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Abstract

It is commonly claimed that inter-annotator
agreement (IAA) is the ceiling of machine
learning (ML) performance, i.e., that the agree-
ment between an ML system’s predictions and
an annotator can not be higher than the agree-
ment between two annotators. Although Bo-
guslav and Cohen (2017) showed that this claim
is falsified by many real-world ML systems, the
claim has persisted. As a complement to this
real-world evidence, we conducted a compre-
hensive set of simulations, and show that an ML
model can outperform IAA even if (and espe-
cially if) annotators are noisy and differ in their
underlying classification functions, as long as
the ML model is reasonably well-specified. Al-
though the latter condition has long been elu-
sive, leading ML models to underperform IAA,
we anticipate that this condition will be increas-
ingly met in the era of big data and deep learn-
ing. Our work has implications for (1) maxi-
mizing the value of machine learning, (2) adher-
ence to ethical standards in computing, and (3)
economical use of annotated resources, which
is paramount in settings where annotation is
especially expensive, like biomedical natural
language processing.

1 Introduction

It is standard when conducting machine learning
(ML) and natural language processing (NLP) work
to calculate inter-annotator agreement (IAA) met-
rics like Cohen’s Kappa (Cohen, 1960). This is
done not just for annotation quality control, but
also as a comparison for machine learning mod-
els’ performance. In particular, it has commonly
been claimed – by some of the most prominent
researchers in ML and NLP (Boguslav and Cohen,
2017) – that IAA places an upper bound or ceil-
ing on the performance of machine learning mod-
els. When researchers claim this and their model
reaches IAA, they are implicitly suggesting (or
at least it follows) that the model has performed

as well as possible or has solved the task for that
dataset, and/or that the dataset cannot be used to
drive further development of ML models. Despite
the prominence of this claim, however, Boguslav
and Cohen (2017) reported that neither they nor
a professional literature search service could find
evidence in support of it. This is concerning for at
least two reasons.

First, as Boguslav and Cohen (2017) say, “if the
assumption [that IAA bounds ML] turns out not
to be supported. . . we may be mis-estimating the
actual performance of our [ML] systems. In par-
ticular, we may be over-estimating the quality of
their performance by under-estimating how good
[performance] could potentially be” (pg 298). This
underestimation of the maximum possible perfor-
mance may lead to the development of poorer mod-
els under the belief that they have achieved max-
imum capacity. Moreover, as noted by Boguslav
and Cohen (2017), such misestimation may violate
ethical standards concerning accurate characteriza-
tion of the limitations of computer systems (e.g.,
ACM Code of Ethics and Professional Conduct 2.7
Anderson, 1992; see also Petersen et al., 2021 on
recommendations for safe, effective use of clinical
decision support systems).

Second, and relatedly, if a modeler stops us-
ing an annotated dataset to drive ML develop-
ment once ML performance on that dataset reaches
IAA, they may be underutilizing those annota-
tions. This could be an enormous waste of money,
since annotation is often one of the most expen-
sive components of an ML/NLP project, especially
in biomedical NLP where the time of annotators
(often biomedical experts) is especially expensive.
For example, Hill et al. (2015) noted that then state-
of-the-art word embeddings had reached IAA on
existing word relatedness benchmark datasets (e.g.,
WordSim-353, Finkelstein et al., 2001). Believing
that IAA was the upper bound of ML, they there-
fore believed that such datasets could no longer be
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used to drive development of different word em-
bedding models. This led them to collect new anno-
tations of word similarity, yielding the benchmark
SimLex-999. Their abstract lays out this logic:

“Further, unlike existing gold stan-
dard evaluations, for which automatic
approaches have reached. . . the inter-
annotator agreement ceiling, state-of-the-
art models perform well below this ceil-
ing on SimLex-999. There is there-
fore plenty of scope for SimLex-999
to quantify future improvements to dis-
tributional semantic models, guiding
the development of the next generation
of representation-learning architectures.”
(pg. 1)

If IAA does not in fact bound ML, then the older
word relatedness benchmarks could have actually
been used to “guide. . . the development of the next
generation of representation-learning architec-
tures”, and there would have been less need to
spend time and money annotating SimLex-999.
Given that Hill et al. (2015) has been cited over
1000 times according to Google Scholar, other
researchers may have absorbed and replicated their
logic, which would be concerning if the claim is not
really true. Indeed, a Stack Exchange post (tomas ,
https://stats.stackexchange.com/users/84364/tomas)
roughly contemporaneous with Hill et al. (2015)
suggests that this logic may be widespread.

Despite the popularity and stakes of the claim
that IAA bounds ML, Boguslav and Cohen (2017)
found, across 6 papers, 20 ML systems that out-
perform IAA, on tasks ranging from entity recog-
nition in clinical notes (Roberts et al., 2008), to
deception detection (Pérez-Rosas et al., 2015) (and
see Wilbur, 1998 for earlier evidence that ML can
outperform IAA in information retrieval1). How-
ever, claims that IAA bounds ML performance
have persisted. This is seen in both biomedical and
broader ML/NLP, in (1) papers that are often cited
much more than Boguslav and Cohen (2017) and
published in high impact outlets including JAMA
Network, AMIA, Nature Human Behavior, and
ACL (e.g., Grčar et al., 2017; Pilehvar et al., 2018;
Amidei et al., 2018; Sarker et al., 2019; Pustu-Iren
et al., 2019; Ribeiro et al., 2019; Richie et al., 2019;
O’Connor et al., 2020; Hebart et al., 2020; May-
field and Black, 2020; Basile, 2020; Bevilacqua

1We thank an anonymous reviewer for this suggestion.

et al., 2021; Li et al., 2021; Higashinaka et al.,
2021; Goldberg et al., 2021), (2) machine learn-
ing lectures at well-known universities including
University of Pittsburgh (Han, 2017), University
of Edinburgh (Cohen, 2020), and City University
of New York (CUNY, Gorman, 2020) and in slides
by noted NLP textbook authors Jurafsky and Mar-
tin (Jurafsky and Martin, 2022), and (3) online
posts and social media discussions by prominent
machine learning users (e.g., Ruder, 2021).

It is not entirely clear why the claim that IAA
bounds ML survived Boguslav and Cohen’s coun-
terexamples, but we suspect at least two factors
are at play. First, Boguslav and Cohen (2017) was
published in a fairly specialized journal (Studies in
Health Technology and Informatics), and therefore
may not have reached as many ML/NLP practi-
tioners as it could or should have. Consistent with
this, as of March 29, 2022, Boguslav and Cohen
(2017) has been cited only 7 times, according to
Google Scholar. Second, we suspect that the issue
deserves a broad proof of concept based on simula-
tions, in addition to the empirical examples raised
by Boguslav and Cohen. Simulations would be
complementary to the real-world evidence brought
by Boguslav and Cohen, in at least two ways. First,
simulations allow us to simplify the problem to its
essence, which may be clarifying in ways that real-
world studies, with all their potentially distracting
idiosyncrasies, are not. Second, simulations allow
us to precisely control and test different potentially
relevant annotation and modeling factors, and there-
fore better understand when/how/why a model can
or can’t beat IAA. Therefore, the aim of this study
is to use a comprehensive set of computational sim-
ulations to bolster the evidence that IAA is not the
upper bound on ML performance.

The rest of this paper is organized as follows. We
start with simplified simulations that capture the ba-
sic elements of an ML pipeline with two annotators
and train a supervised model with these annotations
(Experiment 1). We then relax various assumptions
of this setup to simulate potentially more realistic
settings, and to better understand the conditions
under which an ML model can outperform IAA
(Experiment 2). In both experiments, the general
approach is to (a) simulate two annotators’ anno-
tations on a test set (where both annotators label
all samples of this set); (b) simulate their annota-
tions on disjoint halves of a training set; (c) train
an ML model on the training set annotations; and
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(d) compare the agreement between the ML model
and each annotator to the annotators’ IAA on the
test set. We conclude with a general discussion
interpreting our work and its implications.

2 Experiment 1

2.1 Simulations
We consider a binary classification task conducted
by two annotators, A1 and A2 who probabilisti-
cally classify the i-th sample, xi (composed of a sin-
gle variable), into one of two classes, yi ∈ {0, 1},
according to a logistic function of xi, as in:

p(yi = 1) =
1

1 + e−xi
(1)

In a simulation, we first sample the independent
variable x from a standard normal distribution
(zero mean, unit standard deviation), producing an
Xtrain and an Xtest with some number of samples
each. Through Eq 1, A1 and A2 independently an-
notate every sample in Xtest, which yields ytest,A1

and ytest,A2. Then A1 annotates the first half of
Xtrain, and A2 annotates the second half of Xtrain,
and we concatenate their annotations into a sin-
gle ytrain. We then train a logistic regression on
(Xtrain, ytrain), and generate this model’s predic-
tions on Xtest, i.e., we generate ŷtest.

We can then calculate the inter-annotator
agreement f(ytest,A1, ytest,A2), and the model’s
average performance using both A1’s and
A2’s annotations as ground truth, as in
average(f(ŷtest, ytest,A1), f(ŷtest, ytest,A2)),
where f is either F1-score or Cohen’s Kappa.
F1-score is defined as:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(2)

where Precision is TP
TP+FP and Recall is

TP
TP+FN . Cohen’s Kappa is defined as:

κ ≡ po − pe
1− pe

(3)

where po is the observed agreement among annota-
tors, and pe is the probability of chance agreement,
which is often calculated using the base rates of
each label in observed annotations.

Conventionally, Cohen’s Kappa is used to mea-
sure IAA because it controls for chance annotator
agreement, and F1 is used to measure model per-
formance because it balances precision and recall
and punishes (inappropriately) ‘extreme’ models (a

setting with 1 positive sample and infinite negative
samples, and a model that always assigns the posi-
tive class, will have Recall = 1, Precision = 0,
and F1 = 0). However, Boguslav and Cohen
(2017) suggest that in many linguistic annotation
tasks, especially named entity recognition or others
involving phrase extraction, where there are a very
large number of potential spans that no annotator
ever extracts, it is often the case that pe = 0 in
Equation 3. In this case, Kappa is equivalent to F1
(Hripcsak and Rothschild, 2005), which arguably
justifies the commonly conducted direct compar-
ison between (1) IAA measured with Kappa and
(2) model performance measured with F1. In our
simulations, however, it is more straightforward to
simply calculate and compare IAA and ML perfor-
mance in the same metric(s), and we opt for this
here.

Finally, we note here that our goal is not
to critique these particular measures, their us-
age, or the paradigm of inter-annotator agreement
more generally (for such critique, see for exam-
ple Amidei et al., 2018). Rather, our focus is
merely to demonstrate the falsity of the claim that
IAA bounds ML, i.e., that f(ytest,A1, ytest,A2) >=
average(f(ŷtest, ytest,A1), f(ŷtest, ytest,A2)). Al-
though we chose Kappa and F1-score here because
of their common usage in ML and NLP, we expect
our results to generalize to other measures (e.g.,
Matthews Correlation Coefficient).

2.2 Results

In our simulations, Xtest contains 100 samples and
Xtrain contains 1000 samples, and the simulations
were repeated 100 times. Figure 1a shows the
results. As can be seen, on average, the model
achieves F1=0.67 when comparing to the annota-
tors on the test set, while the annotators score only
F1=0.58 when comparing to each other (t=12.44,
p < 10-25). Likewise, the model ‘agrees’ with
the annotators at a Cohen’s Kappa of about 0.35,
while the annotators agree with each other at only
0.16 (t=13.60, p < 10-29). Clearly, inter-annotator
agreement does not provide an upper bound on ML
performance in this simple setting.

While IAA clearly doesn’t provide an upper
bound on model performance, it is also clear (see
Figure 1b) that the two are positively correlated (r
= 0.48, p < 10-6). The correlation arises because
when an annotator happens to assign a positive
class to samples whose p(yi = 1) > 0.5, the an-
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notator’s predictions will be closer to both (a) the
model’s predictions (which always assigns the pos-
itive class to samples when p(yi = 1) > 0.5, and
(b) the other annotator’s predictions, because the
latter annotator will also usually assign the positive
class when p(yi = 1) > 0.5. Thus, one might
fairly say that although IAA doesn’t bound ML
performance, IAA predicts ML performance. This
relationship may be partly what underlies the ap-
peal or intuitiveness of the notion that IAA bounds
ML performance, an issue we return to in the gen-
eral discussion. At the same time, Figure 1b also
makes clear that, at the level of individual simu-
lations, the ML model tends to outperform IAA,
since most points are above the line y = x.

2.3 Discussion

The simulations above show that, contrary to many
claims in the ML and NLP communities, IAA does
not bound ML performance, at least in this sim-
ple case. At the same time, because IAA and ML
performance are positively correlated, IAA does
give some indication of the level of ML perfor-
mance that can be expected, which could explain
why many people believe that IAA bounds ML per-
formance. It may even be that when two authors
use the same term (‘bound’, ‘ceiling’, or ‘limit’,
the keywords we used to find claims about the rela-
tionship between IAA and ML performance), one
author may intend that IAA is a strict ceiling on ML
performance, and another may intend that low IAA
merely predicts low ML performance (although
based on our reading of the literature, we tend to
think most writers intend the first meaning). Fail-
ure to carefully distinguish these meanings may be
contributing to confusion in the field, and we hope
these results clarify the distinction.

Also note that in this simulation, the annotators
A1 and A2 have identical classification functions,
so this simulation can be equivalently viewed as
having a single annotator classify all of the train-
ing samples once, and all of the test samples twice.
Having a single annotator classify the test sam-
ples twice allows us to calculate not inter-annotator
agreement, but intra-annotator agreement (also
known as test-retest reliability in the psychometrics
literature, Guttman, 1945). Therefore, concluding
that IAA does not bound ML performance is also
applicable to intra-annotator agreement.

3 Experiment 2

The conditions of Experiment 1 are intentionally
oversimplified from real-world conditions. To bet-
ter understand the range of conditions under which
ML can or cannot outperform IAA, we next in-
troduce some additional complexity in the simula-
tions.

3.1 Simulations

First, it seems unrealistic that two different anno-
tators, with different experiences and perceptual
and cognitive systems, will ever understand and
perform an annotation task in exactly the same way.
In a sentiment analysis task, for example, annota-
tors may have different thresholds for what is con-
sidered a ‘positive’ text. In other words, it seems
unrealistic that two annotators will have the exact
same classification function. One straightforward
way to relax this assumption is to allow different
annotators to have different intercepts in the linear
component of the logistic function, as in:

p(yi = 1) =
1

1 + e−(xi+bj)
(4)

where bj is the intercept for annotator j ∈ {1, 2}.
If, for example, b2 > b1, Annotator 2 will generally
be more likely than Annotator 1 to assign a sam-
ple to the positive class. In our experiments, we
will simply assume b2 ≥ 0 and b1 = −b2 (other
combinations of intercepts, like setting b1 = 0 and
varying b2, were also tested and the general pattern
of results did not change). This will of course de-
crease IAA. It may also seem intuitive that, when
annotators systematically disagree about how to ap-
proach the task, it will be more difficult for a model
to learn anything coherent, decreasing model per-
formance, possibly to a performance worse than
IAA.

Second, it also seems possible, in practice, that
annotators’ judgments are more deterministic (less
noisy) than implied in Experiment 1, where the
IAA Cohen’s Kappa averaged only 0.18. This
likely strikes most ML practitioners as much lower
than what is seen and accepted in empirical ML
applications. It therefore seems reasonable that
a given annotator, facing a sample twice, would
generally classify it the same way each time (i.e.,
that intra-annotator agreement is high). There are
various ways to parameterize determinism in an-
notation, but we opt to simply exponentiate the
outputs of the logistic function by a parameter, γ,
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(a) Bars show means across simulations, and error bars display
95% confidence intervals.

(b) Scatterplot of inter-annotator F1 (x-axis) against Average
Model-Annotator F1 (y-axis), across simulations. Each dot
represents a single simulation

Figure 1: Experiment 1 results

and then divide these values by their sum so they
add to 1, as proper probabilities, as in:

a1,i =
1

1 + e−(xi+bj)
(5)

p(yi = 1) =
aγ1,i

aγ1,i + (1− a1,i)γ
(6)

Thus, instead of viewing the logistic function as
producing probabilities, we can view it (Equation
5) as producing ‘activations’ of the possible anno-
tations in the annotator’s mind, i.e., a1,i and a0,i
refer to the activations of labels 1 and 0, respec-
tively, for the i-th sample. These activations are
then converted into probabilities by Equation 6.
When γ = 0, the choice is completely random (i.e.,
p(yi = 1) = 0.5) and does not depend on xi and
bj . When γ = 1, then annotation probabilities of
Equation 6 are identical to the activations produced
by Equation 4. When γ > 1 and approaches pos-
itive infinity, choice becomes more deterministic,
such that with an extremely high γ, an annotator
will almost always classify a sample xi as positive
if a1,i > 0.5. One might argue that, to more accu-
rately model commonly seen levels of IAA metrics,
we need to test γ > 1, which ought to boost IAA
and perhaps therefore make it harder for ML to
outperform IAA.

Third, and perhaps most importantly and obvi-
ously, a machine learning model will always be
misspecified in some way (Box, 1976). That is,
the ML model will almost always lack some of the
variables that influence an annotator’s judgment, or
the ML model may be purely linear while annota-
tors are actually using some nonlinear combination

of variables. Although it may seem obvious that,
if the model is misspecified enough, ML perfor-
mance will fall short of IAA, we also simulate this
condition to show that the model does not need
to be perfectly specified to beat IAA. To simulate
misspecification, we simply augment Equation 5
with a second independent variable, x2, as in:

a1,i =
1

1 + e−(x1,i+m∗x2,i+bj)
(7)

We assume that, like x1, x2 is sampled (inde-
pendently) from the standard normal distribution
(i.e., x1 and x2 together constitute a standard
multivariate normal distribution). We also assume
that there is a coefficient m on x2 controlling the
relative importance of x2 to annotator decisions.
We then assume that annotators’ judgments follow
from Equations 7 and 6. To misspecify an ML
model, we simply withhold x2 from Xtrain and
Xtest when fitting the model and generating ŷtest,
respectively. That is, annotators make decisions
with both x1 and x2, but the model only has
access to x1. When m is large, reflecting great
importance of x2 to annotator decisions, then
the ML model is greatly misspecified and this
misspecification will have large negative impacts
on average(f(ŷtest, ytest,A1), f(ŷtest, ytest,A2)).
When m = 0, of course, x2 is ignored in
annotators’ decisions and the ML model is not
misspecified at all – the omission of x2 from the
ML model has no effect on its performance.2

2We note that increasing m can also increase IAA because
it will push the output of Equation 7 toward 0 or 1, which
in turn makes annotators’ labels less noisy. Although it may
be undesirable for m to influence both misspecification and
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We emphasize that m is just one simple way to
introduce misspecification in the simulations. In
more complex real world tasks with more complex
models (such as deep learning), misspecification
can take many different forms. Exploring this
further may be a useful avenue in future work.

Finally, although it is generally intentional and
desirable that ML models classify samples deter-
ministically (i.e., ŷi = 1 if and only if p(yi = 1) ≥
0.5), we can simulate a noisy ML model to better
understand the conditions under which ML can or
cannot beat IAA. That is, it seems intuitive that
one advantage an ML model has over human an-
notators, is that an ML model can make decisions
with perfect consistency. To simulate a noisy ML
model, we simply pass a trained ML model’s pre-
dicted probabilities through Equation 6 and sample
its predictions accordingly.

3.2 Results

We sample b2 from {0, 0.25, 0.5}, γ from {1, 3, 6},
and m from {0, 0.25, 0.5}. The ranges of b2 and
γ were chosen so that reasonably high IAA could
be achieved despite individual differences, while
the range of m was chosen so that we had values
of m that lead to ML > IAA, and values of m such
that ML < IAA. We also simulate both fully deter-
ministic and noisy model predictions. In the latter
case, the ML model uses the same value of γ that
simulated annotators use. We simulate all possible
combinations of parameters and conditions. As in
Experiment 1, our simulations involve Xtest of 100
samples and Xtrain of 1000 samples, but now we
run 400 simulations per combination of parameters.
Because F1 and Cohen’s Kappa show the same gen-
eral pattern of results, we only use F1 to compare
IAA and model performance in Experiment 2.

Figure 2 shows, for each combination of param-
eter values, the difference between average model
F1 and annotator F1, such that bars above y = 0
indicate that the model outperforms IAA. Table 1
shows the same results as Figure 2, but transposes
Figure 2’s arrangement of parameter combinations,
and just shows whether ML outperforms IAA or
vice versa. As can be seen in both Figure 2 and
Table 1, ML outperforms IAA across a broad range
of conditions.

First, perhaps contrary to intuition, ML can out-
perform IAA when annotator classification func-

IAA, it is not immediately obvious how to better parameterize
misspecification, and in any case, we don’t think this property
affects our conclusions.

tions differ, i.e., when b2 ̸= b1. In fact, the larger
the difference b2 − b1, the larger the margin by
which the model beats IAA (e.g., compare the 1st,
2nd and 3rd blue or orange bars in any subplot of
Figure 2). Rather than causing the model to learn
something incoherent, b2 ̸= b1 causes the model
to learn a b̂ that compromises between b2 and b1.
For example, in the simple case b1 = −0.5 and
b2 = 0.5 (and γ = 1), the model will tend to learn
b̂ = 0. This causes the model’s predictions to be,
on average, closer to either annotator’s predictions
than the annotators’ predictions are to each other.

Second, even if we increase determinism in an-
notator judgments (via γ in Equation 6) such that
IAA reaches levels typically seen in empirical ap-
plications (e.g., Kappa = 0.6 or 0.7, see bottom row
of Figure 2 subplots), ML can still beat IAA.

Third, ML can outperform IAA even under some
model misspecification (m = 0.25 or m = 0.5),
although misspecification reduces the margin by
which ML outperforms IAA (e.g., compare top row
subplots of Figure 2, or more strikingly, middle or
bottom row subplots).

Fourth, although determinism in model predic-
tions is clearly an advantage ML has over noisy
human annotators (blue bars are generally higher
than orange bars in Figure Figure 2), it is not neces-
sary for ML to beat IAA. Systematic differences in
annotator behavior are sufficient, as can be seen in
the right most bars of the first and second subplots
in the top row of Figure 2. Although these differ-
ences between ML and IAA are quite small, they
are statistically significant, as indicated by the 95%
confidence intervals excluding 0.

Most importantly, we note that ML beats IAA
in a realistic combination of conditions, i.e., when
annotators have good IAA (γ = 6, Kappa=0.61)
despite (small) systematic differences in behavior
(−b1 = b2 = 0.25), and the ML model is mildly
misspecified (m = 0.25). In Figure 2, this situa-
tion is represented in the middle bars of the subplot
of the third row and second column, which is sur-
rounded by a black box.

4 General Discussion

In a comprehensive range of simulations, we
showed that, contrary to popular belief (Boguslav
and Cohen, 2017), inter-annotator agreement is not
the upper bound on machine learning performance.
We showed this is the case even if (and especially
if) annotators are noisy and differ in their under-
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Figure 2: Experiments 2 results. Bars show mean differences between average Model F1 scores and IAA F1 score,
i.e., bars above y = 0 indicate ML outperforming IAA. Error bars represent 95% confidence intervals. Below the
bars are inter-annotator Cohen’s Kappa’s at each level of γ, m, and b2. The black box in the middle column and
bottom row represents a realistic condition, where ML still beats IAA.

lying classification functions, as long as the ML
model is reasonably well-specified. While we think
noisy annotators with (possibly small) systematic
individual differences are the norm rather than the
exception, well-specified models have been elusive
for a long time in domains with unstructured data
like (biomedical) NLP or machine learning. This
was especially true in decades past, when the be-
lief that IAA bounded ML proliferated, and this ill-
specification likely led ML models to underperform
IAA. However, reasonably well-specified models
are likely to be increasingly attainable in today’s
era of big data, increased computing power, and
correspondingly complex nonlinear models like
deep neural networks. Although these real-world
cases involve much more complex data and models
than we simulated here, we believe our conclusions
still apply, and we therefore expect to see more em-
pirical cases of ML outperforming IAA (like those

in Boguslav and Cohen, 2017). Likewise, although
we focused on binary classification here, we expect
our results to generalize straightforwardly to other
settings, like multiclass classification or regression.

On the other hand, whether and how much a
model will beat IAA depends, as we have shown,
on the degree of model misspecification, the degree
of noise in annotators’ judgments, the degree of in-
dividual differences in the annotators, and possibly
other factors. An ML practitioner might therefore
wish to determine, given a particular annotated
dataset, how well-specified the model must be in
order to beat IAA by a given margin. Modeling
one’s annotators (e.g., Passonneau and Carpenter,
2014), and their noise levels and individual differ-
ences, may be useful here. Beyond this, it is unclear
how best to perform such an analysis, and thus we
leave this to future work. For the time being, then,
we simply recommend that researchers not claim
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γ

m b2 Model Noise 1 3 6

0

0
False ML >IAA ML >IAA ML >IAA
True ML >IAA ML >IAA ML >IAA

0.25
False ML >IAA ML >IAA ML >IAA
True ML >IAA ML >IAA ML >IAA

0.5
False ML >IAA ML >IAA ML >IAA
True ML >IAA ML >IAA ML >IAA

0.25

0
False ML >IAA ML >IAA ML >IAA
True IAA >ML ML >IAA ML >IAA

0.25
False ML >IAA ML >IAA ML >IAA
True IAA >ML ML >IAA ML >IAA

0.5
False ML >IAA ML >IAA ML >IAA
True ML >IAA ML >IAA ML >IAA

0.5

0
False ML >IAA ML >IAA IAA >ML
True IAA >ML IAA >ML IAA >ML

0.25
False ML >IAA ML >IAA ML >IAA
True IAA >ML ML >IAA ML >IAA

0.5
False ML >IAA ML >IAA ML >IAA
True IAA >ML ML >IAA ML >IAA

Table 1: Experiment 2 results. Cells indicate whether the mean ML model F1 outperforms IAA F1, or vice versa.
Bolded are the few settings in which ML does not outperform IAA.

that IAA is the ceiling of ML performance on their
dataset. (Relatedly, for consideration of what, if
not IAA, constitutes the upper bound on ML perfor-
mance, we refer the reader to the discussion section
of Boguslav and Cohen, 2017).

We realize that the simulations are so simple that
our results and their implications may seem obvi-
ous. To an extent, we share this impression. At the
same time, the persistence of the belief that IAA
bounds ML performance, despite any evidence or
argument in support of this claim, and despite em-
pirical evidence contrary to the claim (Boguslav
and Cohen, 2017), suggests that the results are not
intuitive, at least for a large number of practicing
ML users (the smaller number of theoretical statis-
tics and machine learning researchers may not be
surprised by the present results). We are not en-
tirely certain why the belief that IAA bounds ML
has persisted – and, to some extent, this is a psy-
chological and sociological question outside the
scope of our work – but we suspect there are at
least a few culprits. First, as Boguslav and Cohen
(2017) pointed out, this belief makes our models
appear better than they are, and it may be the case
that ML users were therefore eager to believe that
IAA bounded ML. Second, as noted above, most
models to-date have been (enormously) misspeci-

fied, so most models will tend to fall short of IAA.
Third, as we showed in Experiment 1, IAA pos-
itively correlates with ML performance. These
latter two facts combined may give the appearance
of IAA “pushing down on” ML performance (see
especially Mozetič et al., 2016 and their Figure 1 or
Richie et al., 2019 and their Figure 3 for possible
cases of this reasoning).

Regardless of the reasons that the belief IAA
bounds ML persisted in the past, our results ought
to help dispel this belief in the future, and thereby
help researchers realize the full potential of ma-
chine learning models, adhere to ethical standards
in reporting the performance of computational sys-
tems, and use expensive annotated resources more
efficiently.
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