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Abstract

This work presents the first large-scale biomed-
ical Spanish language models trained from
scratch, using large biomedical corpora con-
sisting of a total of 1.1B tokens and an EHR
corpus of 95M tokens. We compared them
against general-domain and other domain-
specific models for Spanish on three clinical
NER tasks. As main results, our models are
superior across the NER tasks, rendering them
more convenient for clinical NLP applications.
Furthermore, our findings indicate that when
enough data is available, pre-training from
scratch is better than continual pre-training
when tested on clinical tasks, raising an excit-
ing research question about which approach is
optimal. Our models and fine-tuning scripts are
publicly available at HuggingFace and GitHub.

1 Introduction and Background

The success of Transformer-based models in the
general domain (Devlin et al., 2019) soon en-
couraged the development of language models for
domain-specific scenarios (Chalkidis et al., 2020;
Gutiérrez-Fandiño et al., 2021; Tai et al., 2020;
Araci, 2019; Lee and Hsiang, 2019). Specifically,
in the biomedical domain, there has been a prolif-
eration of models (Peng et al., 2019; Beltagy et al.,
2019; Alsentzer et al., 2019; Gu et al., 2021) since
the first BioBERT (Lee et al., 2019) model was
published. Unfortunately, there is still a significant
lack of biomedical and clinical models in languages
other than English, despite the increasing efforts of
the NLP community (Névéol et al., 2014; Schnei-
der et al., 2020). Consequently, general-domain
pre-trained language models supporting Spanish,
such as mBERT (Devlin et al., 2019) and BETO
(Cañete et al., 2020), have been often used as a
proxy to build domain-specific systems in the ab-
sence of genuine alternatives. For instance, Sun
and Yang (2019) used mBERT and BioBERT on
the PharmaCoNER (Gonzalez-Agirre et al., 2019)

dataset, using a fine-tuning strategy aimed to maxi-
mize the results.

Very recently, new pre-trained clinical language
models for Spanish have been published (López-
García et al., 2021) by further pre-training the
mBERT, BETO and XLM-RoBERTa (Conneau
et al., 2020) models with a corpus of Spanish clini-
cal cases with about 64M tokens. In our work, we
go one step further to address the language gap for
Spanish and train two Transformer-based language
models from scratch. We employed biomedical and
clinical corpora (including clinical texts) gathered
by ourselves. We evaluated our models with three
different Named Entity Recognition (NER) tasks,
since NER constitutes a core task in many clinical
NLP scenarios. They obtained significant gains
over the general-domain models, and matched or
outperformed the domain-specific models in all
tasks.

2 Corpora

We built two corpora of very different sizes and
nature: an Electronic Health Record (EHR) corpus
and a biomedical one. The EHR corpus contains
95M tokens from more than 514k clinical docu-
ments (including discharge reports, clinical course
notes and X-ray reports). The biomedical corpus
includes Spanish data from a variety of sources
for a total of 1.1B tokens across 2,5M documents,
namely:

• Medical crawler:1 Crawler of more than
3,000 URLs belonging to Spanish biomedi-
cal and health domains (Carrino et al., 2021).

• Clinical cases misc.: A miscellany of medical
content, essentially clinical cases. Note that a
clinical case report is different from a scien-
tific publication where medical practitioners
share patient cases and it is also different from
a clinical note or document.

1https://zenodo.org/record/4561970

https://zenodo.org/record/4561970


194

• Scielo:2 Scientific publications written in
Spanish crawled from the Spanish SciELO
server in 2017.

• BARR2 Background:3 Biomedical Abbrevi-
ation Recognition and Resolution (BARR2)
containing Spanish clinical case study sec-
tions from a variety of clinical disciplines.

• Wikipedia (Life Sciences): Wikipedia ar-
ticles crawled on 04/01/2021 with the
Wikipedia API python library4 starting from
the "Ciencias_de_la_vida" category up to a
maximum of 5 subcategories. Multiple links
to the same article are discarded to avoid re-
peated content.

• Patents: Google Patent in Medical Domain
for Spain (Spanish). The accepted codes
(Medical Domain) for JSON files of patents
are: "A61B", "A61C","A61F", "A61H",
"A61K", "A61L","A61M", and "A61P".

• EMEA:5 Spanish-side documents extracted
from parallel corpora made out of PDF docu-
ments from the European Medicines Agency.

• Mespen (MedlinePlus):6 Spanish-side arti-
cles extracted from a collection of Spanish-
English parallel corpus consisting of biomedi-
cal scientific literature. The collection of par-
allel resources are aggregated from the Med-
linePlus source.

• PubMed: Open-access Spanish abstracts
from the PubMed repository crawled in 2017.

For each biomedical resource, we applied a
cleaning pipeline with customized operations de-
signed to read data in different formats, split it into
sentences, detect the language, remove noisy and
ill-formed sentences, deduplicate and eventually
output the data with their original document bound-
aries. Finally, to remove repetitive content, we
concatenated the entire corpus and deduplicated it
again, obtaining about 1.1B words. These prepro-
cessing steps were applied to all data except the
EHR corpus, which was left in its original form.
Table 1 shows detailed statistics of each component
of the corpus.

2https://zenodo.org/record/2541681
3https://temu.bsc.es/BARR2/downloads/

background_set.raw_text.tar.bz2
4https://github.com/martin-majlis/

Wikipedia-API/
5http://opus.nlpl.eu/download.php?f=

EMEA/v3/moses/en-es.txt.zip
6https://zenodo.org/record/3562536

Source No. tokens
Medical crawler 903,558,136
Clinical cases misc. 102,855,267
EHRs documents∗ 95,267,204
Scielo 60,007,289
BARR2 Background 24,516,442
Wikipedia (Life Sciences) 13,890,501
Patents 13,463,387
EMEA 5,377,448
Mespen (MedlinePlus) 4,166,077
PubMed 1,858,966

Table 1: List of individual sources in the training cor-
pora. The number of tokens refers to white-spaced
tokens on cleaned untokenized text. Documents from
the EHR corpus are marked with an asterisk.

3 Models Pre-training

The models presented in this work were pre-trained
from scratch employing a RoBERTa (Liu et al.,
2019) base model with 12 self-attention layers. Fol-
lowing the original training, we only used Masked
Language Modeling (MLM) as the pre-training ob-
jective with Subword Masking (SWM), as in (Liu
et al., 2019).

We tokenized the training corpus with the Byte-
Level BPE algorithm (Radford et al., 2019), em-
ployed in the original RoBERTa, and learned a
vocabulary of 50,262 tokens.

We run the training for 48 hours on 16 NVIDIA
V100 GPUs of 16GB VRAM, using Adam opti-
mizer (Kingma and Ba, 2015) with a peak learn-
ing rate of 0.0005, 10,000 warm-up steps and an
effective batch size of 2,048 sentences.7 Other
hyper-parameters were left in their default values
as in the original RoBERTa training configuration.
Training was performed at the document level, pre-
serving document boundaries.8 We performed a
train-validation split based on the number of doc-
uments, choosing a total of 2,000 documents for
the validation set, corresponding to less than 1% of
the entire corpus’ documents. We then select the
model with the lowest perplexity on the validation
set as the best model.

We used the corpora described in the pre-
vious section to produce two RoBERTa mod-
els: a biomedical language model training

7Through gradient accumulation as implemented in
Fairseq (Ott et al., 2019)

8We believe document-level training may be crucial to
promote the modelling of long-range dependencies and push
the model towards the comprehension of entire documents.

https://zenodo.org/record/2541681
https://temu.bsc.es/BARR2/downloads/background_set.raw_text.tar.bz2
https://temu.bsc.es/BARR2/downloads/background_set.raw_text.tar.bz2
https://github.com/martin-majlis/Wikipedia-API/
https://github.com/martin-majlis/Wikipedia-API/
http://opus.nlpl.eu/download.php?f=EMEA/v3/moses/en-es.txt.zip
http://opus.nlpl.eu/download.php?f=EMEA/v3/moses/en-es.txt.zip
https://zenodo.org/record/3562536
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only with the so-called biomedical resources
(bsc-bio-es),9 and a BIO-EHR language
model that uses both the biomedical and EHR cor-
pus (bsc-bio-ehr-es).10 We trained the latter
model, the biomedical-EHR, to assess if adding a
relatively small EHR data to a large-scale corpora
has a positive impact on real-world clinical NLP
tasks.

4 NER Fine-tuning

We tested and evaluated our models by fine-tuning
the NER task, a key component of information ex-
traction tasks in the clinical domain. Indeed, we
used it as a testbed to evaluate the effectiveness of
our pre-trained models. Following the usual fine-
tuning method, employed both for general-domain
models (Devlin et al., 2019; Liu et al., 2019) and
domain-specific ones (Lee et al., 2019), we added a
standard linear layer as a token classification head,
and the BIO tagging schema (Sang and Buchholz,
2000) to solve the NER tasks. During fine-tuning,
both the pre-trained model and the classification
layer’s parameters are learned with stochastic gra-
dient descent. We used an Adam (Kingma and
Ba, 2015) optimizer and searched for an optimal
learning rate out of [8e-6, 1e-5, 2e-5, 3e-5, 5e-
5] with linear decay and no warm-up steps. We
used a batch size of 32 sequences with a maximum
length of 512 tokens and a gradient accumulation
of 2 steps, resulting in a total batch size of 64.
We trained each configuration using three random
seeds. The rest of hyper-parameters were left to the
default values of HuggingFace’s codebase (Wolf
et al., 2019). The complete list of hyper-parameter
values is displayed in Appendix B.

We applied this fine-tuning strategy to three dif-
ferent NER datasets. The first two use annotations
on curated medical data (clinical cases extracted
from medical literature), whereas the last one
uses medical records from the ICTUSnet project.11

More details are given below.
PharmaCoNER (Gonzalez-Agirre et al., 2019)

is a track on chemical and drug mention recognition
from Spanish medical texts. The authors compiled
a manually classified collection of clinical case
report sections derived from open access Spanish
medical publications, named the Spanish Clinical

9https://huggingface.co/PlanTL-GOB-ES/
bsc-bio-es

10https://huggingface.co/PlanTL-GOB-ES/
bsc-bio-ehr-es

11https://ictusnet-sudoe.eu/es/

Case Corpus (SPACCC). The corpus contained a
total of 1,000 clinical cases and 396,988 words and
was manually annotated, with a total of 7,624 entity
mentions, corresponding to four different mention
types.12

CANTEMIST (Miranda-Escalada et al., 2020)
is a shared task focused on named entity recogni-
tion of tumor morphology, in Spanish. The CAN-
TEMIST corpus13 is a collection of 1,301 oncolog-
ical case reports written in Spanish, with a total of
63,016 sentences and 1,093,501 tokens.

The ICTUSnet dataset consists of 1,006 hospi-
tal discharge reports of patients admitted for stroke
from 18 different Spanish hospitals. It contains
more than 79,000 annotations for 51 different vari-
ables. The dataset is part of the ICTUSnet project,
whose main objective was the development of an
information extraction system to support domain
experts when identifying relevant information in
discharge reports.

Finally, we remark that our main goal is a head-
to-head comparison between different models to
assess the best model pre-training choice. We were
not aiming at maximizing results on the NER tasks
and therefore we decided not to use sophisticated
classification layers that might improve the perfor-
mances, such as Conditional Random Field (Laf-
ferty et al., 2001) layers on top of Bidirectional
Long Short-Term Memory Recurrent Networks
(Panchendrarajan and Amaresan, 2018). We ar-
gue that a simpler token classification layer better
evaluates the quality of model representations than
a task-specific layer. Unlike Sun and Yang (2019),
where authors fine-tuned for 200 epochs (obtain-
ing the best results using 100 epochs), we limit
the fine-tuning to 20 epochs, and we do not merge
the train and development sets in order to improve
the results. We consider that fine-tuning for 200
epochs goes against the pre-training/fine-tuning
philosophy that states that fine-tuning should be
a relatively inexpensive step (Devlin et al., 2019),
and also that fine-tuning for less epochs evaluates
better the pre-training strategy.

5 Evaluation and Results

Each fine-tuning was executed on 4 NVIDIA V100
GPUs of 16GB VRAM. It took around 0.5, 1 and

12For a detailed description, see https://temu.bsc.
es/pharmaconer/

13CANTEMIST corpus: https://doi.org/10.
5281/zenodo.3878178

https://huggingface.co/PlanTL-GOB-ES/bsc-bio-es
https://huggingface.co/PlanTL-GOB-ES/bsc-bio-es
https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es
https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es
https://ictusnet-sudoe.eu/es/
https://temu.bsc.es/pharmaconer/
https://temu.bsc.es/pharmaconer/
https://doi.org/10.5281/zenodo.3878178
https://doi.org/10.5281/zenodo.3878178
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Average of all configurations Best on development set
Task Model F1 Precision Recall F1 LR Epoch

Ph
ar

m
aC

oN
E

R

bsc-bio-es* 0.89070.01 0.87360.01 0.90850.00 0.89390.01 5e-5 15
bsc-bio-ehr-es* 0.89130.01 0.87580.01 0.90730.01 0.89540.01 3e-5 10
XLM-R-Galén 0.87540.01 0.85910.02 0.89240.01 0.88830.00 5e-5 15
BETO-Galén 0.85370.02 0.83990.02 0.86800.01 0.87410.01 5e-5 20
mBERT-Galén 0.85940.01 0.84690.02 0.87220.01 0.87600.00 5e-5 15
mBERT 0.86710.01 0.85400.02 0.88090.01 0.87290.00 3e-5 13
BioBERT 0.85450.01 0.85020.01 0.85900.01 0.85330.01 2e-5 12
roberta-base-bne 0.84740.02 0.84300.02 0.85200.02 0.86800.01 5e-5 13

C
A

N
T

E
M

IS
T

bsc-bio-es* 0.82200.01 0.79390.02 0.85220.01 0.83510.00 5e-5 20
bsc-bio-ehr-es* 0.83400.01 0.81410.01 0.85510.01 0.84490.00 5e-5 20
XLM-R-Galén 0.80780.02 0.77550.02 0.84310.01 0.82590.00 5e-5 15
BETO-Galén 0.81530.01 0.79330.02 0.83870.01 0.83320.01 5e-5 20
mBERT-Galén 0.81680.01 0.79190.02 0.84350.01 0.83040.00 5e-5 20
mBERT 0.81160.01 0.79230.02 0.83190.01 0.82570.00 5e-5 16
BioBERT 0.80700.01 0.78480.02 0.83060.01 0.82190.00 5e-5 20
roberta-base-bne 0.78750.03 0.77330.03 0.80230.02 0.81610.00 5e-5 15

IC
T

U
Sn

et

bsc-bio-es* 0.87270.01 0.83590.01 0.91310.01 0.88040.00 5e-5 19
bsc-bio-ehr-es* 0.87560.00 0.84180.01 0.91220.00 0.87810.00 2e-5 18
XLM-R-Galén 0.87160.01 0.83750.01 0.90870.01 0.88090.00 5e-5 17
BETO-Galén 0.84980.01 0.82260.01 0.87910.01 0.85510.00 5e-5 20
mBERT-Galén 0.85090.01 0.82190.01 0.88200.01 0.85760.00 5e-5 17
mBERT 0.86310.01 0.83010.01 0.89890.01 0.86460.01 2e-5 20
BioBERT 0.85210.00 0.81320.01 0.89500.01 0.85030.00 2e-5 16
roberta-base-bne 0.86770.01 0.84560.01 0.89100.01 0.87690.00 5e-5 18

Table 2: Fine-tuning results of the models for each dataset on the test set. In bold, the best results for metric and
task. Subscript numbers indicate the standard deviations. Our models are marked with an asterisk.

2 hours to complete the PharmaCoNER, CAN-
TEMIST and ICTUSnet tasks, respectively.

We then report the overall best scores on the
test set, obtained by using the best model’s hyper-
parameters on the development set for each dataset
(the standard deviation is computed using all the
seeds for that configuration). Finally, we also report
the models’ average scores and standard deviations
by computing statistics across all the seeds and the
learning rates used for each dataset. The average
scores are helpful to indicate which model is more
robust to the variation of hyper-parameters, which
are the learning rate and initial seed in our case. A
higher average score and a smaller standard devi-
ation minimizes the risk of obtaining poor results
when performing an extensive hyper-parameter
search is not feasible.

We compared our models with a general-
domain Spanish model (roberta-base-bne)
(Gutiérrez-Fandiño et al., 2022), a general-domain
multilingual model that supports Spanish (mBERT),

a domain-specific English model (BioBERT), and
three domain-specific models based on continual
pre-training: mBERT-Galén (based on mBERT),
BETO-Galén (based on BETO, a general-domain
Spanish model), and XLM-R-Galén (based on
XLM-RoBERTa, a general-domain multilingual
model supporting Spanish). The results are shown
in Table 2. The last two columns report the learning
rate and epoch in which the best configuration on
the development set was achieved

Our models obtained significantly better perfor-
mances than the general-domain models, namely
mBERT and roberta-base-bne. Compared
to the domain-specific Galén models, our aver-
age models’ scores surpassed them on the clinical
NER tasks. However, when looking at the best on
development score on the ICTUSnet dataset, the
XLM-R-Galén model outperformed our models.
We also highlight that our models exhibit smaller
standard deviations. This makes them more robust
and a good option if not enough computational
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resources are available to experiment with the dif-
ferent hyper-parameter configurations.

6 Conclusions and Future Work

This work presents the first large-scale biomedical
Spanish language models trained from scratch, us-
ing a large biomedical corpora for a total of 1.1B
tokens and an EHR corpus of 95M tokens. We
fine-tuned the models on three clinical NER tasks
and compared them with both general-domain and
other available Spanish clinical models. The re-
sults show the superiority of our models across the
NER tasks, making them competitive candidates
for clinical NLP applications. Our findings demon-
strate the benefits of pre-training from scratch, as
seen in Gu et al. (2021). Regarding continual
pre-training, the benefits are not clear, especially
when continual pre-training is performed with
small data, as in the case of the mBERT-Galén,
XLM-R-Galén, and BETO-Galén (note that
mBERT outperforms mBERT-Galén in two out
of three tasks). Our work raises exciting research
questions about which pre-training approach is op-
timal to tackle challenging clinical NLP tasks. We
will devote future efforts to address the previous
question in detail by providing new models based
on continual pre-training and extending our evalua-
tion setting to a diverse range of tasks.

7 Data Availability

Our work encourages the development of Clini-
cal and Biomedical NLP applications for Spanish.
Therefore, we released our pre-trained models and
the best on dev set fine-tuned models under the
Apache License 2.0 in the HuggingFace models
hub under the following links:

Pre-trained models
• bsc-bio-es
• bsc-bio-ehr-es

Fine-tuned models
• bsc-bio-ehr-es-pharmaconer
• bsc-bio-ehr-es-cantemist
Moreover, to guarantee reproducibility, we

share the script used to fine-tuned our pre-
trained model in the official GitHub repository:
https://github.com/PlanTL-GOB-ES/
lm-biomedical-clinical-es.
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A Pre-training Hyper-parameters

The hyper-parameters used for pre-training our
models are shown in Table 3.

Hyper-parameter Value
Number of Layers 12
Hidden size 768
FNN inner hidden size 3072
Attention Heads 12
Attention Head size 64
Dropout 0.1
Attention Dropout 0.1
Warmup Steps 10k
Peak Learning Rate 5e-4
Batch Size 2,048
Weight Decay 0.01
Max Steps 125k
Learning Rate Decay Linear
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.98
Gradient Clipping 0.0

Table 3: Hyper-parameters used for pre-training.

B Fine-tuning Hyper-parameters

The hyper-parameters used for fine-tuning the mod-
els on various tasks are shown in Table 4.

Hyper-parameter Value
Learning Rates {0.8, 1, 2, 3, 5}e-5
Learning Rate Decay Linear
Warmup Steps 0
Batch Size 64
Weight Decay 0.0
Max. Training Epochs 20
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 1.0

Table 4: Hyper-parameters used for fine-tuning.
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