
Proceedings of the BioNLP 2022 workshop, Dublin, Ireland, pages 82–90
May 26, 2022. ©2022 Association for Computational Linguistics

82

Slot Filling for Biomedical Information Extraction

Yannis Papanikolaou, Marlene Staib, Justin Grace and Francine Bennett
Healx

Cambridge
UK

(yannis.papanikolaou, marlene.staib, justin.grace, francine.bennett)@healx.io

Abstract

Information Extraction (IE) from text refers
to the task of extracting structured knowledge
from unstructured text. The task typically
consists of a series of sub-tasks such as
Named Entity Recognition and Relation
Extraction. Sourcing entity and relation type
specific training data is a major bottleneck
in domains with limited resources such as
biomedicine. In this work we present a slot
filling approach to the task of biomedical IE,
effectively replacing the need for entity and
relation-specific training data, allowing us
to deal with zero-shot settings. We follow
the recently proposed paradigm of coupling
a Tranformer-based bi-encoder, Dense Pas-
sage Retrieval, with a Transformer-based
reading comprehension model to extract
relations from biomedical text. We assemble
a biomedical slot filling dataset for both
retrieval and reading comprehension and
conduct a series of experiments demonstrating
that our approach outperforms a number
of simpler baselines. We also evaluate our
approach end-to-end for standard as well as
zero-shot settings. Our work provides a fresh
perspective on how to solve biomedical IE
tasks, in the absence of relevant training data.
Our code, models and datasets are available
at https://github.com/ypapanik/
biomedical-slot-filling.

1 Introduction

In Information Extraction (IE) we are interested in
extracting structured knowledge from unstructured
text. This structured knowledge takes most usu-
ally the form of directed binary relations between
entities, in other words triples of the form head -
relation - tail, which can then be used to populate
a Knowledge Base or a Knowledge Graph with
factual information.

The standard approach to perform IE relies on
a cascade of Natural Language Processing (NLP)
models. First, Named Entity Recognition (NER)

is employed to find and extract entities of interest,
subsequently Entity Linking (EL) to link the ex-
tracted entities to Knowledge Base identifiers and
finally Relation Extraction (RE) to identify existing
relations between entities.

These individual sub-tasks tasks have attracted
a great deal of attention in recent years with meth-
ods and datasets fuelling further research (Verga
et al., 2018; Zeng et al., 2014, 2015; Lin et al.,
2016). IE is largely regarded as a main facilitator
of structured data reasoning, such as Knowledge
Base Completion.

1.1 Standard Information Extraction vs Slot
Filling

A major bottleneck in the above approach is that all
modules (NER, EL, RE) need training data specific
to the entity or relation types that we are interested
in extracting. For instance, a NER model recog-
nizing diseases needs training data annotated with
the entity type disease and so forth. The biomedi-
cal domain is particularly affected by these limita-
tions, given the vast variety of entity and relation
types which are commonly of interest. Addition-
ally, sourcing training data for each sub-task and
type is expensive and challenging, requiring subject
matter experts. For reference, the UMLS ontology
contains 125 semantic (entity) types and 54 relation
types.

An alternative approach to standard IE is slot
filling. The way IE is conceptualized in slot filling
is highly reminiscent of open domain question an-
swering (QA): for a given head-relation query the
retriever returns a set of relevant passages, which
are then fed to a reader model that then extracts
a matching tail entity, the answer. By following
such an approach, we can deal with zero-shot set-
tings since, unlike standard IE, we are not seeking
to recognize specific entity types or extract spe-
cific relation types, but rather do machine reading
comprehension, that is, extract answers in response

https://github.com/ypapanik/biomedical-slot-filling
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to queries. Importantly, this approach extends to
relation types that were unseen during training, ef-
fectively reducing the need for re-training and re-
deployment of a model deployed into production.

Furthermore, standard IE requires processing of
every single sentence of the given corpus through
its different modules (NER, EL, RE). In con-
trast, the computational cost of slot filling is much
smaller as it performs retrieval and reading com-
prehension on far fewer queries to extract relations.
As an example, Hetionet (Himmelstein et al., 2017)
contains around 2.25M relations, but they can be
formulated in around 46k distinct queries, of the
form head-relation1.

As a final point we summarize below how the
two approaches would materialize in a production
setting, to make their differences more apparent.
We note that standard IE might involve additional
tasks, such as coreference resolution (which we do
not describe here for simplicity):

Standard IE:

• For each sentence, recognise entities with
NER model.

• For each recognised entity, link to an entity
identifier from a Knowledge Base, discarding
entries that cannot be linked.

• For each sentence that contains more than one
recognized entity, extract relations between
the entities with a RE model.

• Aggregate relations per sentence, resolving
potential conflicts.

Slot filling:

• For each entity in the Knowledge Base and
each possible relation type, consider all pos-
sible head - relation pairs and construct the
relevant queries, in a form head - relation2.

• For each query, retrieve the top k relevant doc-
uments with a retriever model.

• For each query-retrieved document pair, per-
form reading comprehension, extracting zero,
one or multiple answers, i.e., relation tails.

1In other words, if we were trying to build a KB from
biomedical text that would contain these 2.25M relations, we
would require to perform around 46k queries on our index to
retrieve relevant documents.

2With this formulation a head and a tail can be used inter-
changeably, by just changing the relation type, e.g. a drug-
treats-disease relation can also be cast to disease-is treated
by-drug without additional training data.

• For each answer, link to an entity identifier
from a Knowledge Base, discarding entries
that cannot be linked.

1.2 Slot Filling: General vs Biomedical
Domain

Although similar in most aspects, slot filling in the
general domain against slot filling in the biomedi-
cal and more broadly the scientific domain differ in
a few key ways. The first lies in the link between
relations and entities. In the general domain, a spe-
cific relation type will often imply a specific entity
type as well, whereas this rarely holds in biomed-
ical literature. Consider for example a relation
child-of in the general domain, where we expect
both head and tail of the relation to be entities of
type person, as opposed to a relation (up)regulate
in biomedicine where the head might be gene or
drug equivalently. These nuances in the language
used render the task of slot filling more challenging
in biomedicine.

Another, perhaps more critical aspect relates to
retrieval and more specifically how we build and
evaluate on a retrieval dataset. In the general do-
main, a slot filling query, or more broadly a ques-
tion within the QA framework, will most often have
a unique answer3, whereas this rarely holds when
mining the biomedical literature. For instance, con-
sider the examples illustrated in Table 1 coming
from two well established general domain bench-
marks, Natural Questions (Kwiatkowski et al.,
2019) and zsRE (Levy et al., 2017) against two
datasets from the biomedical domain, BioASQ
(Tsatsaronis et al., 2015) and our slot filling dataset
(BioSF).

This difference has a number of implications
both for training and evaluation. With respect to
training, one of the major successes of neural-based
retrieval methods has been attributed to being able
to present the model with hard negatives, i.e., ex-
amples were a previous version of the retriever (or
a simpler statistical retriever) have failed. When,
for example, we have a query-answer pair that
mentions that Barack Obama’s wife is Michelle
Obama, and the model returns a passage that does
not include the string "Michelle Obama", we can
relatively safely consider this a false positive and
use that passage as a hard negative. This helps
the algorithm correct mistakes and improve. In

3We are implicitly referring only to factoid queries here
which is the case for most open domain QA datasets; queries
of list type would have multiple answers in any case.
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Dataset Query Answer(s)
NQ when is the next deadpool movie being released May 18, 2018
NQ what was the first capital city of australia Melbourne

zsRE Elmer George [SEP] spouse Mari Hulman George
zsRE Boone River [SEP] mouth of the watercourse Des Moines River

BioASQ What are the main indications of lacosamide? ’epilepsy’, ’analgesic’
BioASQ Which metabolite activates AtxA? ’CO2’, ’bicarbonate’
BioSF sildenafil [SEP] regulator ’L765A’, ’F786A’, ’F820A’
BioSF Amprenavir [SEP] interacts with ’rifabutin’, ’ritonavir’

Table 1: Examples of queries for general domain benchmarks (NQ, zsRE) vs biomedical domain benchmarks
(BioASQ, BioSF). Queries in the biomedical domain usually involve multiple valid answers, as opposed to the
general domain.

biomedicine on the other hand, if we have an
example stating that sildenafil regulates a muta-
tion L765A, we cannot be sure that all alternative
strings extracted by the model are true negatives,
as there may be other valid answers that we cannot
validate due to our Knowledge Base being incom-
plete. This compromises our ability to build gold
standard training data and we are presented with a
situation similar to the one encountered in distant
supervision, where unlabeled examples are consid-
ered as negatives but might be positives in some
cases. Practically, this leads to a noisy training set
which may reduce model accuracy.

During evaluation of a biomedical retriever, we
encounter the same problem, in the sense that we
might obtain misleading low performance since
unknown correct passages might rank higher than
the known correct ones. This leads to an imperfect,
i.e., "silver" quality, evaluation regime making it
hard to compare approaches and models.

In this work we aim to address the challenges
mentioned in the two previous subsections. Specif-
ically,

• We provide a short review of the relevant work
in Section 2.

• We contribute a novel formulation of biomedi-
cal IE as a slot filling task, to address few-shot
or zero-shot settings in Section 3.

• We release a new benchmark for biomedical
slot filling, dubbed BioSF which we describe
in Section 4.

• We train a biomedical dense passage retriever
along with a biomedical reading comprehen-
sion model for slot filling, using BioSF. We
provide the models publicly.

• We present an evaluation of our approach over
several baselines on BioSF, which we are able
to outperform by a large margin, in Section 5.

2 Related Work

Recent years have witnessed a series of signifi-
cant advances in the field of QA, primarily ow-
ing to the Transformer architecture (Vaswani et al.,
2017) and the BERT self-supervised pre-training
paradigm (Devlin et al., 2019). These advances,
both in terms of methods (Chen et al., 2017; Lin
et al., 2019; Guu et al., 2020; Lewis et al., 2020b)
and datasets (Kwiatkowski et al., 2019; Yang et al.,
2018), motivated researchers to formulate a series
of different NLP tasks as open domain QA, includ-
ing entity linking or relation extraction (Levy et al.,
2017; Petroni et al., 2021). In this work we follow
this paradigm by formulating biomedical IE as a
slot-filling task.

In open domain QA, given a query, a retrieval
module first retrieves relevant documents from the
knowledge source (such as Wikipedia). A reading
comprehension module is then used to extract a
span from the relevant documents, the answer. The
retrieval step was, up to very recently, dominated
by statistical-based approaches, namely BM25 or
tf-idf (Chen et al., 2017). ORQA (Lee et al., 2019b)
and REALM (Guu et al., 2020) have been the first
neural based methods to clearly outperform statisti-
cal based retrieval, although they required expen-
sive language model pre-training. Dense Passage
Retrieval (DPR) (Karpukhin et al., 2020) has im-
proved upon these methods by employing BERT-
based encoders, one for the queries and one for
passages. These are jointly optimized during train-
ing to classify passages as relevant versus irrelevant.
This approach has proved superior to other neural
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based approaches and has quickly become the pre-
ferred method for open domain QA in subsequent
work (Lewis et al., 2020b; Izacard and Grave, 2021;
Maillard et al., 2021).

Among the subsequent works, Retrieval Aug-
mented Generation (Lewis et al., 2020b) employs
an architecture based on DPR and BART (Lewis
et al., 2020a) that is optimized end to end during
finetuning, to retrieve relevant documents and gen-
erate answers to queries. Fusion-in-decoder (Izac-
ard and Grave, 2021) employs DPR or BM25 as
retrievers coupled with a T5 language model, to
generate answers by attending at multiple passages
simultaneously. For simplicity, we are not consid-
ering these approaches in this work, leaving their
implementation for the biomedical domain for fu-
ture work.

In an effort to fuel further research on this field,
Petroni et al. (2021) introduced KILT, a new bench-
mark of knowledge intensive tasks, which contains
among others two slot filling datasets, zero-shot RE
which was first presented in (Levy et al., 2017) and
T-REx introduced by Elsahar et al. (2018). In build-
ing our biomedical slot filling dataset we largely
follow the conventions and format of KILT, with
the intention to ease experimentation.

Finally, Glass et al. (2021) have presented a RAG
model specifically finetuned for slot filling on the
above datasets, showing significant improvement
over the generic alternatives, which were finetuned
on Natural Questions (NQ).

3 Biomedical Slot Filling

Formally, let us first define the task of IE. We as-
sume a knowledge source K, consisting of pas-
sages pi. Furthermore, we assume there exists a
Knowledge Base that contains a number of entities
ei. Our goal is to extract from K all possible triples
of the form ea − ri − eb where ri ∈ R and R is
the set of possible relation types. For each ei we
assume that it has a specific entity type et and that
each et can be involved in a specific subset of R.

Slot filling further formulates the above task as
follows: we first employ a retrieval model Mr that
encodes all passages pi from K. The encoded pas-
sages are indexed to allow fast retrieval. At infer-
ence, for each ei of type et, we consider all possible
relations from R and construct the relevant queries
qi : ei − ri. Each query is then encoded and the
resulting vector is used to query the index, return-
ing the n most similar pi in terms of the maximum

inner product:

sim(qi, pi) = EQ(qi)
TEP (pi) (1)

where EQ is the query encoder and EP is the pas-
sage encoder. Subsequently a reader model Mqa

takes as input the above query and each of the re-
trieved passages and extracts zero, one or more
spans, i.e., answers. Valid answers are considered
as those representing an entity ei.

Here, we adopt as Mr a neural, dense bi-encoder,
namely DPR, which uses a different encoder for
passages and queries, but any type of retriever can
be used such as BM25, where EQ = EP . We ini-
tialize DPR’s encoders with the ones presented in
(Karpukhin et al., 2020) which were finetuned on
the NQ benchmark. We subsequently train DPR on
the dataset presented in Section 4, with the follow-
ing loss function:

L(qi, p
+
i , p

−
i ) = −log

esim(qi,p
+
i )

esim(qi,p
+
i ) + esim(qi,p

−
i )

(2)
Unlike (Karpukhin et al., 2020), we assume that
each training instance is a (qi, p

+
i , p

−
i ) tuple where

p+i is a positive, i.e., relevant passage and p−i is a
negative passage.

Regarding the reader comprehension model
Mqa, we employ a pretrained BioBERT (Lee et al.,
2019a) model and finetune it on the dataset of Sec-
tion 4. To finetune we follow the standard approach
for question answering with BERT where the input
is the concatenated query and passage separated by
special token [SEP] and the outputs are the start
and end token positions within the passage. The
training objective is the sum of the log-likelihoods
of the correct start and end positions. For more de-
tails we refer the interested reader to (Devlin et al.,
2019).

4 Biomedical Slot Filling Dataset

In order to build a slot filling dataset for
biomedicine, we resort to a number of publicly
available biomedical NER and RE datasets, sum-
marized in Table 2. Each instance in these datasets
contains the relation triple as well as the text where
it was found, thus we can easily transform them
in a question answering-like format for slot filling.
In total, we build two datasets, one to train and
evaluate the retriever and one for the reader model
respectively.

Specifically for the retriever training, we use
negative, i.e., null relation instances, as negatives.
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Dataset relation relation types # instances
BioCreative V CDR (Li et al., 2016) compound-disease 1 15,796

BioCreative VI ChemProt (Krallinger et al., 2017) compound-protein 9 15,568
DDIExtraction 2013 (Segura Bedmar et al., 2013) drug-drug 1 32,018

Table 2: Public datasets used to build our biomedical slot filling dataset, BioSF. The relation types for the drug-
drug interactions dataset have been merged into one relation dubbed interacts with.

Additionally, we have used BM25 to add hard neg-
atives to our dataset, exactly as (Karpukhin et al.,
2020; Glass et al., 2021) have done previously. Al-
though, as mentioned above, these negatives might
entail some noise, similarly to when following a
distant supervision approach we expect the noise to
cancel out overall. Both datasets with their training,
development and testing splits are released with our
code. In the following, we refer to our dataset as
BioSF.

5 Experiments

In this Section we present the experiments that
we conducted, followed by a discussion on their
implications. We are interested in evaluating our
biomedical DPR retriever, our biomedical slot fill-
ing reader and finally the end to end slot filling
approach.

5.1 Retrieval

First, we are interested to understand the perfor-
mance of our approach against different baselines.
To that end, we employ BM25 as well as two al-
ready finetuned DPR retrievers from (Karpukhin
et al., 2020; Glass et al., 2021). BM25 is a well
established algorithm for retrieval, outperforming
until very recently more sophisticated neural-based
approaches. It is also particularly efficient and does
not require any training, which makes it a very at-
tractive option for real-world production settings.
Nevertheless, it is a statistical, pattern matching
based approach lacking the ability to learn seman-
tics or context.

Regarding the general domain DPR models,
since they are currently state of the art in the rele-
vant general domain tasks, we seek to see if they
can be used successfully for the biomedical domain.
Our model is trained on far less data, which is nev-
ertheless domain and task specific, therefore it is
crucial to understand which approach fares better.

5.1.1 Experimental Setup
We employ a PubMed dump from April 2020 as
our knowledge sourse, filtering to documents that
have an abstract and splitting abstracts to roughly
100-token length passages. We also use a smaller
subset of one million passages, in order to be able
to search for optimal hyper-parameters and allow
easy replication of results. In that subset, we ran-
domly sample passages and add the gold passages
from BioSF so as to make sure that a perfect re-
trieval algorithm would be able to retrieve all cor-
rect passages and find the answer. We highlight
that this is an easier version of the real-world task,
where the retriever needs to search among around
29 million passages.

For BM25, we employ the anserini package
(Yang et al., 2017), and build a Lucene index on
the pre-processed passages, whereas we used the
off the shelf Huggingface models () for the general
domain DPR retrievers.

For our retriever, we train DPR on the BioSF
dataset, for 40 epochs keeping the best model in
terms of the validation loss. We use a learning rate
of 3e− 5, an Adam optimizer with default options
and a training batch size of 32 examples. Subse-
quently, we encode the passages with the trained
passage encoder. Encoding the full 29 million pas-
sages takes around 96 GPU hours on a V100. We
then build a flat FAISS (Johnson et al., 2019) index
for the encoded passages.

5.1.2 Results
Initially, we conduct experiments on the smaller
dataset that we described above of one million pas-
sages. As we noted in Section 1.2 evaluating re-
trieval for slot filling or more broadly for QA in the
biomedical domain is significantly different than
in the general domain since in biomedicine a query
has in most cases multiple answers as opposed to
the general domain. Table 3 illustrates the results
for this first series of experiments.

As we can see the DPR models that have been
finetuned on the general domain perform rather
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Retriever hits@1 hits@10 hits@100 index size(Gb)
BM25 21.4 36.1 60.6 1.1

DPR-NQ (Karpukhin et al., 2020) 5.5 17.2 37.6 2.9
DPR-multitask (Maillard et al., 2021) 4.2 14.3 33.8 2.9

DPR-zsRE (Glass et al., 2021) 7.6 19.6 37.2 2.9
Bio-DPR(ours) 31.0 55.1 72.5 2.9

Table 3: Evaluation results for retrieval experiments on the BioSF development set using as content one million
passages from PubMed. Values in bold show statistically significant results in terms of z-test at p-value of 0.05,
whereas for our model we show the average across five different DPR training runs.

Retriever hits@1 hits@10 hits@100 index size
BM25 11.0 30.3 56.1 29.4

DPR-NQ 5.2 17.9 38.9 90.0
DPR-zsRE 2.3 10.2 26.4 90.0

Bio-DPR(ours) 11.5 33.2 59.1 90.0

Table 4: Evaluation results for retrieval experiments on the BioSF development set on full PubMed. Values in
bold show statistically significant results for a z-test at p-value of 0.05.

poorly compared to the much lighter and computa-
tionally efficient BM25. Nevertheless, our model
Bio-DPR, is substantially better than BM25 in all
cases, achieving up to 19 points of improvement
(in the case of hits@10). These results, are aligned
to the results previously presented for the general
domain where BM25 has been outperformed by
DPR. Nevertheless, in-domain training data seems
critical for DPR to perform well for slot filling, a
finding also shared in (Maillard et al., 2021).

The same findings apply for the full PubMed
knowledge source, as illustrated in Table 4, al-
though the improvement of our model over BM25
is much smaller but still significant.

5.2 Slot Filling Reader

For the reader, we finetune a BioBERT-base and
a BioBERT-large model on the BioSF training set.
We further include two baselines, one trained on the
BioASQ 8 QA dataset and one trained in the zero-
shot RE (zsRE) dataset from (Levy et al., 2017).
We employ these two baselines to test whether in-
domain data from a different task (BioASQ) or
general domain data for the same task (zsRE) can
be helpful in learning an accurate model.

For all models, we train up to ten epochs, keep-
ing the best performing model on the development
set, using a learning rate of 3e− 5, a batch size of
32 and the Adam optimizer with default parameters.
Table 5 presents the results. We observe that the
baselines perform rather poorly compared to the

models trained with in-domain slot filling data - a
finding that highlights the importance of building
an in-domain dataset for slot-filling.

5.3 End to End Evaluation

Having evaluated both components of our ap-
proach, we now turn our attention to the end to
end setting, which simulates better a real world sce-
nario. In this setting, we are given a head entity and
a relation and we want to correctly extract the tail
entity. To evaluate our approach in such a setting,
we first use the triples included in the BioSF test
set. This dataset contains 3,171 queries with 2.35
answers, i.e. tails, per query on average.

Additionally, we would like to understand how
our approach performs in the zero-shot setting, i.e.,
for entities and relations that our model has not seen
during training. To this end, we employ Hetionet
(Himmelstein et al., 2017), a network of biomedical
knowledge assembled from 29 biomedical Knowl-
edge Bases, containing 24 distinct relation types.
We keep nine relation types that our models have
not previously seen, e.g., "expresses", "localizes",
"treats" and randomly sample 500 queries, with 9.3
answers, i.e. tails, per query on average. We note
that this dataset differs substantially to the previous
one, in the sense that a query might have far more
valid answers. For example, some queries have
more than 100 valid answers.

In both cases, we first retrieve the top-100 pas-
sages for each query, from the full PubMed knowl-
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Model Data Exact Match(dev/test) F1(dev/test)
BioBERT-base BioASQ 13.10/13.44 17.95/18.64

" zsRE 16.59/15.77 22.51/22.98
" BioSF 52.30/54.67 58.82/59.98

BioBERT-large BioSF 54.80/55.65 60.92/61.55

Table 5: Evaluation results for the reader experiments on the BioSF development and testing sets. We report the
averages across five runs for each model, results in bold show a statistically significant improvement for a z-test at
p-value of 0.05.

Setting Dataset end-to-end micro-recall
Standard BioSF test set 24.38
Zero-shot Hetionet 18.66

Table 6: End to end evaluation of our approach on a standard as well as a zero-shot setting.

edge source, using our bio-DPR model and subse-
quently we pass all query-passage pairs through
our reader model. We evaluate with micro-recall
since, as we discussed previously, there might be
multiple valid answers not contained in our KB
and we aim to examine what percentage of the KB
triples we can extract from text. We note again that
this is not a perfect evaluation as, besides the is-
sue mentioned above, there might also be triples in
Hetionet that do not appear in any sentence in the
literature. Table 6 illustrates our results. The recall
is substantially low, a finding that is somewhat ex-
pected due to the imperfect nature of our evaluation
setting, as well the challenging nature of the task,
especially in the zero-shot setting. Nevertheless,
we consider that these two additional datasets, will
enable further research and improved approaches.
Overall, the above experiments should be regarded
as a stepping stone towards a novel paradigm for
biomedical IE, overcoming the shortcomings of the
current standard approach.

6 Conclusions and Future Work

In this work we formulated the task of biomedical
Information Extraction as a slot filling problem.
This approach aims to forgo the need for entity and
relation type specific training data, which is scarce
and costly to annotate in the biomedical domain.
Additionally, this formulation allows to deal with
the addition of new relation types, without needing
to re-train the relevant models.

Additionally, we have introduced a new biomed-
ical slot filling benchmark and used it to train a
biomedical DPR model, a dual BERT-based en-
coder for retrieval, as well as a biomedical slot

filling reader based on BioBERT. In a series of ex-
periments our approach outperforms significantly
a number of general domain baselines as well as
the simpler BM25 retriever. Furthermore, our re-
sults illustrate the importance of in-domain, task-
specific training data, in line with findings from
recent works (Glass et al., 2021; Maillard et al.,
2021).

In future work, we aim to focus on sequence to
sequence variants of this work such as the work in
(Izacard and Grave, 2021), as well as to conduct a
thorough comparison of a standard biomedical IE
system against our slot filling approach.
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