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Abstract

Recognizing causal precedence relations
among the chemical interactions in biomedi-
cal literature is crucial to understanding the
underlying biological mechanisms. However,
detecting such causal relation can be hard
because: (1) many times, such causal relations
among events are not explicitly expressed
by certain phrases but implicitly implied by
very diverse expressions in the text, and (2)
annotating such causal relation detection
datasets requires considerable expert knowl-
edge and effort. In this paper, we propose a
strategy to address both challenges by training
neural models with in-domain pre-training
and knowledge distillation. We show that, by
using very limited amount of labeled data,
and sufficient amount of unlabeled data, the
neural models outperform previous baselines
on the causal precedence detection task, and
are ten times faster at inference compared to
the BERT base model.

1 Introduction

Since 2011, more than one million new articles
are added to PubMed every year (Vardakas et al.,
2015). The growth rate of newly published articles
makes it hard to keep up with the important discov-
eries just by reading them. Therefore, tremendous
efforts have been made to automate knowledge dis-
covery from biomedical papers by extracting the
biochemical events described in the literature (Kim
et al., 2009, 2012; Nédellec et al., 2013).

In addition to the extraction of the biochemi-
cal events, there are existing efforts to detect the
causal relationships among them (Mihiila et al.,
2013; Hahn-Powell et al., 2016), i.e., whether the
occurrence of one event necessarily leads to the
occurrence of another event. Knowing the causal
precedence order of the events helps to describe
more accurately the underlying mechanisms of bi-
ological processes described on the scientific lit-
erature. However, annotating such causal event

pairs requires significant domain expertise and ef-
fort (Hahn-Powell et al., 2016).

In this work, we investigate multiple strategies
for improving the detection of causal precedence
relations within biochemical events. The contribu-
tions of this paper are the following:

(1) We propose and investigate multiple neural
architectures for detection of causal precedence
among biochemical interactions trained with a few
hundred annotated training examples and numer-
ous weakly-supervised training examples.

(2) We analyze the impact of in-domain pre-
training and distillation on the performance of the
proposed architectures, and conclude that several
compact BERT architectures can benefit from in-
domain pre-training, and can potentially benefit
from further distillation.

(3) Lastly, we study a hybrid methodology that
combines neural models with the traditional
rule/feature-based methods in a sieve-based frame-
work, and observe that well-trained neural models
can largely replace the rule/feature-based methods
and do not benefit from the sieve framework.'

2 Related Work

The detection of causal precedence among chemi-
cal interactions from text is a long-standing prob-
lem. Early methods include rule-based approaches
(Khoo et al., 2000) and machine learning-based ap-
proaches (Girju, 2003; Blanco et al., 2008; Akkasi
and Moens, 2021). Other work (Sorgente et al.,
2013; Hahn-Powell et al., 2016; Dasgupta et al.,
2018) have also explored the combination of rule-
based methods, machine learning-based or neural-
based methods.

Recently, large pre-trained language models
(LLM) have increased the state-of-the-art perfor-
mance of many natural language processing tasks

'The code and data can be found at:

//github.com/clulab/releases/tree/
master/acl2022-bionlp-causal

https:
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(Devlin et al., 2019; Liu et al., 2019b; Raffel et al.,
2020). However, such LLM models require enor-
mous computational resources, making it hard to
deploy them in many applications. One popular
approach to reduce the memory footprint of LLMs
is distillation (Sanh et al., 2019; Jiao et al., 2020;
Wu et al., 2020; Wang et al., 2020). Distillation
trains a relatively small model to imitate the be-
havior of a larger model, such as a LLM, trading
off performance for a significant reduction in the
amount of parameters.

Tang et al. (2019b) shows that it is possible to dis-
till BERT-large to a task-specific compact LSTM
model with approximately ﬁ of the model’s orig-
inal parameters while maintaining a comparable
performance. Wasserblat et al. (2020) and Adhikari
et al. (2020) investigated whether the performance
of the distilled model depends on the nature of the
task and the size of the student model. Turc et al.
(2019) found that the general domain pre-training
of the compact model is essential and helpful to the
distillation on the downstream tasks. In addition,
various data augmentation techniques are proposed
to improve the distillation process with very lim-
ited labeled training data (Mukherjee and Awadal-
lah, 2019; Tang et al., 2019a; Melas-Kyriazi et al.,
2019). Finally, several works explored whether
cross-task distillation helps the compact models to
learn more robust representations (Liu et al., 2019a;
Pan et al., 2021). To the best of our knowledge,
this work is the first to investigate model distilla-
tion specifically for the task of causal precedence
detection in the biomedical domain.

3 Dataset

We use of a dataset of causal precedence anno-
tations of biochemical interactions (Hahn-Powell
et al., 2016). The dataset contains 858 interaction
pairs. Each pair is annotated with one of three
classes: El precedes E2, E2 precedes El, and no
precedence relationship, with 109, 27 and 722 in-
stances, respectively. Table 1 contains a few exam-
ples of the annotations.

Working with this dataset presents multiple chal-
lenges. Firstly, it’s small, with only total of 858
annotated examples. The scarcity of training data is
a challenge for a model with a relatively large num-
ber of parameters to pick up training signal from
the data. Second, prediction of some examples re-
quires more than the shallow understanding of lin-
guistic knowledge (i.e., understanding the phrases

such as “leading t0”), and also requires understand-
ing the underlying mechanistic process described
in the phrase. For example, in the last row of Ta-
ble 1, the model needs to understand “FoxO1 can
bind to ATG7” and “FoxO1 and ATG7 complex”
are referring to the same event, so that there is no
precedence between them. Finally, we are aiming
at obtaining a compact model that can be efficiently
deployed without a GPU and with high processing
speed.

4 Approach
4.1 Neural-based Approaches

We propose two neural-based architectures: A BiL-
STM (Graves and Schmidhuber, 2005) and a fine-
tuned BERT model (Devlin et al., 2019).

Both architectures take as input the text span
containing both biochemical interactions (events).
The text span is encoded as:

[E1l] tokens] + [SEP] + ... +
[SEP] + [E2 tokens]

Where ... represents the text between both
events. If E1 is adjacent to E2 (i.e., there is no text
between them), the input sequence becomes:

[E1l tokens] + [SEP] + [E2 tokens]

How much context to include in the input is a
design choice. An alternative design is to include
more text in the input sequence, such as the text
preceding E1 and the text following E2. However,
the model might fail to learn to concentrate on the
most essential part for the causal relation detection
when the context is too long, especially consider-
ing there are very limited labeled data in our task.
Therefore we did not include the context preceding
E1 and following E2 in our current model. We
leave the impact of such design choices to future
work.

BiLSTM

We use a single layer BILSTM with input di-
mension of 100 and hidden dimension h €
{200, 700, 750}. The output of the BILSTM model
H is a tensor of size [ x 2h, where [ is the number
of tokens in the input and A is the hidden dimension
of the BILSTM. The output vector tensor H is then
max-pooled over the sequence, creating a vector
H' with size 2h. The pooled hidden representation
H'’ is then passed to a 2-layer MLP to predict the
class of the input sequence.
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Text spans with a pair of biochemical interactions

Label

Explanation

IKKalpha then phosphorylates the C-terminal region of p100 leading
to subsequent processing of the p100 and RelB complex into p52
and RelB and its translocation into the nucleus

Given that an oxidant inhibits the catalytic action of Cdc25 on wt
Ras that is an enhancement of the wt Ras bound GDP, the oxidant
evidently targets the ternary complex.

We next studied the effect of these growth factors on the tyrosine
phosphorylation of Gab1 and its binding to SHP-2. EGF, but not IGF
or PDGEF, led to both increased tyrosine phosphorylation of Gabl
and binding to SHP-2, suggesting a selective effect of EGF on Ras
and MAPK activation mediated by Gab1 and SHP-2.

FoxOl1 can bind to ATG7, which is an important regulator in au-
tophagosome expansion, and the FoxO1 and ATG7 complex may
impact autophagy in human colon cancer HCT116 cells or in HeLa

El precedes E2

E2 precedes E1

No precedence

No precedence

The expression "leading to" sug-
gests the precedence relation-
ship.

The expression "enhancement
of" indicates the precedence re-
lationship.

The expression "but not" indi-
cates there is no precedence re-
lationship.

The two events are equivalent
although the expressions are a
little different.

cells.

Table 1: Examples of relations in the causal precedence dataset. Each example contains a span of text from either
one or two adjacent sentences. The text contains a pair of biochemical interactions. The first interaction (E1) is
colored in red and the second (E2) in blue. The boundary of each event is extracted by REACH. The classification
problem is to predict whether there is an existence of a causal precedence relations between E1 and E2.

BERT

For BERT, in addition to the common encoding,
we prepend a [CLS] token to the input sequence.
Then, the sequence is passed through BERT, gen-
erating a list of embeddings (with size h) of all [
input tokens. Then a 2-layer MLP is placed on top
of the embedding of the [CLS] token to obtain the
final prediction result.”
We evaluate 4 pre-trained variants of BERT:

BERT-base: The original BERT-base model re-
leased by Google. It contains approximately
110M parameters. In the experiment we use the
bert-base-uncased model provided by the
huggingface library.?

BioBERT-base: (Lee et al., 2020) This model
has the same amount of parameters as BERT-base.
It was further pre-trained on PubMed papers. We
use the BioBERT-base-cased V1.1 in our
experiments.*

BERT-L8H128A2: (Turc et al., 2019) A com-
pact BERT model pre-trained on the same corpus
as BERT-base, but with only 8 layers, hidden size
of 128 and 2 attention heads. It has 5.5M parame-
ters.

2We use the BertForSequenceClassification
function from the huggingface library.

*https://huggingface.co/transformers/
v3.0.2/model_doc/bert.html?highlight=
bertforsequenceclassification

*nttps://github.com/dmis-lab/biobert

BERT-L4H256A4: (Turc et al., 2019) Similar to
BERT-L8H128A2 but with only 4 layers, hidden
size of 256 and 4 attention heads. It contains 11M
parameters.

4.2 Pre-training

Previous works have shown that both general-
domain pre-training (Turc et al., 2019) and in-
domain pre-training (Lee et al., 2020) can improve
the model’s performance on the down-stream tasks.
Gururangan et al. (2020) shows that even the pre-
training in a non-target but similar-to-target domain
can help with the later fine-tuning. In this work we
investigate whether in-domain pre-training can help
with the compact BiLSTM or BERT classifiers.

Pre-training Corpus

We use REACH, a bio-medical domain informa-
tion extraction tool (Valenzuela-Escéarcega et al.,
2018), to extract 10,000 biomedical papers from
PMC Open Access.’> The corpus is composed of
papers that contain biochemical events, such as
phosphorylation, methylation and a few others.®
We cleaned the text (e.g., remove the sentences that
are too short, usually citations) and split the sen-
tences using the NLTK toolkit (Bird et al., 2009).
The total number of sentences is 1.5M. We use the
sentences of 9,000 papers as the training set and the
sentences of the remaining 1,000 papers as the eval-

5https ://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/

®For the complete list of the keywords we use to retrieve
the papers, please see Appendix A.
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uation set. The evaluation set here is solely used
to determine when to stop training the language
model in the pre-training stage and is not used for
the evaluation of the causal relation detection task.
For the rest of this work, we will refer to this corpus
as PMC-10000.

BiLLSTM Pre-training

We investigate the impact of pre-training to a
BiLSTM model in two ways. First, we evaluate
whether it is helpful to train a skip-gram model
(Mikolov et al., 2013) on PMC-10000 to use as
input to the LSTM. We also evaluate whether it
is helpful to pre-train the model using a language
modeling task. We employ a similar protocol to
(Mousa and Schuller, 2017): Given an input se-
quence of tokens [¢1, t9, ..., t;], the forward LSTM
is taught to predict the tokens [t2, 3, ..., {;] and
the backward LSTM is taught to predict the tokens
[ti_1, t2, oo t1 1.

BERT Pre-training

We train the model using the standard Masked
Language Modeling (MLM) on PMC-10000 with
whole-word masking but without Next Sentence
Prediction (NSP) task. The length of each sentence
is limited to 50 (after applying the sub-word tok-
enizer). The mask probability is set to 0.15, as in
(Devlin et al., 2019). The model is trained with
a batch size of 64 using Adam optimizer with the
learning rate of 5e-5 for 12 epochs (for a total of
approximately 284K optimization steps).

4.3 Distillation

Although the large language models such as BERT
and BioBERT have shown strong performance on
various tasks, they consume a lot of computation
resources and could have a high inference latency
when deployed without a GPU. Such a high infer-
ence latency is undesirable when thousands and
millions of biomedical publications need to be pro-
cessed. Therefore we are motivated to develop a
compact model that can be deployed with a low
inference latency even without a GPU.

However, compact models usually could not
reach a comparable performance as large pre-
trained language models. Therefore we seek to
use knowledge distillation to transfer the knowl-
edge of a large language model into compact neural
models.

We first fine-tune BioBERT-base with the causal
precedence dataset. For each labeled event pair,

the model is trained to predict the precedence rela-
tionship using a cross-entropy loss. The fine-tuned
model will serve as the teacher during the distilla-
tion process. We train several BILSTM student
models and compact BERT (BERT-L8H128A2
and BERT-L4H256A4) student models. Following
(Tang et al., 2019b), the loss between the teacher
and the student is formulated as the Mean Square
Error (MSE) loss between the logits of the teacher
2(B) and the logits of the student z(5).

L= 28 - 2|

A distillation process may suffer from a small
labeled training set, and data augmentation tech-
niques are frequently used to obtain numerous un-
labeled data (Tang et al., 2019b). Similarly, we use
both the labeled data D; and unlabeled data D,, for
distillation. However, we don’t use data augmenta-
tion to obtain D,,, but generate D,, by processing
88,000 PubMed articles with REACH (Valenzuela-
Escarcega et al., 2018) and extract 20,001 unla-
beled event pairs.

4.4 Baselines

We consider a rule-based heuristic and a feature-
based classifier, both of which are proposed and
elaborated in (Hahn-Powell et al., 2016). Here we
briefly introduce these two baselines, and more
details can be found in (Hahn-Powell et al., 2016).

Rule-based heuristic

The event pair causal precedence relation is pre-
dicted using a few hand-written deterministic rules.
There are three types of rules: intra-sentence rules,
inter-sentence relations and verbal-tense.’

Feature-based classifier

Event pairs are transformed into a feature vector
representation using hand-crafted rules. The en-
coded pairs are used to train a SVM. Some of the
features include the interaction type (i.e. “phospho-
rylation”, “ubiquitination”), the text between the
events, coreference resolution, etc.

5 Results
5.1 The Impact of Pre-training

Table 2 shows the impact of in-domain pre-training
(as detailed in section 4). For each row, we run
experiments with five different random seeds and

7 A slightly more detailed description can be found in Ap-
pendix B.
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Model Dev P. Dev R. Dev. F1 Test P. Test R. Test F1

BiLSTM-small-w2v-VO1 0.489 ©.028)  0.481 0021y  0.484 0009  0.534 00259  0.325 0033)  0.403 0.027)
BiLSTM-small-w2v-VO2 0.326 (0.028) 0.646 (0.067) 0.430 0.015) 0.404 (0.055) 0.554 0.075) 0.459 0.014)
BiLSTM-large-w2v-VO1 0.447 0.034) 0.545 (0.039) 0.489 (0.014) 0.528 0.027) 0.400 (0.041) 0.454 0.026)
BiLSTM-large-w2v-VO2 0.317 ©.014) 0.683 (0.014) 0.433 (0.015) 0.384 (0.008) 0.586 (0.037) 0.464 ©0.012)
BiLSTM-large-w2v-ID-VO1 0.496 (0.040) 0.628 (0.032) 0.552 0.021) 0.471 0.023) 0.421 (0.060) 0.442 0.033)
BiLSTM-large-w2v-ID-VO2 0.418 ©.0299  0.715 00399  0.526 0014y  0.357 00399  0.523 0.036)  0.422 0.027)
BiLSTM-large-WP 0.404 (0.024) 0.609 (0.073) 0.484 0.032) 0.413 0.038) 0.426 0.067) 0.418 0.050)
BERT-L8H128A2 0.340 (0.022) 0.655 0.047) 0.446 0.018) 0.407 (0.040 0.523 (0.049) 0.456 (0.035)
BERT-L8H128A2-Bio 0.375 .015) 0.650 0.031) 0.475 (0.005) 0.491 (0.043) 0.557 0.064) 0.518 (0.030)
BERT-L8H128A2-Bio-RV 0.364 ©.0200  0.709 0042y  0.481 00229  0.449 0031y  0.630 0017y 0.524 ©.021)
BERT-L4H256A4 0.351 (0.006) 0.561 ©0.031) 0.431 0.010) 0.499 (0.045) 0.485 0.023) 0.491 0.027)
BERT-L4H256A4-Bio 0.408 (0.029) 0.622 (0.051) 0.491 .015) 0.554 0.048) 0.549 0.041) 0.548 (0.007)
BERT-L4H256A4-Bio-RV 0.420 (0.036) 0.612 0.030) 0.497 0.026) 0.557 0.065) 0.525 0.035) 0.537 0.026)
BERT 0.420 ©.0377  0.605 0053  0.492 ©.013)  0.537 00459  0.512 00577 0.520 0.030)
BioBERT 0.437 0.031) 0.705 (0.055) 0.537 (0.019) 0.547 0.079) 0.539 0.072) 0.535 (0.023)

Table 2: The impact of in-domain pre-training for the BILSTM and BERT architectures. w2v and w2v-ID are
the general-domain/in-domain Word2Vec embeddings. VOI1 and VO2 are the two options to build the LSTM
vocabulary. WP is the LSTM pre-trained by the language modeling task using WordPiece tokenizer. RV is the
reduced vocabulary for BERT. All of these models are discussed throughout Section 5.1.

report mean and standard deviation of the different
metrics. Each experiment is a 5-fold cross valida-
tion, using 64% of the dataset for training, 16%
for validation and 20% for testing. Each model is
trained for 40 epochs. The validation F1 is used for
early stopping using a patience counter of 5. We
used Adam optimizer (Kingma and Ba, 2015). For
the LSTM models, we experimented with different
hidden sizes, word embedding options and vocab-
ulary options (explained later in the text), and the
learning rate is set to le-4. For all BERT-based
models the learning rate is set to 2e-5.

All of the models in Table 2 contain less than
12M parameters, with the exception of BERT and
BioBERT, which have approximately 110M pa-
rameters. Table 3 shows a detailed presentation
of the model’s size and inference time. Results
show that pre-training the compact BERT models
on PMC-10000 boosts the models’ performance,
obtaining test Fls even slightly higher than the
large BioBERT. On the other hand, the pre-training
of LSTM models using PMC-10000 does not help.

BERT-based models

Rows BERT and BioBERT in table 2 show the per-
formance of BERT models fine-tuned for the causal
precedence task. BioBERT showed both higher F1
scores on dev and test sets, and a lower discrepancy
between the dev and test scores compared with
other compact models. Since this is a small dataset,
we hypothesize that the in-domain pre-training of
BioBERT boosts the performance of the fine-tuned

model compared to the open domain BERT.

W2V embeddings

For the LSTM models, the w2v embeddings were
trained using Word2Vec over 1 million PubMed pa-
pers as introduced in (Hahn-Powell et al., 2016),
whereas w2v-ID embeddings were trained using the
same method but on the PMC-10000 corpus. Both
w2v and w2v-ID were trained with biomedical pa-
pers, but w2v-ID’s corpus is smaller and focused on
narrower topics. Results show that the w2v-ID em-
beddings trained on PMC-10000 largely increase
the dev scores of the models, which doesn’t trans-
fer to the test scores, suggesting the models are
overfitting to the dev examples. We suspect that
the reason for this is that the PMC-10000 corpus is
too small, and not diverse enough for the w2v-ID
embeddings to learn general and robust representa-
tions.

The vocabulary of LSTM models

We found that the composition of the vocabulary
used by the LSTM models can impact their perfor-
mance. We tried two different vocabularies: VO1,
which contains any word that appears in the train-
ing set; and VO2, which contains words that occur
at least twice in the training set. To deal with out-of-
vocabulary words (OOV), VO1 uses the unk vec-
tor as trained by Word2Vec (not fine-tuned on our
causal detection dataset) whereas in VO2 the unk
vector is further fine-tuned in our causal detection
dataset. The trade-off is that fine-tuning the unk
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embedding should yield a more accurate represen-
tation for it, but it also reduces the vocabulary size.
We found that using VO2 works better than VO1
for w2v but for w2v-ID.® This is likely due to the
fact that w2v-ID already obtains a fairly accurate
unk embedding through in-domain pre-training,
so that the model benefits more from a larger vo-
cabulary than a fine-tuned unk embedding. On
the other hand, for w2v, the unk embedding is not
good enough without fine-tuning.

LSTM sizes

Since the size of the model may affect LSTM ar-
chitecture’s performance on some tasks (Adhikari
et al.,, 2020), we investigate the impact of the
model size. Results show that for our task the
larger LSTM works slightly better than the smaller
LSTM but the difference is negligible. Note that
the BiLSTM-small is only about 1/8 of BiLSTM-
large (size comparison in Table 3).

In-domain BiLSTM language modeling

LSTM-large-WP is trained with the language mod-
eling task introduced in section 4 using the PMC-
10000 corpus. However, if we use the regular vo-
cabulary, its size and the embedding layer’s size
would be large. We reduce both sizes using two
strategies: (1) we use the same WordPiece tok-
enization algorithm that BERT uses; (2) to further
reduce the number of embedding vectors, we keep
only the top 10,000 tokens by corpus frequency in
PMC-10000 and use only 10,000 token pieces. In
perspective, the WordPiece tokenization model of
bert-base-uncased has 30,522 tokens. With this
approach the vocabulary size and the number of
embeddings is reduced by %

Our results show that pre-training the LSTM
model using in-domain language modeling task
does not help with the fine-tuning of our causal
precedence detection task. The pre-trained LSTM
has a relatively large gap between the dev F1
(0.484) and test F1 (0.418), and the test F1 is even
lower than using the w2v-ID embeddings. This is
probably because the LSTM is not pre-trained on
the general domain corpus (like BERT), therefore
it doesn’t benefit from any transfer learning signal.

In-domain pre-training of BERT

BERT-L8H128A2 and BERT-L4H256A4 are pre-
trained on BookCorpus (Zhu et al., 2015) and En-

8See the “W2V embedding” section of Section 5.1 for the
explanation of w2v and w2v-ID.

glish Wikipedia (the same as the regular BERT)
but not trained on any in-domain datasets (such
as any PubMed articles). Our results show that
fine-tuning BERT-L8H128A2 yields similar results
to BiLSTM-large. Fine-tuning BERT-L4H256A4
yields better results than the LSTM models, but
it has twice the number of parameters than the
BiLSTM-large model (comparison in Table 3).

However, if we pre-train them on PMC-10000,
corresponding to models BERT-L8H128A2-Bio
and BERT-L4H256A4-Bio, both the dev and test
F1 scores largely improve (the improvement ranges
from 0.03 to 0.06) compared to the equivalent mod-
els without in-domain pre-training.

The size of BERT-L4H256A4-Bio is much larger
than other compact models in the table. This is
mostly explained by the size of the embedding
layer. We experiment reducing the embedding layer
size using the similar approach as with the BiL-
STM model: Keep the top 10,000 word pieces by
frequency of the base-base-uncased tokenizer in
PMC-10000 and resize the vocabulary to 10,000.
The original pre-trained embeddings are used to ini-
tialize the embedding layers of the Reduced Vocab
BERT-L4H256A4 (see Appendix C for details).
The new models resulting of this procedure are
identified by the -RV suffix in tables 2, 3 and 4.

Both BERT-L8H128A2-Bio-RV and BERT-
L4H256A4-Bio-RV are pre-trained on PMC-10000
before fine-tuned on the causal precedence dataset.
Previous work has shown that larger vocabulary
sizes could slightly boost the performance of BERT-
based models (Conneau et al., 2020). We observed
different impacts of vocabulary reduction on BERT-
L8H128A2 and BERT-L2H256A4. The test F1
of BERT-L4H256A4 drops from 0.548 to 0.537
whereas that of BERT-L2H128A2 even increases
from 0.518 to 0.524. This shows that the impact
of the vocabulary size to the BERT’s performance
is task- and model-dependent. Further, it is pos-
sible to gain some improvement by reducing the
vocabulary size of BERT.

Model size and inference time

Table 3 shows the number of parameters of the
models and their inference times on CPU and
GPU. In general, all compact BERT models yield
much better inference time than LSTM models
on CPU. For example, both BiLSTM-large and
BERT-L8H128A2 have approximately SM param-
eters, with an inference time on CPU are 0.026s
and 0.013s, respectively. This clearly shows the

257



Model # Param. # Embd. Param. CPU Inf. T GPUInf. T
BiLSTM-small-VO2 0.66M 0.14M 0.007 0.002
BiLSTM-large-w2v(-ID)-VO2 5.40M 0.14M 0.026 0.006
BiLSTM-large-WP 5.63M M 0.031 0.009
BERT-L8H128A2(-Bio) 5.58M 39IM 0.013 0.007
BERT-L8H128A2-Bio-RV 2.95M 1.28M 0.014 0.007
BERT-L4H256A4(-Bio) 11.17M 7.81M 0.011 0.005
BERT-L4H256A4-Bio-RV 5.92M 2.56M 0.011 0.004
BioBERT 108.31M 22.27TM 0.119 0.012

Table 3: Model sizes and inference times. For all models, we show the total number of parameters, the number of
parameters in the embedding layers (which can be reduced by reducing the model’s vocabulary), the average CPU
and GPU inference time (seconds per input sequence). The numbers are averaged across 5 runs of all examples.

transformer architecture of BERT is better suited
for parallelization. Furthermore, BERT-L4H256A4
has about twice number of parameters as BERT-
L8H256A4, but it has smaller inference time
(0.011s vs 0.013s) because of fewer layers.

5.2 The Impact of Distillation

Previous work shows that knowledge distillation
from a large model (teacher) to a compact model
(student) does not always work and is highly depen-
dent on the nature of task. For example, Wasserblat
et al. (2020) found that distillation can be helpful
for the tasks that require general lexical seman-
tics. However, the distillation on our dataset is very
challenging because: (1) there are only about 580
labeled training samples for the teacher, and (2)
after fine-tuning, our teacher can only reach a 0.54
test F1 (BioBERT in Table 2).

We adopt a three-stage pipeline for distillation.
(1) The teacher model (BioBERT) is fine-tuned on
the labeled training data. (2) The teacher model
runs inference on the labeled data (and optionally
on the unlabeled data) to get the predictions scores
for each example. (3) The student model is trained
to reproduce the teacher’s score on each training ex-
ample with the loss function introduced in Section
4. Depending on how many unlabeled data to use,
we evaluate 3 distillation settings: labeled, labeled
+ 2k unlabeled and labeled + 20k unlabeled. The
results are shown in Table 4.

The impact of distillation on out-of-domain
pre-trained models

Among the models we evaluate, BiLSTM(-
small/large)-w2v and BERT-L4H256A4 were not
pre-trained using PMC-10000, the in-domain cor-
pus. For BiLSTM(-small/large)-w2v, distillation
using only the labeled data is not helpful compared
with direct fine-tuning. However, distillation be-

comes helpful when more unlabeled data are used.
With BiLSTM-small-w2yv, the testing F1 score in-
creases from 0.452, when only labeled data is used
for distillation, to 0.489, when using the labeled
and 2k unlabeled examples for distillation. The
testing F1 further improves to 0.496 when using
labeled and 20k unlabeled examples for distillation.
A similar trend is also found for BiLSTM-large-
w2v. The trend for BERT-L4H256A4 is slightly
different. When we use only labeled data, labeled
data plus 2k unlabeled examples, and labeled data
plus 20k unlabeled examples for distillation, test-
ing F1 scores are 0.502, 0.499 and 0.516, respec-
tively. Both BILSTM(-small/large)-w2v and BERT-
LAH256A4, using labeled data, plus 20k unlabeled
examples for distillation attain better testing F1
scores compared to only using the labeled data for
fine-tuning (table 2). It shows that in general, out-
of-domain pre-trained models can largely benefit
from distillation, especially when there are suffi-
cient unlabeled data.

The impact of distillation on in-domain
pre-trained models

We observed a similar pattern when distilling in-
domain, pre-trained models. For most cases, the
model’s testing F1 score increased as more unla-
beled data became available for distillation. The
testing F1 scores of BILSTM-large-WP increased
from 0.400 to 0.430 and 0.487 when using ei-
ther only labeled data, labeled data + 2k unla-
beled examples, labeled + 20k unlabeled exam-
ples, respectively for distillation. Similar trends are
also found for BERT-L4H256A4-Bio and BERT-
L4H256A4-Bio-RV. The only exception we ob-
served was BiLSTM-large-w2v-ID, whose testing
F1 score was 0.441 when using the labeled data
for distillation, then peaked at 0.477 when using
labeled + 2k unlabeled data, just to decrease to
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Model Dev P. Dev R. Dev. F1 Test P. Test R. Test. F1
labeled

BiLSTM-small-w2v-VO2 0.387 0014y  0.600 0.000)  0.467 00249y  0.426 0034y  0.491 0073y  0.452 0.037)
BiLSTM-large-w2v-VO2 0.393 (0.026) 0.703 (0.045) 0.503 (0.012) 0.414 (0.058) 0.508 (0.061) 0.450 0.022)
BiLSTM-large-w2v-ID-VO1 0.524 0051y 0.587 0os1y  0.550 00290  0.488 0.046)  0.407 0037 0.441 (0.028)
BiLSTM-large-WP 0.462 (0.047) 0.598 0.053) 0.518 (0.036) 0.444 ©0.051) 0.373 0.051) 0.400 (0.024)
BERT-L4H256A4 0.364 00150  0.592 00s8)  0.450 0024y  0.468 0044y  0.550 0042y  0.502 0.011)
BERT-L4H256A4-Bio 0.389 (0.022) 0.645 (0.048) 0.483 (0.008) 0.514 0.044) 0.569 (0.040) 0.537 0.007)
BERT-L4H256A4-Bio-RV 0.417 ©.031) 0.625 0.057) 0.498 (0.020) 0.554 (0.066) 0.555 0.038) 0.551 (0.035)
labeled + unlabeled 2k

BiLSTM-small-w2v-VO2 0.467 0.031) 0.574 0.085) 0.510 (0.029) 0.541 0.049) 0.452 0.057) 0.489 0.037)
BiLSTM-large-w2v-VO2 0.480 0031y  0.616 0os2)  0.535 0033  0.561 00ss)  0.438 0os0)  0.483 (0.018)
BiLSTM-large-w2v-ID-VO1 0.531 .027) 0.650 (0.066) 0.583 (0.038) 0.535 0.047) 0.434 0.033) 0.477 0.023)
BiLSTM-large-WP 0.494 ©027y  0.568 0079  0.525 0034y  0.498 (0.044)  0.384 0057 0.430 0.037)
BERT-L4H256A4 0.394 (0.034) 0.591 (0.071) 0.468 (0.013) 0.520 (0.066) 0.498 (0.076) 0.499 (0.010)
BERT-L4H256A4-Bio 0.393 ©024)  0.688 0.045)  0.499 (00150  0.509 ©.060)  0.584 0021y  0.541 0.024)
BERT-L4H256A4-Bio-RV 0.408 (0.030) 0.678 (0.031) 0.508 (0.018) 0.532 (0.057) 0.592 (0.030) 0.558 (0.023)
labeled + unlabeled 20k

BiLSTM-small-w2v-VO2 0.464 0.027) 0.580 (0.080) 0.512 (0.028) 0.539 (0.065) 0.468 (0.054) 0.496 (0.029)
BiLSTM-large-w2v-VO2 0.458 (0.039) 0.629 (0.043) 0.527 ©0.015) 0.524 0.082) 0.473 (0.054) 0.490 0.027)
BiLSTM-large-w2v-ID-VO1 0.512 0057y 0.575 ©0090)  0.537 00555  0.521 0040  0.399 (0.060)  0.449 (0.039)
BiLSTM-large-WP 0.474 0.026) 0.572 (0.040) 0.517 (0.005) 0.563 (0.050) 0.432 0.024) 0.487 0.021)
BERT-L4H256A4 0.382 0.026)  0.617 0031y  0.470 ©0008)  0.492 0075  0.553 0062y  0.516 (0.044)
BERT-L4H256A4-Bio 0.388 (0.028) 0.666 (0.046) 0.489 (0.014) 0.508 (0.057) 0.602 (0.039) 0.547 ©.014)
BERT-L4H256A4-Bio-RV 0.393 0017 0.647 0043y  0.488 0007y  0.526 0062y  0.602 (0.033)  0.558 (0.021)

Table 4: The compact model’s performance using distillation with different amount of unlabeled data. The im-
proved Fls (compared with the fine-tuned model’s F1 in Table 2) are shown in bold text. All experiments are run
for 5 seeds and 5-fold cross validation. The standard deviation across 5 random seeds is shown in the parenthesis.

Model Dev P. Dev R. Dev. F1 Test P. Test R. Test. F1
Rule 0.534 0.272 0.360 0.523 0.170 0.257
SVM 0.361 0.407 0.383 0.395 0.364 0.379
Rule -> SVM 0.367 0.537 0.436 1 0.383 0.445 0.412 1
Rule -> BiLSTM-small-FT 0.325 0.713 0.445 1 0.393 0.622 0.476 1
Rule -> BiLSTM-large-FT 0.314 0.739 0.441 1 0.381 0.659 0.482 1
BiLSTM-small-FT -> SVM 0.308 0.767 0.439 1 0.362 0.649 0.461 1
BiLSTM-large-FT -> SVM 0.299 0.785 0.433 - 0.348 0.662 0.456 |
Rule -> BiLSTM-small-DS 0.414 0.618 0.493 | 0.482 0.507 0.492 |
Rule -> BiLSTM-large-DS 0.406 0.645 0.497 | 0.472 0.513 0.488 |
Rule -> BERT-L4-Bio-RV-DS 0.357 0.647 0.459 | 0.476 0.616 0.535 ]
Rule -> BERT-L4-Bio-RV-FT 0.376 0.625 0.469 | 0.503 0.562 0.529 |
BiLSTM-small-DS -> SVM 0.377 0.692 0.487 | 0.411 0.593 0.485 |
BiLSTM-large-DS -> SVM 0.369 0.717 0.486 | 0.409 0.590 0.482 |
BERT-L4-Bio-RV-DS -> SVM  0.339 0.731 0.463 | 0.417 0.684 0.518 |
BERT-L4-Bio-RV-FT -> SVM 0.349 0.708 0.467 | 0.423 0.624 0.504 |
BiLSTM-s -> BERT-L4-DS 0.376 0.678 0.482 | 0.498 0.630 0.552 ]
BiLSTM-1 -> BERT-L4-DS 0.374 0.685 0.482 | 0.491 0.635 0.550 )
Rule + BiLSTM-1 + BERT-L4 0.488 0.609 0.540 0.585 0.478 0.521 ]
SVM + BiLSTM-1 + BERT-L4  0.458 0.612 0.523 | 0.551 0.495 0.517 ]

Table 5: Results of the sieve models. “X -> Y” means model X’s prediction is firstly used in the sieve then Y.
FT means fine-tuning (entries in Table 2) and DS means distillation using 20k unlabeled data and labeled data
(entries in Table 4). The upside and downside arrows besides the scores indicate whether the sieve score outper-
forms the best individual model in the sieve. In the last four rows, BiLSTM-s is BILSTM-small-DS, BiLSTM-I is
BiLSTM-large-DS and BERT-L4 is BERT-L4H256A4-Bio-RV-DS. For all BILSTM models we use w2v general
embedding with VO2. The last two rows of the table are the ensemble model’s performance.

0.449 when using labeled + 20k unlabeled data.
This indicates in general the in-domain pre-trained
models can still benefit from distillation when there

are sufficient unlabeled data.

5.3 Comparison among Rule-based,
Feature-based and Neural-based Models

Previous work has explored combining multiple
models by using a sieve method (Mirza, 2014;
Hahn-Powell et al., 2016). Generally speaking,
a sieve method starts by using the model with the
highest precision to predict the class of an input. If

259



the prediction is positive, it is returned as the re-
sult, otherwise the input is forwarded to the model
with the second best precision, and the process is
repeated until a model makes a positive prediction
or all the models are exhausted. In this work we ex-
plore the performance of a sieve method composed
of multiple combinations of feature/rule/neural-
based models. We rank the models by their de-
creasing precision in the development set. Table 5
contains the performance of different sieves.

Rules and SVM complement each other

As shown in Table 5, combining the rule-based
and feature-based models into a sieve results in
an improvement over either of them individually.
However, this sieve is not on par with the perfor-
mance of sieves that contain neural models.

Non-distilled neural models are complemented
by non-neural models

Table 5 shows that in three out of four cases, sieves
with a rule-based classifier or SVM classifier boost
the performance of the LSTM models that are fine-
tuned but not distilled. The benefits are more evi-
dent for the rule classifier than for the SVM classi-
fier.

Well-trained neural models are not
complemented by non-neural models

For models distilled with labeled and 20k unla-
beled examples (BiLSTM-small/large-DS, BERT-
L4-DS) and the model pre-trained both in the gen-
eral domain and in the target domain (BERT-L4-
FT), neither the rule-based classifier nor the SVM
classifier result on increase the performance when
sieved. This hints that well-trained neural models
could learn to represent the same high-level hand-
crafted features in the Rule and SVM classifier.

Different neural models are not likely to
complement each other in a sieve

As the last two rows of Table 5 show, although
BiLSTM and BERT are very different models, they
do not tend to complement each other in a sieve.

6 Conclusion

In this work we trained several neural models for
causal precedence detection in the biomedical lit-
erature. To help with the deployment of neural
models on systems without a GPU, we restricted
the sizes of our architectures to approximately %
of the size of a state-of-the-art language model such

as BERT. Moreover, to overcome the challenge of
scarcity of labeled training data, we used in-domain
unlabeled data combined with pre-training and dis-
tillation and obtained robust neural models. Finally,
we compared our neural models with previous rule-
based and feature-based classifiers and found the
in-domain pre-trained models can mostly replace
them.
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A Types of Events of PMC-10000

phosphorylation, phosphorylates, ubiquitination,
ubiquitinates, hydroxylation, hydroxylates, sumoy-
lation, sumoylates, glycosylation, glycosylates,
acetylation, acetylates, farnesylation, farnesylates,
ribosylation, ribosylates, methylation, methylates,
binding, binds, activation, activates.

B More Description of the Rule-based
Classifier

The event pair causal precedence relation is pre-
dicted using a few hand-written deterministic rules.
There are three types of rules: The first type are
intra-sentence rules, where the two events are in
the same sentence. Patterns of this type operate
over the syntactic dependency graph of the sen-
tence. The second type are rules for inter-sentence
relations, where the two events occur on different
sentences and a dependency graph is not available.
These kind of rules use the presence of patterns,
such as “leads to”, “result in” to predict causal
precedence. The third kind of rules, also for inter-
sentence event pairs, use verbal-tense information.
Phrases such as “has been phosphorylated” are used
to detect the existence of causal precedence.

C Reducing the Vocabulary of
BERT-1.4H256A4 and Resizing the
Embeddings

The original vocabulary of the bert-base-uncased
model has a size of 30,522. As discussed in Section
5.1, we count the frequency of the word pieces in
PMC-10000 and only maintain the top 10000 most
frequent word pieces.

The next step would be to resize the embedding
layer of BERT-L4H256A4. Note that the original
embeddings of BERT-L4H256A4 are pre-trained
in the language modeling task on BookCorpus and
English Wikipedia. We don’t want to lose such
information during the resizing of the embedding
layer by initializing the 10000 token embeddings
randomly. Instead, the new embedding weights
are initialized with the values of the corresponding
weights of the original embedding layer (i.e., all
the embedding weights in the new embedding layer
reuses the pre-trained weights of the old embedding
layer).

263



	Introduction
	Related Work
	Dataset
	Approach
	Neural-based Approaches
	Pre-training
	Distillation
	Baselines

	Results
	The Impact of Pre-training
	The Impact of Distillation
	Comparison among Rule-based, Feature-based and Neural-based Models

	Conclusion
	Types of Events of PMC-10000
	More Description of the Rule-based Classifier
	Reducing the Vocabulary of BERT-L4H256A4 and Resizing the Embeddings

