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Abstract

We study the effect of seven data augmen-
tation (DA) methods in factoid question an-
swering, focusing on the biomedical domain,
where obtaining training instances is partic-
ularly difficult. We experiment with data
from the BIOASQ challenge, which we aug-
ment with training instances obtained from an
artificial biomedical machine reading compre-
hension dataset, or via back-translation, infor-
mation retrieval, word substitution based on
WORD2VEC embeddings or masked language
modeling, question generation, or extending
the given passage with additional context. We
show that DA can lead to very significant per-
formance gains, even when using large pre-
trained Transformers, contributing to a broader
discussion of if/when DA benefits large pre-
trained models. One of the simplest DA meth-
ods, WORD2VEC-based word substitution, per-
formed best and is recommended. We release
our artificial training instances and code.

1 Introduction

Question Answering (QA) systems aim to answer
natural language questions by searching in struc-
tured (Fu et al., 2020; Luo et al., 2018; Yadati et al.,
2021) or unstructured data, such as free-text docu-
ments (Aghaebrahimian, 2018). Here we consider
QA of the latter kind. Fully fledged QA systems for
document collections retrieve relevant documents,
identify relevant passages, extract and aggregate
answer spans etc. (Chen et al., 2017a; Pappas and
Androutsopoulos, 2021). There are also different
types of questions, e.g., yes/no, factoid, list, how-to.
Thus, creating realistic datasets to train and evalu-
ate complete QA systems for document collections
is resource intensive, especially for systems target-
ing specialized domains. A prime example is the
biomedical domain, the focus of this work, where
obtaining realistic training (and test) instances re-
quires medical expertise, which is costly and diffi-
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cult to obtain. Consequently, biomedical datasets
for full QA systems contain just a few thousand
training instances (Tsatsaronis et al., 2015; Moller
et al., 2020) or focus on simpler question types
only, e.g., yes/no questions (Jin et al., 2019).

A simplified form of QA for textual data is Ma-
chine Reading Comprehension (MRC) (Yang et al.,
2015; Rajpurkar et al., 2016; Campos et al., 2016;
Chen et al., 2017b; Lai et al., 2017; Joshi et al.,
2017; Kwiatkowski et al., 2019; Reddy et al., 2019;
Jin et al., 2019; Wang et al., 2020), where the sys-
tem is given a question and a particular (or a few)
passage(s) and the answer must be found therein.
In effect, MRC focuses on a particular core stage
of a full QA pipeline, identifying answer spans,
assuming that relevant documents and passages
have already been identified. We also focus on
this stage, adopting an MRC setting. Large generic
(non domain-specific) MRC datasets have been con-
structed via crowd-annotation (Rajpurkar et al.,
2016, 2018; Yang and Choi, 2019; Joshi et al.,
2017), but crowd-annotation on that scale is dif-
ficult when biomedical expertise is required. An
alternative is to automatically generate cloze-style
MRC datasets. The last sentence or title of a ran-
dom passage is treated as a question, some part
(e.g., named entity) of the ‘question’ is masked,
and the system is required to predict it. This ap-
proach has been used to generate large artificial
cloze-style MRC datasets (Hill et al., 2016; Chen
etal., 2016; Bajgar et al., 2016), including biomedi-
cal ones (Pappas et al., 2018, 2020). These datasets
could be used to augment real ones, but have mostly
been used as artificial experimental setups only.

When training examples for end-tasks are lim-
ited, as in realistic biomedical QA datasets, the
currently dominant approach in NLP is to use pre-
trained Transformers (Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2019; He et al., 2020; Raffel et al.,
2020), possibly pre-trained on domain-specific
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corpora (Lee et al., 2019; Beltagy et al., 2019;
Chalkidis et al., 2020), and fine-tune (further train)
them on the limited examples of the end-tasks. Nev-
ertheless, increasing the number of end-task exam-
ples typically improves performance. One way to
achieve this is to employ data augmentation (DA)
(Shorten et al., 2021; Feng et al., 2021), which adds
artificial training instances to a training set, in our
case the training set of the end task. It is unclear,
however, which DA methods improve most (if at
all) the performance of pre-trained models per end-
task (Longpre et al., 2019, 2020). Consequently,
Feng et al. (2021) recommend exploring when DA
is effective for large pre-trained models.

In this paper, we thoroughly examine the im-
pact of DA in biomedical QA, focusing on the
factoid questions of the BIOASQ challenge (Tsat-
saronis et al., 2015) in an MRC setting, i.e., we
assume that relevant text passages, called snip-
pets in BIOASQ, have already been identified. We
first evaluate on BIOASQ three indicative off-the-
shelf pre-trained models, DISTILBERT (Sanh et al.,
2019), BIOBERT (Lee et al., 2019), ALBERT (Lan
et al., 2019), already fine-tuned on SQUAD (Ra-
jpurkar et al., 2016) or SQUAD-V2 (Rajpurkar et al.,
2018), and we select ALBERT as our weak baseline.
We also fine-tune ALBERT on BIOASQ, on top of
its SQUAD fine-tuning, to obtain a stronger base-
line. We then obtain additional artificial training
instances from an artificial cloze-style MRC dataset,
or via back-translation, information retrieval (IR),
word substitution based on WORD2VEC or masked
language modeling, question generation, or by ex-
tending the given passages with additional context.
WORD2VEC-based word substitution, one of the
simplest DA methods considered, improves test
performance from 76.78% precision-recall AUC
(for ALBERT fine-tuned on SQUAD and BIOASQ) to
84.99%. Although we focus on biomedical QA, our
work should also be of interest in QA for other spe-
cialized domains, e.g., legal QA (Kien et al., 2020;
Khazaeli et al., 2021; Zhang and Xing, 2021). Our
work is the largest, in terms of DA methods consid-
ered, experimental study of DA for QA (Section 4).

Our main contributions are: (1) We present the
largest (in terms of methods) experimental compari-
son of DA methods for QA, focusing on biomedical
QA, where obtaining training instances is partic-
ularly difficult and costly. (2) We show that DA
can lead to very large performance gains, even
when using pre-trained Transformers fine-tuned
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on large generic (SQUAD) and/or small domain-
specific (BIOASQ) end-task datasets, contributing
to a broader discussion of if/when DA benefits pre-
trained models. (3) We show that artificial cloze-
style MRC datasets are useful for DA. (4) We show
that one of the simplest DA methods, WORD2VEC-
based word substitution, is also the best and is,
therefore, recommended. (5) We make our artifi-
cial training examples and code publicly available.'

2 Experimental Setup

2.1 BIOASQ Data in a SQUAD setting

We experiment with data from BIOASQ-8 (2021),
Phase B, Task B (Tsatsaronis et al., 2015), which
contain English questions of biomedical experts.
Each question is accompanied by (i) the gold an-
swer (often several alternative phrasings) and (ii)
gold relevant passages, called snippets (usually a
single sentence each) from biomedical articles; the
gold snippets contain the gold answer or other rel-
evant information. There are four question types:
yes/no, factoid, list, and questions requiring a sum-
mary. We focus on factoid questions (e.g., “Which
gene is involved in Giant Axonal Neuropathy?”).
We convert the BIOASQ data to triples each con-
taining a question, a single gold snippet, and the
span of the gold answer in the snippet, much as in
SQUAD (Rajpurkar et al., 2016). If a question has
multiple gold snippets, we produce equally many
triples, discarding snippets that do not contain the
gold answer. This conversion and considering only
factoid questions allow us to use pre-trained Trans-
formers already fine-tuned on SQUAD in a similar
setting.” A disadvantage of the conversion is that
our results are not directly comparable to those
of BIOASQ. The goal of our work, however, is
to study the effect of different DA methods on a
modern Transformer-based QA baseline (and we
show that fine-tuning it first on SQUAD helps), not
to compete against BIOASQ participants, who often
use models tailored to the particular competition.
From the 941 factoid questions of the original
BIOASQ data, we obtained 3415 question-snippet-
answer triples. We split these in training, develop-
ment, test subsets (2848, 271, 296 triples, resp.),
ensuring no question is in more than one subsets.

'See http://nlp.cs.aueb.gr/publications.html
for links to the code and data.

’In the original BIOASQ data, multiple snippets may be
given for a particular question, the answer may be present in
several of them, and identifying any answer span suffices.
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Figure 1: The model used in all of the following ex-
periments. ALBERT-XL is fed with a question and snip-
pet. Its contextualized embeddings are passed through
an MLP with sigmoid activations that produces a begin
(Pp) and end (P,) probability per token of the snippet.

2.2  Off-the-shelf Models

As a starting point, we compared the performance
of three publicly available pre-trained models that
have already been fine-tuned for MRC on SQUAD
(Rajpurkar et al., 2016) or SQUAD-V2 (Rajpurkar
etal., 2018).3 At the time of our experiments, AL-
BERT-based models (Lan et al., 2019) were among
the best on the SQUAD leaderboards; here, we use
ALBERT fine-tuned on SQUAD-V2. We also con-
sidered BIOBERT (Lee et al., 2019), because it is
pre-trained on a biomedical corpus; again, we use
it fine-tuned on SQUAD-V2. The third model, DIS-
TILBERT (Sanh et al., 2019), was chosen because
of its much smaller size, which makes running
experiments easier. This model is pretrained on
a generic corpus, like the original BERT, and we
use it fine-tuned on SQUAD. All three models are
used here off-the-self, i.e., they are only evaluated,
not trained in any way on BIOASQ data. Through-
out this work, we use the development subset of
the BIOASQ data to select models and configura-
tions of DA methods, but in this experiment we use
the union of the training and development subsets,
since no BIOASQ training is involved. ALBERT is
the best off-the-shelf model considered (Table 1),
hence we use it in all other experiments.*

Model PRAUC (BIOASQ train+dev)
DISTILBERT (SQUAD) 64.27
BIOBERT (SQUAD-V2) 69.22
ALBERT (SQUAD-V2) 75.05

Table 1: Off-the-shelf pre-trained models, fine-tuned
for MRC on SQUAD or SQUAD-V2. We report Precision-
Recall AUC (PRAUC, %) on BIOASQ training and devel-
opment data, since no BIOASQ training is involved.

3We obtained the models from https://huggingface.
co/ktrapeznikov/albert-xlarge-v2-squad-v2. We
use the XL version of ALBERT. The other two models adopt
the BERT-BASE architecture; no XL variants were available.
4We discuss PRAUC in Sections 2.3 and 2.4.
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2.3 Model Architecture Modifications

The results of Table 1 were obtained by feeding the
three off-the-shelf models with the concatenation of
the question and snippet of each question-snippet-
answer BIOASQ triple (training or development),
without training of any kind. Following a typical
MRC architecture, each model was previously fine-
tuned (by others) on SQUAD (or SQUAD-V2) with
a shared dense layer on top of each contextualized
token embedding (of the snippet only) that the pre-
trained model generates. The dense layer produces
two logits per token, indicating the model’s con-
fidence that the token is the beginning or end of
the answer, respectively. Two separate softmax
activations operate across all the begin and end log-
its, respectively, and the answer is the span (of the
snippet) whose first and last tokens have the highest
sum of begin and end probabilities (and the correct
order).> The two softmax activations presuppose
that there is a single contiguous answer span in each
snippet. This is true in SQUAD, but in our BIOASQ
data the (single) answer of a triple may consist
of multiple non-contiguous spans of the triple’s
snippet (this happens in 583 out of 2,848 training
instances). Hence, in the following experiments,
where we further fine-tune ALBERT on BIOASQ or
artificial training data, we replace the two softmax
activations by two sigmoids that produce the begin
and end probability per token of the snippet. Any
token whose begin (or end) probability is above a
threshold 7 is treated as the beginning (or end) of
an answer span. The PRAUC evaluation measure
(discussed below) aggregates results over different
t values. We also replace the dense layer on top of
the contextualized token embeddings by a Multi-
Layer Perceptron (MLP) with a single hidden layer,
which performed better on our development data.
We use this single typical MRC model architecture
(Fig.1) in all the following experiments, since we
aim to study the effect of several DA methods, not
to propose new MRC model architectures.

2.4 Evaluation Measure

Given a development or test question-snippet-
answer triple and a decision threshold ¢ (Sec-
tion 2.3), we compute precision and recall at the to-
ken level, i.e., we measure the ability of the model
to identify the tokens of the answer. Precision is
the number of correctly identified answer tokens,

5In SQUAD-V?2, additional layers decide if a question is
answerable. We do not discuss them to save space.
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divided by the number of tokens in the model’s
answer. Recall is the number of correctly identified
answer tokens, divided by the number of tokens
in the correct answer. For different thresholds ¢,
we obtain different precision-recall pairs for the
same question-snippet-answer triple, which can be
plotted as a precision-recall curve. We compute the
trapezoidal area under the precision-recall curve
(PRAUC), and we then macro-average the PRAUC
scores over the test (or development) triples.®

2.5 Baselines

We use two baselines that do not involve DA: i) off-
the-shelf ALBERT, pre-trained on a generic corpus,
already fine-tuned on SQUAD-V2 (last model of Ta-
ble 1); and ii) same as the first baseline, but further
fine-tuned (on top of the fine-tuning on SQUAD-V2)
on our BIOASQ training data, with the modified ar-
chitecture of Section 2.3. Table 2 shows that the
second baseline is much stronger. Hence, we re-
port performance gains with DA methods against
the second baseline in subsequent sections.’

Model +train ex. PRAUC (BIOASQ dev)
ALBERT (SQUAD-V2) 0 80.25
+BIOASQ 2,848 89.57

Table 2: Performance of baselines on BIOASQ dev. data.
The first one is ALBERT-XL fine-tuned on SQUAD-V2.
The second one is also fine-tuned on BIOASQ, with the
modified architecture of Fig. 1. We also show the num-
ber of domain-specific (BIOASQ) training examples.

3 Data Augmentation Methods

There are two alternatives when using the artificial
training instances that DA generates (Yang et al.,
2019). In our case, we always start with ALBERT,
pre-trained on a generic corpus, and already fine-
tuned on SQUAD-V2. In the first alternative, the
model is then further fine-tuned on the artificial
instances, and is then finally fine-tuned on the end-
task data (BIOASQ). In the second alternative, the
artificial and the end-task data are mixed, and the
model is fine-tuned on the mixed data. In each
experiment below, we use the alternative (among
the two) that leads to the best development PRAUC.

3.1 Artificial Cloze-style MRC Dataset

For this augmentation method, we use BIOMRC
(Pappas et al., 2020), the most recent and largest

®PRAUC is similar to Mean Average Precision (Manning
et al., 2008), but obtains precision-recall points differently.

"We also experimented pre-trained ALBERT directly fine-
tuned only on BIOASQ, but the performance was much worse.
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artificial cloze-style biomedical MRC dataset.
BIOMRC comes in two versions, LARGE and LITE,
with 813k and 100k cloze-style questions, respec-
tively. We use BIOMRC LITE. Each ‘question’ is
the title of a biomedical article, with an entity men-
tioned in the title hidden. Each question is accom-
panied by a passage (the abstract of the article),
candidate answers (entities mentioned in the ab-
stract), and the gold answer. From each passage we
keep only the sentence containing the gold answer
as the given snippet, and we generate a question-
snippet-answer triple.® If more than one sentences
of the passage contain the gold answer, we create
multiple triples, one for each sentence. We end up
with approximately 142k artificial training triples.

ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)
+BIOASQ 2,848 89.57
+BIOMRC 2,848 78.66

+BIOMRC +BIOASQ 5,696 91.57
+BIOMRC 10,000 91.20
+BIOMRC +BIOASQ 12,848 93.15
+BIOMRC 30,000 90.57
+BIOMRC +BIOASQ 32,848 92.19
+BIOMRC 50,000 91.19
+BIOMRC +BIOASQ 52,848 91.51
+BIOMRC 100,000 90.93
+BIOMRC +BIOASQ 102,848 92.39

Table 3: Adding training examples from an artificial
cloze-style MRC dataset (BIOMRC). The ‘+train ex.’
column shows the number of domain-specific training
examples (from BIOMRC and/or BIOASQ) used, on top
of examples seen during fine-tuning on SQUAD-V2.

In Table 3, the starting point is the weak base-
line of Table 2 (ALBERT fine-tuned on SQUAD-V2).
We compare to the strong baseline (the second
one of Table 2), which was further fine-tuned on
BIOASQ (+BIOASQ). We show results when fine-
tuning on BIOMRC (+BIOMRC) instead of BIOASQ,
and when fine-tuning on both BIOMRC and BIOASQ
(+BIOMRC +BIOASQ), using 10k to 100k randomly
sampled BIOMRC examples. Interestingly, fine-
tuning on 10k artificial BIOMRC examples leads
to better performance (91.20 dev. PRAUC) than
fine-tuning on BIOASQ (89.57). The best perfor-
mance (93.15) is obtained by fine-tuning on both
BIOASQ and 10k BIOMRC examples. We attribute
this improvement to the resemblance of BIOMRC
to BIOASQ data. We see no benefit when adding
more than 10k BIOMRC examples, which may be
an indication that the useful (for BIOASQ) patterns
that the model can learn from BIOMRC are limited.

8See the appendix for examples of all the DA methods.



3.2 Back-translation

Back translation (BTR) has been used for data aug-
mentation in several NLP tasks (Feng et al., 2021;
Shorten et al., 2021). The training examples are
machine-translated from a source to a pivot lan-
guage and back, obtaining paraphrases. We ini-
tially used French as the pivot language, then also
Spanish and German, always translating from En-
glish to a pivot language and back with Google
Translate. For each question-snippet-answer train-
ing triple of BIOASQ, we generate two new triples
by back-translating either the question or the snip-
pet. If a new triple is identical to the original one,
we discard it. We obtained 4,901 new training ex-
amples pivoting only to French, and 15,593 when
also pivoting to Spanish and German.

(or passage therein) that includes the gold answer
is used to construct a new training example (with
the same question and gold answer). We used the
open data from the PUBMED Baseline Repository !’
to create a pool of 22.3M biomedical documents.
Each document is the concatenation of the title
and abstract of a PUBMED article. We indexed all
documents with an ElasticSearch retrieval engine!!
and used the 500 top ranked (by BM25) documents
per question. From the original 2,848 question-
snippet-answer triples, only 289 more were gener-
ated, because in most of the retrieved documents
no sentence included the entire answer (individual
terms of the answer might be scattered in the doc-
ument). We suspect that the biomedical experts
of BIOASQ create questions whose answers cannot
be found in large numbers of documents (unlike

ALBERT (SQUAD-V2)  +train ex. PRAUC (BIOASQ dev) common questions in open-domain QA datasets),
and the few relevant documents (and snippets) of
+BIOASQ 2,848 89.57 . . .
TBTR [FR] 2.848 0184 each question have already been included in the
+BTR [FR] +BIOASQ 5,696 92.95 BIOASQ training data. Table 5 shows that IR-based
+BTR [FR] 4,901 89.80 augmentation led to very minor gains in our case,
+BTR [FR] +BIOASQ 7,749 91.44 . K
+BTR [FR.ES,DE] 2.848 39.30 because of the very few additional instances.
+BTR [FR,ES,DE] +BIOASQ 5,696 89.99
+BTR [FR,ES,DE] 14,229 92.21 ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)
+BTR [FR,ES,DE] +BIOASQ 17,077 9221 +BIOASQ 2348 8957
Table 4: Data augmentation via back-translation (BTR), +IR 289 80.30
using one (FR) or three (FR, ES, DE) pivot languages. +IR +BIOASQ 3,137 89.80

Table 3 shows that adding back-translations to
the BIOASQ training data increases development
PRAUC from 89.57 to 91.44 (or 92.66) with one
(or three) pivot languages. Using back-translations
with one pivot (+BTR [FR]) instead of the original
BIOASQ data slightly surpasses the strong baseline
(89.80 vs. 89.57); and with three pivots, using only
back-translations (+BTR [FR,DE,ES]) performs al-
most the same as adding the original BIOASQ data
too (92.52 vs. 92.66). These results show that BTR
produces very good training instances and that fur-
ther benefits may be possible with more pivots.
Nevertheless simpler methods (e.g., WORD2VEC-
based word substitution, discussed below) offer
larger gains with fewer artificial training instances.

3.3 Information Retrieval

Data augmentation based on Information Retrieval
(IR) has been found promising in previous open-
domain QA work (Yang et al., 2019).° Given a
question and a gold answer, the question is used as
a query to an IR system. Any retrieved document

%Yang et al. (2019) gained 2.7 to 9.7 F1 percentage points
(pp.) in all four datasets they experimented with.
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Table 5: Data augmentation via information retrieval
(IR), using PUBMED titles and abstracts as documents.

3.4 Word Substitution

These methods replace words of the original train-
ing examples by similar words (e.g., synonyms)
from a thesaurus (Jungiewicz and Smywinski-Pohl,
2019; Abdollahi et al., 2020) or words with similar
embeddings (Wang and Yang, 2015). More re-
cent work uses large language models, pre-trained
to predict masked tokens, which suggest replace-
ments of randomly masked words of the original
examples (Kobayashi, 2018; Wu et al., 2019).

3.4.1 WORD2VEC-based Word Substitution

In this case, we use biomedical WORD2VEC
(Mikolov et al., 2013; Brokos et al., 2018) em-
beddings. Given a question-snippet-answer train-
ing instance, we consider all the word tokens of
the snippet (excluding stop-words). For each to-
ken w; (i = 1,...,n) of the snippet, we select the
ki < K most similar words w; (j = 1,...,k;) of

1°1hncbe.nlm.nih.gov/ii/information/MBR.html
https://www.elastic.co/


lhncbc.nlm.nih.gov/ii/information/MBR.html
https://www.elastic.co/

the vocabulary, using cosine similarity of word em-
beddings (W;, w;), that satisfy cos(w;, w;) > C. We
then produce (k; + 1)(kp+1) ... (k, +1)—1 artificial
training instances by replacing each token w; of the
snippet by one of its k; most similar words (or it-
self), requiring at least one token of the original
snippet to have been replaced. We then randomly
sample 10k to 100k of the resulting instances and
use them as additional training examples. We set
K = 10, C = 0.95 based on preliminary experi-
ments on development data. Adding 10k of the
resulting artificial training examples to the origi-
nal BIOASQ examples leads to 95.60 development
PRAUC, outperforming the strong baseline (89.57)
by six percentage points (Table 6). Using only the
10k artificial examples, without any of the original
examples, achieves almost identical performance
(95.59), which suggests that the generated exam-
ples are of high quality. As when using artificial
MRC examples (Table 3), adding more than 10k
artificial instances provides no further benefit, prob-
ably because we end up adding too many minor

with a new vocabulary extracted from PUBMED. '?
We use the same process as in WORD2VEC word
substitution, but each candidate replacement w; of
an original word w; of the snippet must now sat-
isfy p(w;) > P (instead of cos(W;, W;) > C), where
p(wj) is the probability assigned to w; by the pre-
trained model; we also rank the candidate replace-
ments w; of each w; by p(w;). We set P = 0.95,
based on preliminary experiments on development
data. Table 7 shows that BIOLM-based substitution
is almost as good as WORD2VEC-based substitu-
tion (94.45 vs. 95.60), but for BIOLM the best per-
formance is obtained with 50k artificial examples
(compared to 10k for WORD2VEC). This is proba-
bly due to the fact that BIOLM suggests words that
fit the particular context of the word being replaced
and may, thus, suggest words with very different
meanings that can be used in the particular con-
text, adding noisy examples. By contrast, when
using WORD2VEC we compare more directly each
original word with candidate replacements. !>

variants of the same original examples. ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)
+BIOASQ 2,848 89.57
ALBERT (SQUAD-V2)  +train ex. PRAUC (BIOASQ dev) +BIOLM 2,848 91.76
T BIOAS X 95 +BIOLM +BIOASQ 5,696 92.37
+WORD2VEC 2,848 95.56 +BIOLM 10,000 94.06
+WORD2VEC +BIOASQ 5,696 95.27 +BIOLM +BIOASQ 12,848 94.06
+WORD2VEC 10,000 95.59 +BIOLM 30,000 93.63
+WORD2VEC +BIOASQ 12,848 95.60 +BIOLM +BIOASQ 32,848 93.75
+WORD2VEC 30,000 95.28 +BIOLM 50,000 93.94
+WORD2VEC +BIOASQ 32,848 95.20 +BIOLM +BIOASQ 52,848 94.45
+WORD2VEC 50,000 95.16 +BIOLM 100,000 93.79
+WORD2VEC +BIOASQ 52,848 95.13 +BIOLM +BIOASQ 102,848 93.84

+WORD2VEC 100,000 95.36 . . o

+WORD2VEC +BIOASQ 102,848 95.22 Table 7: Data augmentation with word substitution

Table 6: Data augmentation with WORD2VEC-based
word substitution, using biomedical embeddings.

The same DA mechanism could have been ap-
plied to questions instead of snippets. In prelimi-
nary experiments, we employed an additional pre-
trained natural language inference (NLI) model
(El Boukkouri et al., 2020) as a consistency mecha-
nism to ensure the modified snippets followed from
the original ones, but this also greatly reduced the
number of artificial training instances we could gen-
erate. Performance was better without this mecha-
nism, i.e., generating more artificial instances was
better than generating fewer higher quality ones.

3.4.2 Masked LM Word Substitution

Here we use BIOLM (Lewis et al., 2020) and specif-
ically a ROBERTA-LARGE model pre-trained on
PUBMED, PMC, and MIMIC-III (Zhu et al., 2018)
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based on masked language modeling using BIOLM.

3.5 Question Generation

Question generation (QG) has been found an effec-
tive DA method in open-domain MRC (Alberti et al.,
2019; Chan and Fan, 2019; Lopez et al., 2020). The
main reported benefit is that it increases the diver-
sity of questions (Qiu and Xiong, 2019; Sultan
et al., 2020). Typically QG models are fed with a
snippet s, select an answer span a of s, and gener-
ate a question g answered by a. We take T5 (Raffel
etal., 2020) fine-tuned for QG on a modified version
of SQUAD by Lopez et al. (2020)'# and use it to gen-

12We did not use BIOLM as an off-the-shelf QA model (Sec-
tion 2.2), because it was not available fine-tuned on SQUAD.

3WORD2VEC embeddings are not sensitive to the particular
context of the snippet and rely exclusively on the (many more)
contexts of each word encountered in the pre-training corpus.

“The TS QG model we used is available at https://
github.com/patil-suraj/question_generation.
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erate alternative questions ¢’ and answer spans a’
from the snippets s of the BIOASQ (g, s, a) training
triples, producing artificial (¢’, s, a’) triples. Multi-
ple artificial triples can be generated from the same
original one (the same s), but we require each ¢’ to
be answered by a different answer span @’ to maxi-
mize the diversity of questions. We obtained 3,389
artificial triples from the 2,848 original ones this
way. An alternative we explored is to select random
snippets s from random PUBMED abstracts, and use
the QG model to produce artificial (¢’, s, a’) triples.
The alternative approach can generate millions of
artificial triples; we generated up to 100k.

ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)

+BIOASQ 2,848 89.57
+T5@BIOASQ 3,389 84.46

+T5 @BIOASQ +BIOASQ 6,237 88.46
+T5 @PUBMED 2,848 85.79

+T5 @PUBMED +BIOASQ 5,696 89.29
+T5 @PUBMED 10,000 87.30

+T5 @PUBMED +BIOASQ 12,848 89.34
+T5 @PUBMED 30,000 86.65
+T5@PUBMED +BIOASQ 32,848 90.51
+TS5 @PUBMED 50,000 87.30

+T5 @PUBMED +BIOASQ 52,848 90.69
+TS5 @PUBMED 100,000 87.30
+T5@PUBMED +BIOASQ 102,848 90.61

Table 8: Data augmentation via question generation us-
ing T5. Questions are generated from the training snip-
pets of BIOASQ (TS5 @BIOASQ) or from random snippets
from random PUBMED abstracts (T5 @ PUBMED).

Table 8 shows that adding to the BIOASQ training
data the artificial triples we obtained from BIOASQ
(+T5 @BIOASQ, BIOASQ) is worse (88.46 vs. 89.57)
than our strong baseline (+BIOASQ). Fine-tuning
only on the artificial triples (+T5S@BIOASQ) is
much worse (84.46), i.e., the artificial triples are
much less useful, despite being more than the orig-
inal ones. Adding artificial triples from PUBMED
(+T5@PUBMED, BIOASQ) performs only slightly
better (90.69) than the strong baseline, when us-
ing 50k artificial triples, with no further benefit
when using more. A possible explanation for these
poor results is the TSwas fine-tuned for QG on the
open-domain SQUAD dataset. Thus, the generated
questions are rather simplistic and not indicative of
the specialized questions of BIOASQ. Indeed, most
of the generated questions are minor rephrases of
the given snippet (e.g., subject replaced by ‘what’).

3.6 Adding Context

In the original training question-snippet-answer
(g, s, a) triples, s is usually a single sentence. To
help the QA model learn to better distinguish rele-
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ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)

+BIOASQ 2,848 89.57
+CONTEXT (K = 2) 4,568 93.91
+CONTEXT (K = 2) +BIOASQ 7,416 94.05
+CONTEXT (K € {2,4}) 6,428 94.20
+CONTEXT (K € {2,4}) +BIOASQ 9,276 94.21

Table 9: Data augmentation by adding context to the
snippet (K = 2 or K € {2,4} surrounding sentences).

vant from irrelevant parts of the given snippet, we
experimented with an additional DA method, where
we find the original article that s comes from and
we expand s with the k; (and k;) sentences preced-
ing (and following) it."> For each original (q, s, a)
triple, we create multiple new (g, §’, a) artificial
triples, for different values of k; > 0 and &k, > 0,
such that k; +k, = K.1® We experiment with K = 2
(three new triples for each original one); then to ob-
tain more artificial examples, we repeat with K = 4
(five new triples for each original). To avoid trunca-
tion of the input examples, we remove all artificial
examples that exceed 500 characters in length. For
K € {2,4}, we obtain a development PRAUC score
of 94.21 (Table 9), which is surpassed only by the
the two embedding-based word substitution meth-
ods (Tables 6-7). This DA method was introduced
by Yoon et al. (2020), who used it in BIOASQ.!7

3.7 Final Results

Table 10 shows the performance of all the DA meth-
ods considered, on both development and test data.
For each DA method, we use the configuration
(from Tables 3-9) with the best development score.
The test scores are lower than the corresponding
development ones, since several hyper-parameters
(e.g., K, C in the case of WORD2VEC-based word
substitution, number of training epochs) are tuned
on the development set. The test set also seems
to be harder than the development one, since our
weak baseline (ALBERT fine-tuned on SQUAD-V2
with no further training) also performs worse on
the test set (77.78 vs. 80.25). Nevertheless, the
test scores confirm that WORD2VEC-based word
substitution is the best DA method considered, lead-
ing to a performance gain of 8.2 percentage points
test PRAUC compared to the strong baseline (84.99
vs. 77.78). The ranking of the other DA methods

3Tn BIOASQ, each gold snippet is accompanied by the
PUBMED id of the article it was extracted from.

16Simply setting k; = k, would risk misguiding the model
to always prefer the central sentence. We also experimented
with random k; (or k,) sentences before (and after) s, but
performance was much worse, possibly because the random
sentences led to inferior context-aware token embeddings.

7Yoon et al. (2020) reported an improvement in BIOASQ’s
Lenient Accuracy by 2.49 percentage points.



does not change when ranking by test score, instead
of development score, with the only exception of
adding context to the given passage (+CONTEXT),
which is now slightly worse than adding instances
from the artificial BIOMRC dataset. Interestingly,
all the DA methods, even the weakest IR-based one,
improve upon the test score of the strong baseline.

Method +train ex. PRAUC (dev) PRAUC (test)

ALBERT (SQUAD-V2) 0 80.25 77.78

+ BIOASQ 2,848 89.57 76.78
+WORD2VEC +BIOASQ 12,848 95.60 (+6.03) 84.99 (+8.21)
+BIOLM +BIOASQ 52,848  94.45 (+4.88) 82.76 (+5.98)
+CONTEXT +BIOASQ 9,276 94.21 (+4.64)  81.63 (+4.85)
+BIOMRC +BIOASQ 12,848 93.15 (+3.58)  82.04 (+5.26)
+BTR +BIOASQ 18,441  92.66 (+3.09) 81.27 (+4.49)
+T5@PUBMED +BIOASQ 52,848 90.69 (+1.12)  80.26 (+3.48)
+IR +BIOASQ 3,137 89.80 (+0.23)  78.66 (+1.88)

Table 10: Performance of DA methods on development
and fest data, ordered by decreasing development score.
For each DA method, we use the configuration (from
Tables 3-9) with the best development score.

4 Related Work

DA is a key ingredient of success in deep learning
for computer vision (Shorten and Khoshgoftaar,
2019). DA for NLP has been explored less, but is
an active research area (Shorten et al., 2021; Feng
etal., 2021), with methods ranging from leveraging
knowledge graphs (Moussallem et al., 2019) to
generating textual data from scratch (Yang et al.,
2020; Bayer et al., 2021a). The most common NLP
task in DA is text classification (Bayer et al., 2021b).
Feng et al. (2021) consider span-based NLP tasks
in specialized domains, which includes biomedical
MRC, among the most challenging for DA.

Word substitution is a simple and common DA
approach in NLP. In thesaurus-based substitution
(Jungiewicz and Smywinski-Pohl, 2019; Abdol-
lahi et al., 2020), words are replaced by synonyms
or closely related words (e.g., hypernyms). Word
embedding substitution (Wang and Yang, 2015)
replaces words by others nearby in a pre-trained
vector space model (Section 3.4). Alternatively, a
random word is removed, inserted (Wei and Zou,
2019a; Miao et al., 2020), or noised with spelling
errors (Belinkov and Bisk, 2018). Sentences may
also be re-ordered or removed (Shen et al., 2020;
Chen et al., 2021). Text generation has also been
used in several NLP tasks for adversarial augmen-
tation (Cheng et al., 2020), to paraphrase training
examples (Ribeiro et al., 2018; Cai et al., 2020;
Xie et al., 2020), or generate new (Anaby-Tavor
et al., 2020; Kumar et al., 2020). Back-translation
(Sennrich et al., 2016) is also widely used across
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NLP tasks (Shorten et al., 2021; Feng et al., 2021).

DA work for QA in particular includes back-
translation (Du et al., 2019), question generation
(Zhang and Bansal, 2019; Alberti et al., 2019; Chan
and Fan, 2019; Lopez et al., 2020; Yang et al.,
2020), paraphrasing (Dong et al., 2017; Liu et al.,
2020), and synonym replacement (Nugraha and
Suyanto, 2019), but not in a biomedical setting.
The IR-based DA we used (Section 3.3) follows
Yang et al. (2019), who experimented in English
and Chinese, but not in the biomedical domain. Ex-
panding the passage with surrounding sentences
(Section 3.6) follows Yoon et al. (2020), who used
this method in BIOASQ. Dhingra et al. (2018) cre-
ate artificial cloze-style MRC datasets and use them
to pre-train neural QA models (not Transformers),
which are then fine-tuned on real training exam-
ples. By contrast, we use artificial MRC datasets to
fine-tune large pre-trained Transformers. All the
above studies experimentally compare at most two
DA methods; we compare seven. Hence, our work
is the largest (in terms of methods considered) ex-
perimental study of DA for QA (and possibly NLP).

Longpre et al. (2019) report that back-translation
did not improve generalization in (non-biomedical)
QA experiments with fine-tuned pre-trained Trans-
formers. Longpre et al. (2020) report that back-
translation and Easy Data Augmentation (Wei and
Zou, 2019b) are not always effective in text clas-
sification when fine-tuning pretrained Transform-
ers, even with small end-task training sets. Conse-
quently, Feng et al. (2021) recommend exploring
when DA is effective for large pre-trained models.
Our work contributes in this discussion by showing
that DA can lead to very significant performance
gains, even when using large pre-trained Trans-
formers fine-tuned on large generic (SQUAD) and/or
small domain-specific (BIOASQ) end-task datasets.

5 Limitations and Future Work

A limitation of our work is that we consider only DA
in the input space, i.e., the artificial instances are
in textual form, like the original ones, as opposed
to, e.g., interpolating feature vectors (Chawla et al.,
2002; DeVries and Taylor, 2017; Shorten et al.,
2021). We also consider only offline augmenta-
tion, i.e., the artificial instances are generated once,
before training, as opposed to artificial instances
generated anew for each training epoch. These two
limitations, which are common in DA for NLP, al-
low generating model-agnostic training instances



once and reusing them across training epochs and
different models. This greatly reduces computation
costs and allows sharing the augmented datasets.
Online DA, however, exposes the model to many
more synthetic data; and feature space DA may act
as layer-specific regularization. One could also
exploit ideas from active learning (Ein-Dor et al.,
2020; Margatina et al., 2021) to select the most
informative, diverse, and representative artificial
training instances among those that DA generates.
Small subsets of the BIOASQ data could also be
used to study the effect of DA in few-shot learning.
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Appendix
A Combining Augmentation Methods

We also tried to combine DA methods. In Ta-
ble Al, we incrementally add to the training set of
the strong baseline (ALBERT fine-tuned on SQUAD-
V2, then BIOASQ) artificial training examples ob-
tained from WORD2VEC-based word substitution,
then (additionally) training examples obtained by
expanding the context of the given passage etc.
We started with the artificial examples of the
WORD2VEC-based method, which had the best de-
velopment score, skipped the other (BIOLM-based)
word substitution method, then continued with ex-
amples from BIOMRC and back-translation, which
were the next best in terms of development score.
Unfortunately, there was no significant gain, com-
pared to using only the WORD2VEC-based method,
which suggests that the DA methods we consider
are not complementary. An alternative approach
would be to stack DA methods, instead of accumu-
lating their training examples. For example, one
could apply the WORD2VEC method to artificial
examples produced by increasing the context of the
given passages. We leave this for future work.

Method +train ex. PRAUC (dev) PRAUC (test)
ALBERT (SQUAD-V2) 0 80.25 77.78
+BIOASQ 2,348 89.57 76.78
+ WORD2VEC 12,848 95.60 84.99
+ CONTEXT 19,276 93.98 83.54
+ BIOMRC 29,276 94.27 85.18
+ BTR 44,869 93.44 83.97

Table Al: Results using a combination of Context In-
creasing and WORD2VEC data augmentation.

B Examples of Artificial Data

B.1 BIOMRC

Table D3 presents training instances generated
from the BIOMRC dataset. Each instance is a triple
containing a cloze-style question, a snippet, and
the span of the snippet answering a question. This
is very similar to the SQUAD setting which we have
adopted in our experiments (see Section 2.1).
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B.2 Back-translation

Tables D4 and D5 show training instances gener-
ated via back-translation of BIOASQ questions and
snippets, respectively. The back-translated ques-
tions and snippets retain the semantics of the origi-
nal ones while adding diversity to the training set.

B.3 Information Retrieval

Table D6 contains training instances generated via
Information Retrieval. A BIOASQ question is used
as a query in a search engine to retrieve PUBMED
documents (abstracts and titles). From the retrieved
documents all the snippets containing the answer
are extracted and used to generate new training
triples. Note that although a retrieved snippet may
contain the entity that answers the BIOASQ ques-
tion, it is not always evident that it answers the
question, e.g., it may answer another question as is
the case in the instance with id 29767248.

B.4 Word Substitution

Tables D7 and D8 presents examples generated
via word substitution based on WORD2VEC and
BIOLM respectively. Although some substitutions
may induce noise, the generated snippets tend to
retain the semantics of the original ones and add
diversity to the training set.

B.5 Question Generation

Tables D9 and D10 show examples generated via
Question Generation using BIOASQ snippets and
random snippets from random PUBMED articles
respectively. Although, the generated triples intro-
duce diverse answers they contain rather simplistic
questions which are not indicative of the special-
ized questions found in BIOASQ.

B.6 Additional Context

Table D11 contains examples generated by adding
context to the original BIOASQ snippets. The addi-
tional context provides additional information that
helps the model to better distinguish relevant and
irrelevant parts of the original snippet.

C Computing Infrastructure

All of our experiments run on a titan-X GPU with
12GB of Memory while all code was compiled for
CUDA Version 10.2. The personal computer we
used offers 32GB of DDR4-RAM Memory and a
6-core Intel(R) Core(TM) 17-5820K CPU.
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D Hyper-parameter tuning

The random seed in all experiments was set to 1.
For data augmentation through Information Re-
trieval (IR), we use an ElasticSearch cluster to re-
trieve relevant abstracts using BM25 with default
parameters.

Due to computational and time restrictions,
hyper-parameter tuning was performed with grid-
search by training on the original 2,848 BIOASQ ex-
amples (Table 2), i.e., without data augmentation,
and evaluating on the development data. The ‘best’
hyper-parameter values were then used in all the
augmentation experiments. The hyper-parameter
search space (48 settings) and the selected values
can be seen in Table D2.

Hyperparameter choices best dev. setting
Random Seed {1} 1

MLP Hidden Size {50, 100} 100
Total Epochs {50, 100} 50

Patience {5} 5
Monitor Score {AUC, loss} AUC
Learning Rate {0.1, 0.01, 2e-5, S5e-5 } 5e-5
Weight Decay {0.01} 0.01
Warmup Steps {0} 0
Batch Size {16, 8} 16

Table D2: Hyper-parameter search space and selected
values. We performed a grid-search on a total of 48 dif-
ferent settings. The best choices per hyper-parameter
can be seen in the last column.



DA with instances from BIOMRC

ID Instance

16061304 BIOMRC question: Prognosis of 6644 resected [MASK] in Japan: a Japanese lung cancer
registry study.

BIOMRC snippet: Otherwise, the present TNM staging system seemed to well characterize
the stage-specific prognosis in non-small cell lung cancer .

BIOMRC answer: non-small cell lung cancer

19823942 BIOMRC question: Systolic versus diastolic cardiac function variables during [MASK]
treatment for breast cancer .

BIOMRC snippet: epirubicin induces considerable decrease in left ventricular ejection
fraction and a high risk of CHF.

BIOMRC answer: epirubicin

22457372 BIOMRC question: Pre-operative education and counselling are associated with [MASK]
following carotid endarterectomy: a randomized and open-label study.

BIOMRC snippet: AIM: To investigate the effect of pre-operative visits and counselling by
intensive care unit ( intensive care unit ) nurses on Patients ’s anxiety symptoms following
carotid endarterectomy.

BIOMRC answer: anxiety symptoms

Table D3: Training instances extracted from BIOMRC. Each instance is a triple containing a cloze-style question, a
snippet, and the span of the snippet answering the question.

DA via question back-translation

ID Instance

8699317 Pivot language: French

BIOASQ question: Which is the gene mutated in type 1 neurofibromatosis?
Back-translated Question: What is the mutated gene in type 1 neurofibromatosis?
BIOASQ snippet: An NF1 gene was identified as a gene whose loss of function causes an
onset of human disorder, neurofibromatosis type I.

BIOASQ answer: NF1

11816795 Pivot language: Spansih

BIOASQ question: Which is the primary protein component of Lewy bodies?
Back-translated question: What is the main protein component of Lewy bodies?
BIOASQ snippet: The protein alpha-synuclein appears to be an important structural
component of Lewy bodies, an observation spurred by the discovery of point mutations in
the alpha-synuclein gene linked to rare cases of autosomal dominant PD.

BIOASQ answer: alpha-synuclein

3056562 Pivot language: German

BIOASQ question: Which type of urinary incontinence is diagnosed with the Q tip test?
Back-translated question: What type of urinary incontinence does the Q tip test diag-
nose?

BIOASQ snippet: Simple clinical tests for support of the urethrovesical junction, such as
the Q tip test, are non-specific in patients with stress urinary incontinence.

BIOASQ answer: stress urinary incontinence

Table D4: Training instances generated via back-translation of BIOASQ questions using French, Spanish, and
German as a pivot language. A generated instance contains a back-translated question and the corresponding
BIOASQ snippet and answer.
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DA via snippet back-translation

ID Instance

8699317 Pivot language: French

BIOASQ question: Which is the protein implicated in Spinocerebellar ataxia type 3?
BIOASQ snippet: Ataxin-3 (AT3) is the protein that triggers the inherited neurodegenera-
tive disorder spinocerebellar ataxia type 3 when its polyglutamine (polyQ) stretch close to
the C-terminus exceeds a critical length

Back-translated snippet: Ataxin-3 (AT3) is the protein that triggers spinocerebellar
ataxia type 3 in inherited neurodegenerative disorder when its polyglutamine (polyQ)
stretches near the C-terminus exceeds a critical length.

BIOASQ answer: Ataxin-3

16232326 Pivot language: Spanish

BIOASQ question: Which gene is responsible for the development of Sotos syndrome?
BIOASQ snippet: Haploinsufficiency of the NSD1 gene has been implicated as the major
cause of Sotos syndrome, with a predominance of microdeletions reported in Japanese
patients

Back-translated snippet: NSD1 gene haploinsufficiency has been implicated as the main
cause of Sotos syndrome, with a predominance of microdeletions reported in Japanese
patients.

BIOASQ answer: NSD1 gene

11154546 Pivot language: German

BIOASQ question: Abnormality in which vertebral region is important in the Bertolotti’s
syndrome?

BIOASQ snippet: Repeated fluoroscopically guided injections implicated a symptomatic
L6-S1 facet joint contralateral to an anomalous lumbosacral articulation.
Back-translated snippet: Repeated fluoroscopic injections implied a symptomatic L6-S1
facet joint contralateral to an abnormal lumbosacral articulation.

BIOASQ answer: lumbosacral

Table D5: Training instances generated via back-translation of BIOASQ snippets using French, Spanish, and Ger-
man as a pivot language. A generated instance contains a back-translated snippet and the corresponding BIOASQ
question and answer.

DA via Information Retrieval

ID Instance

25941473 BIOASQ question: Which is the neurodevelopmental disorder associated to mutations in
the X- linked gene mecp2?

Retrieved snippet: Genotype-specific effects of Mecp?2 loss-of-function on morphology
of Layer V pyramidal neurons in heterozygous female Rett syndrome model mice.
BIOASQ answer: rett syndrome

28708333 BIOASQ question: Which is the molecular target of the immunosuppressant drug Ra-
pamycin?

Retrieved snippet Conversion from calcineurin inhibitors to mTOR inhibitors as primary
immunosuppressive drugs in pediatric heart transplantation.

BIOASQ answer: mtor

29767248 BIOASQ question: What is the target of the drug Olaparib?

Retrieved snippet: Mechanistically, dual blockade of PI3K and PARP in ARIDIA-
depleted gastric cancer cells significantly increased apoptosis detected by flow cytometry,
and induced DNA damage by immunofluorescent staining.

BIOASQ answer: parp

Table D6: Training instances generated via IR. A BIOASQ question is used as the query to retrieve PUBMED
documents. For each snippet of the retrieved documents that contains the answer, we generate a new training
triplet consisting of the BIOASQ question, the snippet and the BIOASQ answer.
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DA with word substitution based on WORD2VEC

ID Instance
27965160 BIOASQ question: Sclerostin regulates what process?
BIOASQ snippet: Sclerostin is a soluble antagonist of Wnt/b-catenin signaling secreted

primarily by osteocytes. Current evidence indicates that sclerostin likely functions as a
local/paracrine regulator of bone metabolism rather than as an endocrine hormone.
Snippet after WORD2VEC substitution: sclerostin is a soluble agonist of wnt-b catenin

signaling secreted mainly by osteocytes current evidence suggests that sclerostin likely
functions as a localparacrine regulator of bone metabolism rather than as an endocrine
hormone

BIOASQ answer: bone metabolism

22003227 BIOASQ question: Which microRNA is the mediator of the obesity phenotype of patients
carrying 1p21.3 microdeletions?

BIOASQ snippet: The study also demonstrated significant enrichment of miR-137 at
the synapses of cortical and hippocampal neurons, suggesting a role of miR-137 in
regulating local synaptic protein synthesis machinery. CONCLUSIONS: This study
showed that dosage effects of MIR137 are associated with 1p21.3 microdeletions and

may [therefore contribute to the ID phenotype in patients with [deletions harbouring

this /miRNA .
Snippet after WORD2VEC substitution: the study also demonstrated significant en-
richment of mir 137 at the synapses of cortical and hippocampal neurons indicating

a implication of mir 137 in regulating local synaptic protein synthesis machinerybr-
bconclusionsb this study showed that dosage effects of mirl37 are associated with
2223 microdeletions and might 'hence| contribute to the id phenotype in patients

with |microinsertions harbouring this ‘micro-rna

BIOASQ answer: MIR137

21546092 BIOASQ snippet: Beck’s Medical Lethality Scale (BMLS) was administered to assess
the degree of medical injury, and the SAD PERSONS mnemonic scale was used to
evaluate suicide risk.

BIOASQ question: What is evaluated with the SAD PERSONS scale?

Snippet after WORD2VEC substitution: becks medical lethality scale bmls was admin-
istered to evaluate the degree of medical injury and the sad people domain-general

scale was utilized to investigate suicide risk
BIOASQ answer: suicide risk

Table D7: Training instances generated via word substitution based on WORD2VEC. We randomly select at most
10 words of a BIOASQ snippet and substitute each word w; with its most similar word w; from the vocabulary of the
WORD2VEC model. Highlights of the same color indicate substituted words and the corresponding substitutions.
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DA with word substitution based on BIOLM

ID Instance
22140526 BIOASQ question: Which gene is responsible for red hair?
BIOASQ snippet: The association signals at the MC1R gene locus from CDH were

uniformly more significant than traditional GWA analyses. The [CDH [ test will
contribute towards finding [rare - variants in GWAS and sequencing studies.

BIOASQ snippet after BIOLM substitution: The association signals at the MCIR 1
identified from CDH were significantly more significant than traditional  association

analyses. The |proposed | findings will contribute towards |detecting 'novel - vari-
ants in GWAS and sequencing studies.

BIOASQ answer: MC1R

26917818 BIOASQ question: Dinutuximab is used for treatment of which disease?

BIOASQ snippet: CONCLUSIONS Dinutuximab is the first anti-GD2 monoclonal anti-
body approved in combination with GM-CSE, IL-2, and RA for maintenance treatment
of pediatric patients with high-risk neuroblastoma who achieve at least a partial response
to first-line multiagent, 'multimodality| therapy.

BIOASQ snippet after BIOLM substitution: CONCLUSIONS Dinutuximab is the first
human monoclonal antibody approved in combination with recombinant IL-2, and
dexamethasone for maintenance treatment of pediatric patients with high-risk neuroblas-
toma who achieve at least a partial response to prior multiagent, standard| therapy.

BIOASQ answer: neuroblastoma

27789693 BIOASQ question: Which database associates human noncoding SNPs with their three-
dimensional interacting genes?

BIOASQ snippet: 3DSNP: a database for linking human noncoding SNPs to their

three-dimensional  interacting [genes'.

BIOASQ snippet after BIOLM substitution: 3DSNP: a method for linking functional
GWAS SNPs to their three-dimensional ' structural |structures

BIOASQ answer: 3DSNP

Table D8: Training instances generated via word substitution based on BIOLM.We randomly select at most 10
words of a BIOASQ snippet and we substitute each word w; with the most probable word w; suggested by BIOLM
after masking w;. Highlights of the same color indicate substituted words and the corresponding substitutions.

DA via Question Generation using BIOASQ snippets
ID Instance
21159650 Generated question: What enzyme inhibits cullin-RING E3 ubiquitin ligases?
BIOASQ snippet: MLN4924 is a first-in-class experimental cancer drug that inhibits
the NEDDS8-activating enzyme, thereby inhibiting cullin-RING E3 ubiquitin ligases and
stabilizing many cullin substrates
Generated answer: NEDD8
17333537 Generated question: What type of RNA triggers silencing of inactivation in eutherian
mammals?
BIOASQ snippet: In eutherian mammals X inactivation is regulated by the X-inactive
specific transcript (Xist), a cis-acting non-coding RNA that triggers silencing of the
chromosome from which it is transcribed
Generated answer: chromosome
16800744 Generated question: What is the human tissue kallikrein family of?
BIOASQ snippet: The human tissue kallikrein family of serine proteases (hK1-hK15
encoded by the genes KLK1-KLK15) is involved in several cancer-related processes.
Generated answer: serine proteases

Table D9: Training instances generated using TS. Given a BIOASQ snippet TSselects a span of the snippet and
generates a question that can be answered by that span. We select spans different than the ones used in BIOASQ.
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DA via Question Generation using random snippets from random PUBMED abstracts
ID Instance
26935709 Generated question: What can be isolated or in combination with accompanying defor-
mities occurring in the forefoot and/or hindfoot?
PUBMED snippet: Symptoms can be isolated or in combination with accompanying
deformities occurring in the forefoot and/or hindfoot.
Generated answer: Symptoms

29260288 Generated question: What supplementation has been integrated into our practice?
PUBMED snippet: Vitamin D supplementation has been integrated into our current prac-
tice.

Generated answer: Vitamin D
30706485 Generated question: What were connected to a volume-cycled ventilator after sedation,

analgesia and endotracheal intubation?

PUBMED snippet: After sedation, analgesia and endotracheal intubation, pigs were con-
nected to a volume-cycled ventilator.

Generated answer: pigs

Table D10: Training instances generated using TS. Given a random snippet from a random PUBMED article
T5selects a span of the snippet and generates a question that can be answered by that span.

DA by adding context

ID Instance

15149039 BIOASQ question: Which metabolite activates AtxA?

BIOASQ snippet: Transcription of the major Bacillus anthracis virulence genes is triggered
by CO2, a signal mimicking the host environment.

BIOASQ snippet with additional context: Transcription of the major Bacillus anthracis
virulence genes is triggered by CO2, a signal mimicking the host environment. A 182-kb
plasmid, pXO1, carries the anthrax toxin genes and the genes responsible for their regula-
tion of transcription, namely atxA and, pagR, the second gene of the pag operon. AtxA has
major effects on the physiology of B. anthracis. It coordinates the transcription activation
of the toxin genes with that of the capsule biosynthetic enzyme operon, located on the
second virulence plasmid, pXO2. In rich medium, B. anthracis synthesises alternatively
two S-layer proteins (Sap and EA1).

Answer: CO2

16757427 BIOASQ question: What tyrosine kinase, involved in a Philadelphia- chromosome positive
chronic myelogenous leukemia, is the target of Imatinib (Gleevec)?

BIOASQ snippet: Imatinib was developed as the first molecularly targeted therapy to
specifically inhibit the BCR-ABL kinase in Philadelphia chromosome (Ph)-positive
chronic myeloid leukemia (CML).

BIOASQ snippet with additional context: The second generation of BCR-ABL tyrosine
kinase inhibitors. Imatinib was developed as the first molecularly targeted therapy to specit-
ically inhibit the BCR-ABL kinase in Philadelphia chromosome (Ph)-positive chronic
myeloid leukemia (CML). Because of the excellent hematologic and cytogenetic responses,
imatinib has moved toward first-line treatment for newly diagnosed CML. However,
the emergence of resistance to imatinib remains a major problem in the treatment of
Ph-positive leukemia. Several mechanisms of imatinib resistance have been identified,
including BCR-ABL gene amplification that leads to overexpression of the BCR-ABL
protein, point mutations in the BCR-ABL kinase domain that interfere with imatinib
binding, and point mutations outside of the kinase domain that allosterically inhibit
imatinib binding to BCR-ABL.

Answer: BCR-ABL

Table D11: Training instances generated by adding context around the original BIOASQ snippet. In the generated
snippet the original one is highlighted.
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