run further ablation studies on various
biomedical NLG tasks. We show that the model
pretrained without sentence permutation has better
performance. Further details are listed in Section
5.5. Therefore we only implement the text infilling
task to corrupt input texts for pretraining BioBART.

4 Generative Downstream Task

In this section, we introduce the generative down-
stream tasks in the biomedical domain. We will
conduct experiments on these tasks to illustrate the
performance of the domain-specific BioBART.

4.1 Dialogue System

A medical dialogue system aims to imitate the hu-
man doctor to communicate with human patients in
a natural way. Based on the BART-style model, the
patients’ primitive descriptions and dialogue histo-
ries are used as inputs to the model, then the model
auto-regressively generates the replies as outputs.
The task is trained and evaluated in a sequence-to-
sequence fashion.

4.2 Abstractive Summarization

Summarization is a classical NLP task. It is
important for healthcare to concisely summarize
knowledge-rich biomedical documents. Tech-
nically, there are abstractive and extractive ap-
proaches to generate better summaries. With the
help of large pretrained language models, abstrac-
tive summarization methods outperform extractive
methods in summary diversity and conciseness
(Zhang et al., 2020a; Dou et al., 2021). The ab-
stractive summarization is naturally an NLG task.
We follow the BART (Lewis et al., 2020a) work
and evaluate our BioBART on the biomedical sum-
marization tasks in the same fashion. The input
documents are encoded by the model encoder and
the summaries are generated by the decoder auto-
regressively.
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4.3 Entity Linking

Entity linking is a task that maps entity mentions in
texts to its standard entity concepts. Traditional en-
tity linking methods use language models to encode
entity concepts from knowledge bases(e.g. UMLS)
and mentions into the same dense space and disam-
biguate mentions by vector similarity. The large
memory footprint requirements and difficult model
training hinder the development of such methods.
Cao et al. (2021) proposes GENRE which uses
generative language models to disambiguate en-
tity mentions by auto-regressively generating the
standard concept names conditioned on the inputs.
(Yuan et al., 2022a) achieves state-of-the-art entity
linking performance on various biomedical entity
linking datasets by generative methods. We include
this leading-edge method to show the superior per-
formance of BioBART.

4.4 Named Entity Recognition

Named entity recognition (NER) is a critical task
in the biomedical NLP community which extracts
biomedical-related entities from texts. Nested and
discontinuous entities widely exist in biomedical
papers and EMR due to the multi-granularity se-
mantic meanings and complex syntax structures
(Yuan et al., 2020). Well-used sequential labelling
framework in NER (Lample et al., 2016) is not
directly fitted for nested and discontinuous NER
(Finkel and Manning, 2009). Yan et al. (2021)
propose BARTNER to model nested and discontin-
uous NER into seq2seq task by inputting sentences
and outputting entities with their entity types one
by one. The generative approach of BARTNER
achieves state-of-the-art performance on nested and
discontinuous NER datasets, and we will use it to
evaluate our proposed BioBART can further en-
hance the performance.

5 Experiments

5.1 Pretraining

Pretraining Corpora There are two main
sources of biomedical corpora: PubMed abstracts,
PMC articles. In the prior work (Gu et al., 2022),
training on both corpora surprisingly leads to a
slight degradation in performance compared to
solely training on PubMed abstracts. Therefore, we
only use PubMed abstracts as the pretraining cor-
pora. The corpora contain about 41 GB of biomed-
ical research paper abstracts on PubMed.

Pretraining Setup We continuously pretrain
both large and base versions of BART for 120k
steps with a batch size of 2560. We use the same
vocabulary as BART to tokenize the texts. Al-
though the input length limitation of BART is 1024,
the tokenized PubMed abstracts rarely exceed 512.
Therefore, for the sake of training efficiency, we
truncate all the input texts to 512 maximum length.
We mask 30% of the input tokens and the masked
span length is determined by sampling from a Pois-
son distribution (λ = 3) as used in BART. We use
a learning rate scheduler of 0.02 warm-up ratio
and linear decay. The learning rate is set to 1e-4.
We train the base version of BioBART on 2 DGX
with 16 40GB A100 GPUs for about 100 hours and
the large version of BioBART on the same devices
for 168 hours with the help of the open-resource
framework DeepSpeed (Rajbhandari et al., 2020).

5.2 Dataset for Downstream Task

5.2.1 Dialogue System
CovidDialog (Ju et al., 2020) Concerning the
widespread Coronavirus disease 2019 (COVID-19)
pandemic, the CovidDialog dataset is proposed to
facilitate the development of dialogue system pro-
viding COVID-related consultations to people. The
dataset is collected from online healthcare forums.
It contains 603 consultations about COVID-19 and
other related pneumonia, having 1232 utterances in
total. Each consultation starts with a description re-
lated to patients’ medical conditions, then followed
the conversation between a doctor and a patient.

5.2.2 Abstractive Summarization
iCliniq, HealthCareMagic Both datasets are
extracted from MedDialog (Zeng et al., 2020)
dataset, collected from the online healthcare plat-
form. iCliniq contains 31,062 samples and Health-
CareMagic contains 226,405 samples. Each sam-
ple is comprised of a summary and corresponding
dialogues between a patient and a doctor. Health-
CareMagic’s summaries are more abstractive and
are written in a formal style, unlike iCliniq’s
patient-written summaries. We follow the previous
work (Mrini et al., 2021) for training, developing,
and testing data separations of both datasets.

MeQSum (Ben Abacha and Demner-Fushman,
2019) The dataset is created for better medical ques-
tion summarization because the original patients’
questions are verbose, causing difficulty for the
question-answering system. The dataset contains
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Task Dataset Train Dev Test Dataset Train Dev Test Metric

Dialogue CovidDialog 490 63 61 Rouge,BERTscore,
BLEU

Summarization
MeQSum 500 - 500 MEDIQA-ANS 38,166 174 552

Rouge, BERTscoreiCliniq 24,851 3,105 3,108 MEDIQA-QS 1,000 50 100
HealthCareMagic 181,122 22,641 22,642 MEDIQA-MAS 1,104 50 80

Entity Linking
MedMentions 122,241 40,884 40,157 NCBI 5,784 787 960

Recall@1,@5BC5CDR 9,285 9,515 9,654 COMETA 13,489 2,176 4,350
AskAPatients 16,826 1,663 1,712

NER ShARe13 5,146 669 5,333 ShARe14 10,380 771 7,922 Entity-level F1 scoreCADEC 4,430 898 990 GENIA 50,509 - 5,506

Table 1: The statistics of the datasets for biomedical generative tasks. The counts for NER are entity counts.

Covid19-Dialogue
Model Rouge-1 Rouge-2 Rouge-L BLEU BERTscore
BART BASE 27.24 12.31 25.66 10.36 0.852
BioBART BASE 28.14 12.77 26.32 11.40 0.849

BART LARGE 29.02 12.08 26.93 10.96 0.852
BioBART LARGE 28.81 13.79 26.96 12.05 0.850

State-of-the-art - - - 7.60 -
Source - - - (Zhou et al., 2021) -

Table 2: The main results on Dialogue System task.

1000 patients’ health questions selected from a col-
lection distributed by the U.S. National Library of
Medicine (Kilicoglu et al., 2018). Each question is
annotated with a question summarization by medi-
cal experts.

MEDIQA-ANS (Savery et al., 2020) When feel-
ing discomfort, people may turn to the internet for
the answers to their medical questions. The raw
searching result may be obscure for even medical
experts. The dataset is proposed to emphasize the
need for a medical answer summarization system
in aid of better understanding biomedical materials.
It consists of 156 health questions, corresponding
answers to these questions, and expert-created sum-
maries (both abstractive and extractive) of these
answers. Following the paper, we use BioASQ
(Tsatsaronis et al., 2015) to construct training data,
MedInfo (Abacha et al., 2019) for validation, and
the whole MEDIQA-ANS dataset for testing.

MEDIQA-QS, MEDIQA-MAS Both datasets
are derived from the MEDIQA 2021 Tasks
(Ben Abacha et al., 2021). MEDIQA-QS dataset
aims to incentivize the development of new sum-
marization approaches that address specifically the
challenges of long and complex health questions.
The dataset provides the validation and test sets,
and MeQSum dataset is used as the training set.
MEDIQA-MAS aims to prompt research that si-
multaneously aggregates and summarize the differ-
ent relevant answers to a medical question. This

dataset provides the validation and test sets, and
MEDIQA-ANS dataset comprises the training set.

5.2.3 Entity Linking
MedMentions (Mohan and Li, 2019) MedMen-
tions is a large-scale biomedical entity recognition
dataset. The commonly used St21pv subset con-
tains 4,392 PubMed abstracts, and over 350,000
mentions are linked to concepts of 21 selected se-
mantic types in UMLS (Bodenreider, 2004).

BC5CDR (Li et al., 2016) BC5CDR is a bench-
mark for biomedical entity linking. 1500 PubMed
article abstracts are annotated with 4409 chemicals,
5818 diseases entities, and 3116 chemical-disease
interactions. MeSH ontology, a subset of UMLS
is used to annotate entities. We follow most recent
work (Angell et al., 2021; Varma et al., 2021) for
data pre-processing.

NCBI (Doğan et al., 2014) The dataset is built
from 793 PubMed abstracts. It consists of 6892
annotated disease mentions of 790 unique disease
concepts. The annotators label all the mentions to
concepts in MEDIC ontology (Davis et al., 2012).
MEDIC is a medical dictionary that merges the
diseases concepts, synonyms, and definitions in
MeSH and OMIM and is composed of 9700 unique
diseases. We follow BioSyn (Sung et al., 2020) to
process data and construct dataset splits.

COMETA (Basaldella et al., 2020) COMETA
is derived from the online publicly available and
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iCliniq HealthCareMagic MEDIQA-QS
Model Rouge-1/2/L BERTscore Rouge-1/2/L BERTscore Rouge-1/2/L BERTscore
BART BASE 61.43/48.68/59.71 0.941 46.81/26.19/44.34 0.918 28.82/10.99/26.99 0.896
BioBART BASE 61.07/48.47/59.42 0.941 46.67/26.03/44.11 0.918 30.12/11.28/27.44 0.898

BART LARGE 59.87/47.01/58.12 0.938 47.24/26.54/44.68 0.919 29.97/10.64/28.41 0.901
BioBART LARGE 60.32/47.98/58.69 0.940 46.54/26.14/44.23 0.919 31.97/12.39/29.70 0.903
State-of-the-art 62.3/48.7/58.5 - 46.9/24.8/43.2 - 35.14/16.08/31.31 -
Source (Mrini et al., 2021) (Mrini et al., 2021) (Ben Abacha et al., 2021)

MEDIQA-MAS MEDIQA-ANS(Pages) MeQSum
Model Rouge-1/2/L BERTscore Rouge-1/2/L BERTscore Rouge-1/2/L BERTscore
BART BASE 31.63/9.98/27.85 0.859 19.10/6.77/16.90 0.851 52.93/35.79/50.46 0.927
BioBART BASE 32.90/11.28/29.26 0.861 18.97/7.46/16.77 0.850 53.75/36.50/51.27 0.929

BART LARGE 29.32/9.00/26.14 0.857 21.52/9.31/19.15 0.853 53.68/36.80/51.05 0.928
BioBART LARGE 30.60/10.37/27.04 0.861 21.58/9.34/19.18 0.857 55.61/38.11/53.15 0.933
State-of-the-art 32.15/16.21/19.10 - 23.07/ 5.41/15.35 - 54.5/37.9/50.2 -
Source (Ben Abacha et al., 2021) (Laskar et al., 2021) (Mrini et al., 2021)

Table 3: The main results on Summarization tasks.

MedMentions BC5CDR NCBI COMETA AAP
Model Recall@1/@5 Recall@1/@5 Recall@1/@5 Recall@1/@5 Recall@1/@5
BART BASE 69.77/84.59 91.56/94.89 88.54/95.31 78.34/87.40 86.37/94.29
BioBART BASE 71.15/86.22 93.01/95.59 89.27/95.31 79.63/88.64 87.51/94.92

BART LARGE 71.49/84.95 92.48/95.26 90.21/95.52 80.70/88.65 88.79/96.59
BioBART LARGE 71.78/85.42 93.26/95.74 89.90/95.63 81.77/88.87 89.40/95.76

State-of-the-art 74.6/ - 91.9/ - 92.4/ - 80.1/ - 89.0/ -
Source (Varma et al., 2021) (Varma et al., 2021) (Lai et al., 2021) (Lai et al., 2021) (Liu et al., 2021)

Table 4: The main results on Entity Linking tasks.

ShARe13 ShARe14 CADEC GENIA
Model F1 F1 F1 F1
BART BASE 76.63 77.87 68.37 78.06
BioBART BASE 78.78 79.17 68.39 78.43

BART LARGE 79.69 80.34 70.64 78.93
BioBART LARGE 80.75 80.41 70.53 79.93

State-of-the-art 82.52 81.75 73.21 81.39
Source (Li et al., 2021)

Table 5: The main result on NER tasks.

anonymous health discussion on Reddit. It consists
of 20k English biomedical entity mentions expert-
annotated with concepts from SNOMED CT. We
use the “stratified (general)” split and follow the
training and evaluation procedures of SapBert (Liu
et al., 2021) and ResCNN (Lai et al., 2021).

AskAPatient (Limsopatham and Collier, 2016)
It contains 8,662 phrases from social media. Each
phrase can be mapped to one of the 1,036 medical
concepts from SNOMED-CT and AMT (the Aus-
tralian Medicines Terminology). The samples in
AskAPatient do not include contextual information.
We follow Sung et al. (2020) and Limsopatham and
Collier (2016) for data pre-processing and apply
the 10-fold evaluation protocol.

5.2.4 Named Entity Recognition
ShARe13, ShARe14, CADEC These three
datasets annotate discontinuous adverse drug
events entities. The main difference is the anno-
tated data of ShARe tasks (Pradhan et al., 2013;
Mowery et al., 2014) comes from MIMIC-II, and
CADEC (Karimi et al., 2015) comes from social
media. There is only one entity type for these
datasets. We follow Yan et al. (2021) for dataset
preprocess.

GENIA (Kim et al., 2003) GENIA annotates
2000 MEDLINE abstracts with biological entities.
Entities can be nested with others. We follow (Lin
et al., 2019) to combine fine-grained entity types
into 5 coarse-grained entity types and to construct
dataset splits.

All the aforementioned datasets are in English.
The statistical overview of the aforementioned
datasets is listed in Table 1.

5.3 Fine-tuning details
Dialogue We use BioBART as the dialogue sys-
tem model. The dialogue history is fed into the en-
coder and the decoder generates the response auto-
regressively. We apply the negative log-likelihood
function as the training objective with respect to



103

the reference dialogue response. We fine-tune the
model with learning rate 5e-5 for the base version
and 1e-5 for the large version for 20 epochs. We
run evaluations on the validation set at the end of
each epoch and use the checkpoint with the best
validation performance for testing. During infer-
ence, we use beam search of size 5 to sample re-
sponses from the model’s outputs. We use Rouge-
1/2/L (Lin, 2004), BLEU (Papineni et al., 2002)
and BERTscore (Zhang et al., 2020b) as our evalu-
ation metrics. RoBERTa-large (Liu et al., 2019) is
used as scorer in BERTscore.

Summarization Similarly, for summarization,
the encoder takes the documents as input, and the
decoder generates the corresponding summariza-
tions. We minimize the log-likelihood objective
to fine-tune the model and apply beam search for
inference. Across different summarization datasets,
the beam size is set to 5 and we use no length
penalty. We fine-tune the model with learning rate
5e-5 for the base version and 1e-5 for the large
version for 6 epochs. We run evaluations on the
validation set at the end of each epoch and use the
checkpoint with the best validation performance
for testing. We apply the commonly used Rouge-
1/2/L and BERTscore for evaluation metrics. The
large version of RoBERTa is used as the scorer in
BERTscore.

Entity Linking We follow the method and ex-
perimental settings in Yuan et al. (2022a) to imple-
ment the generative model for biomedical entity
linking tasks. Knowledge-base guided pre-training
in Yuan et al. (2022a) has not been applied. The
documents with the positions of mentions marked
are fed into the encoder and the decoder outputs
the corresponding synonyms in the knowledge base
directly. We use the top1 and top5 recall (Recall@1
and Recall@5) as the evaluation metrics.

NER We use BARTNER (Yan et al., 2021) as
our model. The target type for BARTNER is word
(i.e. output first BPE of each word in entities). We
use the parameters selected by Yan et al. (2021) for
all pretrained models and fine-tune for 30 epochs.
Entity-level F1 is used as the metric.

5.4 Main Result

In this section, we present the base and large ver-
sion of BioBART on various generation tasks. We
compare our in-domain BioBART with BART to
illustrate the effectiveness of domain adaption. We

also compare with the existing state-of-the-art re-
sults on each dataset to shed light on the superior
performance of BioBART. The experimental re-
sults are shown in Table 2-5. The best and the
second-best scores are highlighted with bold num-
bers and underlines respectively.

Dialogue We evaluate biomedical dialogue re-
sponse generation on CovidDialog. For both base
and large version, BioBART shows improvement
on the automatic metric Rouge. The large Bio-
BART outperforms BART by 1.71 on Rouge-2 and
0.03 on Rouge-L . Our evaluations surpasses the
current state-of-the-art on BLEU score by 4.45.

Summarization We present broad experimen-
tal results on biomedical summarization datasets.
From Table 3, BioBART has competitive or even
superior performance on the task. Except for
iCliniq and HealthCareMagic, we see consistent
improvement on different datasets for both sizes of
BioBART. For MeQSum, BioBART large exceeds
BART large for 1.93/1.31/2.1 on Rouge-1/2/L and
even outperforms the current state-of-the-art. The
possible reason that biomedical in-domain pretrain-
ing fails on iCliniq and HealthCareMagic is that
both datasets are built upon a clinical corpus. There
still exists a domain-shifting problem for BioBART
pretrained on biomedical scientific articles from
PubMed.

On dialogue and summarization tasks, there are
minor changes in BERTscore for different models.
This is possible because the metric is calculated
by other pretranined language models. The im-
plemented RoBERTa may suffer from biomedical
domain-shifting and cannot quantify the model per-
formance accurately.

Entity Linking The results on biomedical en-
tity linking tasks are shown in Table 4. For all
the tasks, models finetuned based on BioBART
have better performance. On AAP, BC5CDR, and
COMETA, our results outperform the current dis-
criminative state-of-the-art methods by 0.4, 1.67,
and 1.36 points of Recall@1 respectively.

NER The performance improvement of Bio-
BART on ShARe13, ShARe14, and GENIA is sig-
nificant, while the increase on CADEC is mediocre.
For the large models, BioBART improves entity-
level F1 scores for 1.06 and 1 on ShARe13 and
GENIA datasets. There are promising results for
generative biomedical NER methods, while the gap
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CovidDialogue MeQSum MEDIQA-MAS
Rouge-2/L BLEU Rouge-2/L BERTscore Rouge-2/L BERTscore

BART BASE 12.31/25.66 10.36 35.79/50.46 0.927 9.98/27.85 0.859

w/ TI & SP 10.90/25.46 10.46 34.93/49.28 0.926 9.04/27.43 0.859
w/ TI 11.81/25.79 12.79 37.14/51.71 0.929 10.66/27.65 0.862

MedMentions COMETA ShARe13 CADEC
Recall@1 Recall@5 Recall@1 Recall@5 F1 F1

BART BASE 69.77 84.59 78.34 87.40 76.63 68.37

w/ TI & SP 70.76 85.69 79.31 87.93 77.01 67.98
w/ TI 70.82 85.68 79.43 88.28 78.03 69.22

Table 6: Ablation study for pretraining tasks. TI is short for Text Infilling and SP is short for Sentence Permutation.

Context(Document) BART Response(Summary) BioBART Response(Summary)
Description: I have type 1 diabetes that I try
hard to control, but i struggle with. Are my
chances high for poor outcomes with the virus?
I’m in such a panic about it.

In brief: diabetes. Your risk of complications
with covid-19 is very low. If you are well con-
trolled your risk should not be elevated. If your
diabetes is uncontrolled you should not have a
particularly high risk.

Diabetes and Covid-19. If you are a type 1
diabetic, you are at high risk for poor outcomes
with the virus. Your risk is very high. You
should be aware of your risk factors and monitor
your glycemic control closely.

SUBJECT: treatment for dry mouth caused by
necessary medicine MESSAGE: My provider
can’t help (I asked.) I am intolerant of all the
"sugar alcohols" such as maltilol, ...

What are the treatments for dry mouth caused
by sugar alcohols?

What are the treatments for dry mouth?

Are there any new treatments for orthostatic
tremor? ... Deep brain stimulation is some-
times done when drugs cannot control a severe,
disabling tremor. Sometimes essential tremors
or tremors due to Parkinson disease or another
disorder require such treatment. ... There is
no cure for most forms of tremor, but there are
treatments to help manage symptoms. ...

There is no cure for tremor, but there are treat-
ments to help manage the symptoms.

There is no cure for tremor, but there are treat-
ments to help manage the symptoms. The most
common ... help relieve symptoms. Deep brain
stimulation is sometimes done when drugs can-
not control a severe, disabling tremor. Some-
times essential tremors or tremors due to Parkin-
son disease or another disorder require such
treatment.

Table 7: Example dialogue and summaries from the fine-tuned BART and BioBART model excepts of showing the
references. The key information and differences are highlighted with colors.

with the current state-of-the-art NER method (Li
et al., 2021) is still salient.

5.5 Ablation Study on Pretraining Task
In this section, we test on pretraining with or with-
out the sentence permutation task. We pretrain
BART base following the same pretraining settings
except for reducing the training step to 40k for effi-
ciency. We fine-tuned the pretrained models on the
downstream tasks. The ablation results are shown
in Table 6.

From the result, it is illustrated that the model
pretrained on isolated text infilling task performs
the best. The sentence permutation task down-
grades the model’s performance even for generative
summarization and dialogue system tasks.

5.6 Generated example
Here we demonstrate BioBART’s performance
qualitatively. In Table 7, we present three gen-
erative examples on CovidDialog, MeQSum, and
MEDIQA-ANS respectively. In the first example,

we can see that BART generates an erroneous in-
struction of the influence of diabetes. BioBART
injected with domain knowledge can correctly give
the response. In the second, BART misunderstands
the document where sugar alcohol is not the cause
of dry mouth. BioBART generates an accurate
and concise summary. In the final example, the
MEDIQA-ANS document is rather long and BART
fails to extract complete information (colored in
red). From the examples, we can conclude that
BioBART has improvements on biomedical com-
mon sense and documents understanding.

6 Conclusions

In this work, we pretrain the biomedical domain
generative language model BioBART. We also
collect various publicly available benchmarks for
biomedical generative tasks to prompt future re-
search. Our experimental results show that con-
tinuous pretraining on PubMed abstracts helps the
model with domain adaption. BioBART shows
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great improvements on different benchmarks and
achieves competitive or superior results over the
current state-of-the-art methods. We also release
our pretraining and fine-tuning codes to facilitate
future research for reproducibility.

We will explore pretraining generative language
models 1) on in-domain vocabularies and from
scratch, 2) and with clinical corpora such as EMRs
in MIMIC-III (Johnson et al., 2016) or PMC-
Patients (Zhao et al., 2022) in the future studies.
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