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Abstract

We study the problem of entity detection and
normalization applied to patient self-reports
of symptoms that arise as side-effects of vac-
cines. Our application domain presents unique
challenges that render traditional classification
methods ineffective: the number of entity types
is large; and many symptoms are rare, resulting
in a long-tail distribution of training examples
per entity type. We tackle these challenges
with an autoregressive model that generates
standardized names of symptoms. We intro-
duce a data augmentation technique to increase
the number of training examples for rare symp-
toms. Experiments on real-life patient vaccine
symptom self-reports show that our approach
outperforms strong baselines, and that addi-
tional examples improve performance on the
long-tail entities.

1 Introduction

Motivation. Outside of clinical trials of vaccines
on a small part of the population, it is impor-
tant to study symptoms that arise as side effects
of vaccines in the broader population. This is
particularly crucial when the vaccines have only
been granted emergency use permission, as has
been the case for the COVID-19 vaccines such as
the Pfizer-BioNTech mRNA vaccine, the Oxford-
AstraZeneca adenovirus-vectored vaccine, and oth-
ers. In the United States, the Vaccine Adverse
Event Reporting System (VAERS)!, co-managed
by the Centers for Disease Control and Prevention
(CDC) and the U.S. Food and Drug Administra-
tion (FDA), is a national system that collects and
analyzes reports from patients, about possible side
effects after taking a vaccine.

VAERS presents a rich source of data for re-
searchers to analyze. A challenge that arises when
trying to analyze patient self-reports such as those
in VAERS is that patients are free to use their
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g} feel muscle pain

Day 1 thru 4 | could not lift my arm. Day 5 thru 9

S/ arm is still but better. Still not able to move arm in
certain positions Day 10 thru 11 the pain in
getting worse. difficult to lift my arm. All 1days
the pain wakes me up at when | try to move.

-

Movement disorder, Pain in m
extremity, Sleep disorder

Chills, Headache, Injection
site erythema, Injection
site pain, Injection site
swelling, Injection site

warmth, Pain, Pyrexia

| started feeling achy with chills on day 8 in the

e] afternoon and on day 9 | was in bed all day on day 9
with ache/fever and headache. | am never ever just
lay around but | had to. | notice that my arm at
injection cite was really sore, but the time | took off
long sleeves and looked at it that night, injection
site was red, swollen, and hot. | saw that | had
Covid arm (after googling it). | took 2 Benedry, went
to bed and in the morning was feeling much better.
This is day 11 and | am fine, red swollen area in my
arm is slowly going away.

Figure 1: Examples of patient self-reports from the
VAERS, and their corresponding symptom entities.

choice of words to describe the side-effects they
have experienced. This necessitates data normaliza-
tion so that across different patient reports, even in
the face of polysemy, abbreviations, spelling errors,
or other variations, the same symptom is mapped
to the same name. Thus, in this paper, we study
entity detection and normalization on the VAERS
dataset. The task we are addressing is illustrated
with sample reports from VAERS in Figure 1.

Currently, VAERS self-reports are manually
tagged with standardized names of symptoms that
are mentioned in them — a time consuming, and
imperfect process as our inspection showed cases
where not all symptoms were tagged. Automated
models could support human effort to speed up the
process, and potentially suggest entities a human
might miss.

Challenges. Our application setting presents
unique challenges : 1) entity names can be long and
contain a lot of common nouns; 2) the number of
entity types is large; 3) the number of labels in each
example varies widely, e.g., patient reports contain
anywhere from a minimum of 1 to a maximum of
131 symptoms; and 4) while a few symptoms are
common, many are rare, resulting in a long-tail
distribution of labels per entity type.

Contributions. To tackle these challenges, we
frame the problem as an entity retrieval (ER)
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g} hurt really bad; woke up and froze, chill
and cough on and off.

(a) Multi-label classification model

Figure 2: Architecture of a multi-label classification app

Woke up in the morning with a sweat; headache; neck

Is, sore arm,

(b) Autoregressive entity retrieval model

roach (a) and an autoregressive entity retrieval approach (b).

The characteristics of our domain render classification approaches ineffective.

task. We leverage an autoregressive entity retrieval
model (Cao et al., 2021) that generates standardized
names of symptoms from patient self-reports, as op-
posed to a classification model such as a pre-trained
model (Devlin et al., 2019) or BioBERT (Lee et al.,
2019) fine-tuned with a classification layer on top.
To tackle data sparsity problems of rare symptoms,
we propose a data augmentation method that gen-
erates training data points through the definition of
symptoms. We then obtain symptom definitions
in two ways: i) Pre-trained language models: it
has been shown that pre-trained language models
are good at generating definitions (Shwartz et al.,
2020), we therefore use GPT-3 (Brown et al., 2020)
to generate symptom definitions. and ii) UMLS:
for additional definitions, we consult a medical
knowledge graph, the Unified Medical Language
System (UMLS) (Bodenreider, 2004). UMLS is
the largest and most authoritative knowledge graph
of the biomedical domain with over 3 million enti-
ties.

Our experiments on the VAERS dataset show
that our approach outperforms strong baselines,
and that additional examples improve performance
on long-tail entities.

2 Autoregressive Entity Retrieval Model

The goal of symptom entity detection is to predict
symptom entities £ = {ey, ..., e, } corresponding
to the input description x. Each example is a pair
of (z, &) and the number of entities n varies over
the dataset. As shown in Figure 2 (a), multi-label
classification approaches are trained to minimize
cross entropy loss over all symptom classes. In
the autoregressive entity retrieval, Figure 2 (b), the
model generates a sequence of symptom names
as a target sentence instead of classifying each en-
tity class. We adopt GENRE’s (Cao et al., 2021)

architecture that consists of transformer-based en-
coder and decoder. However, to retrieve multiple
symptoms, GENRE requires annotated spans that
refer to each symptom. For example, the source
and target sequences should be (“I have muscle
pain and fever”, “I have [muscle pain] (Myalgia)
and [fever] (Pyrexia)”). In our setting, a key dif-
ference is that the VAERS dataset is not annotated
with the mention spans of entities, only whether
or not a particular symptom was mentioned by the
patient. Therefore, we generate the target sequence
as a comma separated list, i.e., the pair of source
and target sequences is (“I have muscle pain and
fever”, “Myalgia, Pyrexia”). Then the model is
trained to maximize the probability

|yl

P(y|x79) = Hp(yl|y0> "'7yi—17$79)
i=1

ey

where y = {y1,...,ym} is a set of tokens in the
target sentence, yo is a model specific start token,
and 6 is the parameters of the model.

3 Data Augmentation

While the data of common symptoms, such as
Headache and Pyrexia, are abundant to train the
model, examples of long-tail symptoms are rare,
and therefore have fewer reported instances in the
dataset. The median of the number of symptoms in
our train set is 5 and over 80% of entities occur less
than 50 times while Headache and Pyrexia have
over 100K examples, see Figure 3.

To overcome the problem posed by this very
skewed training data distribution, we propose to
generate additional labeled data in the form of def-
initions. The idea is that we can treat a symptom
definition as a synthetic patient report (input se-
quence), and the symptom name as the correspond-
ing label. We obtained definitions of symptoms in
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Pyrex
Chest pa
Cold sweat
Urine analy:
Influen:
Nocturia
Myocardial oedema

Body temperatus
Aerophagia

Skin weeping
Tongue biting
Bladder diverticulum

Pharyngeal oedema
Capnogram

Somnolen
Nipple swelling
NIH stroke scale
Allergic colitis
Anal erythema
Corneal lesion

Pleural effusion
Hypervolaemia

Figure 3: The distribution of symptom entities in the
VAERS dataset has a very long tail.

two ways: using a pre-trained language model, and
using the UMLS biomedical dictionary.

Pre-trained Language Model. We use GPT-3
(Brown et al., 2020) to generate definitions of long-
tail symptoms. We use the prompt: “The definition
of [symptom name] is”. We then add the gener-
ated sentence as a synthetic patient report and the
symptom name as a label, to our augmented data.

UMLS medical dictionary. For UMLS, we
search terms with symptom names and then choose
the first top result definition.

One limitation of this approach is that each symp-
tom definition only corresponds to a single symp-
tom whereas real patients often experience more
than one symptom. To mimic the more realistic
scenario of multiple symptoms, we also generate
synthetic reports with up to two symptoms by con-
catenating definitions. Examples of such halluci-
nated data points are shown in Figure 4.

4 Experiments

Dataset. From VAERS, we consider data from
the last three years (2019 to 2021), and randomly
split it into train, validation, and test sets of
534, 516; 66, 814; and 66, 814 (80%/10%/10%).

Long-tail Symptoms. The VAERS dataset con-
tains 10,507 symptom entities. We define the
symptoms with a frequency of less than 50 as long-
tail entities. As a result, 8, 755 entities are classi-
fied as long-tail, which are 83.3% of the total entity
set.

Data Augmentation. We obtained 10, 507 gen-
erated definitions from GPT-3 and 3, 480 defini-
tions through the UMLS dictionary API. For the
experiments, we used a single definition to mimic a
patient with a single symptom, in addition, we cre-

Melaena

GPT-3 blood in the stool, typically caused by gastrointestinal bleeding.

UMLS The black, tarry, foul-smelling feces that contain degraded blood.

Ischaemia

lack of blood flow to a tissue or organ. This may be due to

GPT-3 obstruction or a problem with the blood vessels.

UMLS adecrease in blood supply caused by blockage of blood vessel.
Input Output
blood_ in the stool, typically caused by gastrointestinal Melaena
bleeding.
'tl)'lr;zlack, tarry, foul-smelling feces that contain degraded Melaena

lack of blood flow to a tissue or organ. This may be due to

Ischamemia
obstruction or a problem with the blood vessels.

a decrease in blood supply caused by blockage of blood

Ischamemia
vessel.

a decrease in blood supply caused by blockage of blood

vessel. blood in the stool, typically caused by Melaena, Ischamemia
gastrointestinal bleeding.

The black, tarry, foul-smelling feces that contain degraded
blood. lack of blood flow to a tissue or organ. This may be Ischamemia, Melaena
due to obstruction or a problem with the blood vessels

Figure 4: Examples of symptom definitions and gen-
erated data for augmentation. To build examples with
multiple symptoms, we combine two definitions as one
input sentence.

ated 50K combination examples of two definitions
and two symptoms.

Test sets.
test sets:

We evaluated our approach on three

* 1) Full: Full test set with 66, 814 examples.

e 2) CUI-mapped: Many symptoms in our
dataset can be mapped to Concept Unique
Identifiers (CUI) in UMLS. To compare with
previous work that can detect UMLS CUISs,
we built a test set with entities mapped to
UMLS. 6,564 out of 10,507 entities are
mapped to UMLS by exact string match.

* 3) Long-tail: A set of test examples including
only long-tail entities.

4.1 Experiments Setup

We adopted GENRE’s (Cao et al., 2021) experi-
mental settings with 256 of maximum input length,
128 of maximum output length, 64 of batch size, 2e-
5 learning rate and 4 of beam search size. We used
the pre-trained BART (Lewis et al., 2020) model
and fine-tuned 5 epochs on our training set. In the
experiments with BERT, BioBERT and BART, we
followed a multi-label classification setting with a
feed-forward layer on the top of pre-trained models
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Model Type Test set Macro Micro
Precision | Recall F1 Precision | Recall F1
String match Full 1 0.1684 | 0.2883 1 0.1849 | 0.3121
BERT-base (Devlin et al., 2019) C Full 0.1453 0.1497 | 0.1474 0.1453 0.1735 | 0.1581
BioBERT-base (Lee et al., 2019) C Full 0.1321 0.1663 | 0.1472 0.1382 0.1989 | 0.1631
BART-base (Lewis et al., 2020) C Full 0.1378 0.1695 | 0.1520 0.1378 0.1976 | 0.1624
GENRE (Cao et al., 2021) G Full 0.8305 0.7688 | 0.7984 0.8196 0.7193 | 0.7662
GENRE + UMLS + GPT-3 G Full 0.8305 0.7682 | 0.7981 0.8189 0.7187 | 0.7655
MetaMap C CUI-mapped 0.1630 0.3232 | 0.2167 0.0671 0.3169 | 0.1108
BioBERT-base (Lee et al., 2019) C CUI-mapped 0.1453 0.1929 | 0.1657 0.1453 0.2665 | 0.1880
GENRE (Cao et al., 2021) G CUI-mapped 0.8273 0.7857 | 0.8060 0.8498 0.7719 | 0.8090
GENRE + UMLS + GPT-3 G CUI-mapped 0.8278 0.7853 | 0.8060 0.8502 0.7712 | 0.8088
GENRE (Cao et al., 2021) G Long-tail 0.1662 0.1391 | 0.1515 0.7061 0.1229 | 0.2094
GENRE + UMLS G Long-tail 0.1833 0.1541 | 0.1674 0.6973 0.1381 | 0.2305
GENRE + GPT-3 G Long-tail 0.1902 0.1604 | 0.1741 0.7106 0.1436 | 0.2389
GENRE + UMLS + GPT-3 G Long-tail 0.1955 0.1629 | 0.1777 0.6861 0.1473 | 0.2425

Table 1: Results of symptom entity detection on the VAERS dataset. C (Classification) and G (Generation) denote
the type of each model. The generative models are more effective. Our data augmentation with UMLS and GPT-3
improves upon the generative model, GENRE, on long tail entities (last three rows).

and also we trained 5 epochs for each. All hyper-
parameters are set on the best validation scores.

Baselines. 1) String match: String match refers
to an approach that relies on exact same string
matches with symptom entities.

2) BERT/BioBERT/BART: Pre-trained LMs with
a multi-label classification setup.

3) MetaMap (Aronson and Lang, 2010): MetaMap
is a medical entity detection model provided by the
National Library of Medicine.”? Given the input
text, MetaMap returns entities mapped to UMLS
with confidence scores. We experimented with
thresholds {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} and
regarded entities as positives over the threshold.
The threshold of 0.1 was determined on the best
validation score.

4.2 Results

Table 1 shows the results of our experiments. In
multi-label classification models, we observe that
pre-trained LMs do not outperform even the simple
string match algorithm; this is likely due to the chal-
lenges outlined in the Introduction. On the other
hand, the generative methods significantly boosts
the F1 score, achieving over 79.8% and 76.6% of
Macro and Micro F1 scores. Similarly, compared
to MetaMap, the proposed approach shows substan-
tial gains across all metrics.

In the experiments on the long-tail test set, the
models show low performances as we expected
because long-tail entities are scarce in the training

*https://lhncbe.nlm.nih.gov/ii/tools/MetaMap/run-
locally/MetaMap.html

set. However, when we train the model with each
augmented set, we find that our synthetic data can
help improve performance. Augmenting with both
UMLS and GPT-3 definitions increases scores by
2.62% and 3.31% in Macro and Micro F1 on the
long-tail test set. However, augmentation does not
change performance for common symptoms that
already have sufficient training data, as seen on the
Full and CUI-mapped test sets.

5 Related Work

In biomedical entity retrieval or entity linking,
BERT-based models, such as BioBERT (Lee et al.,
2019) or EnRuDR-BERT (Tutubalina et al., 2020),
are often used to classify or re-rank candidate en-
tities (Ujiie et al., 2021; Angell et al., 2021; Sung
et al., 2020; Sakhovskiy et al., 2021). In contrast
to previous work, we took a generative approach.
The Social Media Mining for Health Applications
(SMM4H) Workshop (Magge et al., 2021) has intro-
duced various shared tasks including normalization
of adverse drug effects (Miftahutdinov et al., 2020)
and detection of disease mentions in social media.

Approaches to overcome the problem of data
sparsity and long-tail training data distributions in-
clude: data sampling (Li et al., 2019; Akhbardeh
et al., 2021), cost-sensitive loss function (Lin et al.,
2018), regularization (Kim et al., 2022), semi-
supervised learning (Hangya et al., 2018), and
word/sentence level attention mechanism (Qing
et al., 2019).

The success of the few-shot generation demon-
strated by GPT-3 (Brown et al., 2020) has resulted
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in several studies that leverage GPT-3 for this pur-
pose (Gao et al., 2021; Schick and Schiitze, 2020).
Kim et al. (2021) explores ways of leveraging ex-
ternal resources such as dictionaries or medical
documents. We use both a language model, in ad-
dition to a dictionary whose coverage is limited.

6 Conclusion

We studied the problem of vaccine side-effect de-
tection on real-world patient data. The characteris-
tics of this domain render traditional classification
approaches ineffective. Our experiments demon-
strated that combining a generative approach with
synthetic data from symptom definitions obtained
from a pre-trained LM and a medical dictionary can
help improve performance on rare symptoms. Ex-
ploring other approaches for learning with limited
data, is an avenue for future work.
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