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Abstract

Automatic generating the clinically accurate ra-
diology report from X-ray images is important
but challenging. The identification of multi-
grained abnormal regions in image and cor-
responding abnormalities is difficult for data-
driven neural models. In this work, we in-
troduce a Memory-aligned Knowledge Graph
(MaKG) of clinical abnormalities to better learn
the visual patterns of abnormalities and their
relationships by integrating it into a deep model
architecture for the report generation. We carry
out extensive experiments and show that the
proposed MaKG deep model can improve the
clinical accuracy of the generated reports.

1 Introduction

Medical images are complex and hard to under-
stand without specialized expertise. Given that
the volume of radiology images is large, automati-
cally generating the reports by the computer-aided
system can alleviate the radiologists from the time-
consuming reporting task. Recently, many deep
learning models are studied in the automated radi-
ology report generation (Han et al., 2018; Xie et al.,
2019; Yang et al., 2021; Chen et al., 2020).

The deep encoder-decoder architecture has been
commonly adopted in the report generation, where
visual features were extracted from the input med-
ical images using a convolutional neural network
and fed to a recurrent neural network to generate
the report. Different from image captioning which
inputs one image and output one sentence, the re-
port has much longer length while the correctness
of medical entities generated in the report is the
core requirement. More than the requirement of
detecting abnormalities accurately like classifica-
tion, the report is expected to provide the support
details of present abnormalities. Thus, generating
accurate report with readable and logical descrip-
tions by natural language generation model is the
key challenge in the report generation task.

Generating correct reports is impossible if the
pathology of abnormal regions and corresponding
abnormalities cannot be identified at first. Most
existing studies (Liu et al., 2021a; Chen et al., 2020,
2021; You et al., 2021) proposed the attention and
memory mechanism to enhance the identification
of abnormal regions. However, different status of
the same abnormality may have their specifics and
the correlations of these visual patterns are ignored.
In addition, identifying the actual abnormalities
from abnormal regions is also challenging since
the complex and rare abnormalities are hard to
determined without professional knowledge.

To incorporate the prior medical knowledge, sev-
eral research (Li et al., 2019; Zhang et al., 2020;
Liu et al., 2021b) applied medical knowledge graph
of certain abnormalities in the report generation
aiming to learn the abnormality relationships. The
corresponding representations, i.e., graph embed-
ding, are computed by graph neural network given
the input images. However, such representations
are affected by the inner-connections of abnormali-
ties for each input where the general characteristic
of abnormalities are missing. For example, the
representations of “Effusion”, computed as graph
embedding, are different when “Effusion” appears
with or without “Atelectasis”. But the general char-
acteristic of “Effusion” over all relevant observa-
tions, e.g., density or shapes, are only determined
by itself independently. This general but indepen-
dent characteristic is still missed to model by exist-
ing approaches which limits the effectiveness the
knowledge graph.

To alleviate the above challenges, in this work,
we propose to learn the memory-aligned graph
model, aiming to enhances the pathology identi-
fication and prior medical knowledge incorpora-
tion. The memory features of possible abnormal
regions are first aligned by the input visual feature
in an alternative manner, and concatenated with
a universal memory embedding before feeding to
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the graph attention network to compute the graph
embedding. The graph embedding are later learned
by the classification and fine-tuned in the report
generation. We evaluate the proposed approach
using two publicly accessible datasets. The eval-
uation results show the effectiveness of utilizing
memory-aligned knowledge graph in generating
the clinically accurate radiology report.

2 The Proposed Method

2.1 Problem Formulation
Given the radiology image with extracted visual
features as V , the model aims to generate a radi-
ology report R = {y1, y2, ...}. We introduce a
Memory-aligned Knowledge Graph (MaKG) to
explore multi-grained features of the abnormalities
and their relationships. The multi-grained memory
features M̂ are first aligned from the memory slots
M by V , and concatenated with a meshed memory
embedding E to learn the abnormality graph em-
bedding G for generating radiology report R. This
process can be formulated as,

{V,M} → M̂ ; {M̂,E} → G;G → R. (1)

Implementation. Following (Chen et al., 2020,
2021; Liu et al., 2021b), we adopt a memory slots
M ∈ RM×D to record the information of abnormal
regions which would indicate the potential abnor-
malities. The memory slots are initialized as plain
learnable vectors and updated together with other
modules. The M stands for the total number of
the knowledge corresponding to the abnormality
identification. We also adopt a E ∈ RN×D em-
bedding to model the universal features of each
abnormality. The N is equal to the number of the
abnormalities. We follow (Zhang et al., 2020) to
construct and initialize the abnormality knowledge
graph G = (V, E); |V| = N which is a universal
structure in the training. The nodes V cover the
common chest abnormalities and grouped by their
organ or body part appearances as edges E . The
graph embedding G ∈ RN×D is computed by the
graph attention network. A overview of this frame-
work is shown in Fig. 1.

2.2 Memory-aligned Graph Embedding
To learn the visual patterns of possible abnor-
mal regions, we apply Multi-Head Attention
(MHA) (Vaswani et al., 2017) to query the re-
sponding memory features from the memory
slots M . The MHA computes the associated

weighted between different features which allows
the abnormality-related memory features to be dis-
tilled from original M . To align different level
of the alignment, we can perform the alignment
attention alternatively as,

V ′
i+1 = MHA(Mi, Vi);

M ′
i+1 = MHA(V ′

i+1,Mi),
(2)

where V0 = V , M0 = M , V ′
i and M ′

i denote
i-th step aligned visual and memory features, re-
spectively. As observed, the patterns of abnormal
regions should be learned in different fine-grained
ways due to their variable shapes and sizes. Thus,
we follow (You et al., 2021) to repeat the align-
ment K times and obtain multi-grained memory
features {M ′

i} = {M ′
1,M

′
2, ...,M

′
K}. We then

aggregate the multi-grained memory features as
M̂ = MHA(M ′

∗,M
′
∗), where M ′

∗ =
⊕K

i=1M
′
i

and M̂ ∈ RM×D.
To model the prior knowledge on the global char-

acteristic of each abnormality which may not de-
pend on the current input V , we add an meshed
memory embedding E ∈ RN×D of which each row
represent one particular abnormality. We compute
the graph embedding G ∈ RN×D using graph at-
tentional layer GAT(·) (Veličković et al., 2017) as,

G = GAT(FFN(MWG ⊕ E)) (3)

where FFN(x) = ReLU(xW ff
1 + bff1 )W

ff
2 + bff2 ,

W ff
1 ,W

ff
2 ∈ RD×D and WG ∈ RM×N are learn-

able parameters, bff1 , b
ff
2 are learnable bias vectors.

We learn G by adding a fully-connected layer with
Sigmoid activation for each node and serving it as
a binary classifier. Each node embedding is used
to predict the existence probability of correspond-
ing abnormality, and the classifier is trained using
weighted binary cross entropy loss. The details can
be found in (Zhang et al., 2020).

2.3 Report Generation by Graph embedding
For each decoding step t, the hidden stats ht is
encoded from the input word features xt by the
standard encoder from Transformer,

xt = wt + et;ht = MHA(xt, x1:t), (4)

where wt and et are the word embedding and posi-
tional embedding, respectively. A L layers Trans-
former decoder is employed to generate the proper
report by the attending MaKG embeddings G as,

h′t = MHA(ht, G);

y′t ∼ pt = Softmax(h′tW + b).
(5)
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Figure 1: The MaKG-based deep model architecture.

Both encoder and decoder are trained by min-
imizing the cross-entropy loss Lgen(θ) =

−
∑T

t=1 log(pt|p1:t−1).

3 Experiments

3.1 Datasets, Metrics and Settings
We use two publicly available datasets IU X-
Ray (Demner-Fushman et al., 2016) and MIMIC
CXR (Johnson et al., 2019) for evaluating the
model performances. For the IU X-Ray dataset,
we collect 2,848 reports and 5,696 images contain-
ing both frontal and lateral chest X-rays. We parti-
tioned the data into train/validate/test set by 7:1:2
for cross validation. For MIMIC CXR dataset, we
follow original split set with train/validate/test size
as 222,705 / 1,807 / 3,269 and report the average
scores of three different runs.

For report quality, we adopt the language gen-
eration metrics including BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005),
ROUGE (Lin, 2004) and CIDEr (Vedantam et al.,
2015). To measure the clinical accuracy, we adopt
the Clinical Efficacy (CE) (Chen et al., 2020) and
Clinical Metrics (CM) (Miura et al., 2021) for
common and critical observation accuracy, and
MIRQI (Zhang et al., 2020) to evaluate accuracy
of 141 observations and their associated attributes.
The micro-avg F1-measure scores are reports.

To compare with the proposed model
TRANS.+MAKG, we employ the basic vanilla

114 clincal observations includes: No finding, Enlarged
Cardiomediastinum, Cardiomegaly, Lung lesion, Lung opac-
ity, Edema, Consolidation, Pneumonia, Atelectasis, Pneu-
mothorax, Pleural effusion, Pleural other, Fracture, Support
devices

Transformer TRANS. with three layers, 8 heads
and 512 hidden state dimension, and an integration
knowledge graph used in (Zhang et al., 2020)
denoted as TRANS.+KG. We also compare
TRANS.+MAKG with several report generation
models, including WORDSAT (Xu et al., 2015),
ADAATTN (Lu et al., 2017), SENTSAT (Krause
et al., 2017), COATTN (Jing et al., 2018), SEN-
TKG (Zhang et al., 2020), M2TRANS (Cornia
et al., 2020), R2GEN (Chen et al., 2020) and
R2GEN-CMN (Chen et al., 2021).

We adopt DenseNet121 (Huang et al., 2017) to
extract the visual features. The dimensions of hid-
den state and number of heads in MHA are set as
512 and 8. K and M are set as 3 and 20. The
model is trained with the learning rate 5e-5 in the
end-to-end manner.

3.2 Results on Multi-label Classification
For performance comparisons on image classifica-
tion, we evaluate the proposed MAKG with the
base DENSENET (Huang et al., 2017) and integrat-
ing with KG (Zhang et al., 2020) embedded with
different graph neural network. Higher or equiva-
lent scores are obtained for most of the classes as
shown in Table 1. A possible explanation is that
the alignment mechanism of MAKG enhances the
learning of the abnormality patterns by distilling
the irrelevant regions from the images.

3.3 Results on Report Generation
The main focus of this experiment is to evaluate
the effectiveness of applying memory alignment
knowledge graph (MaKG) in enhancing the clinical
accuracy of the report generation.



119

Class Integration Module
- KG∗ KG MaKG

Normal/No Finding 0.795 0.807 0.806 0.821
Cardiomegaly 0.866 0.913 0.922 0.930
Scoliosis 0.664 0.663 0.671 0.687
F.B. 0.695 0.671 0.686 0.727
Effusion 0.921 0.942 0.950 0.962
Thickening 0.733 0.728 0.753 0.785
Pneumothorax 0.824 0.843 0.843 0.889
H.H 0.860 0.884 0.857 0.870
Calcinosis 0.676 0.669 0.669 0.690
Emphysema 0.892 0.890 0.902 0.919
Pneumonia 0.844 0.863 0.835 0.861
Edema 0.897 0.931 0.912 0.949
Atelectasis 0.788 0.833 0.823 0.838
Cicatrix 0.742 0.734 0.745 0.774
Opacity 0.796 0.803 0.806 0.829
Lesion 0.597 0.643 0.630 0.647
Airspace Disease 0.830 0.857 0.823 0.846
Hypoinflation 0.768 0.775 0.767 0.791
Medical Device 0.775 0.805 0.798 0.825
Other 0.595 0.596 0.607 0.653
Average 0.778 0.792 0.867 0.879

Table 1: Performance on multi-label classification
(AUC) on IU XRay dataset. The best scores are in
bold face and the second best are underlined.

Clinical Accuray Metric As shown in Table 3,
TRANS.+MAKG achieves the first and second best
performances over all clinical accuracy related met-
rics, and outperforms TRANS+KG with signifi-
cantly improvement in MIRQI score which evalu-
ates the accuracy of both abnormalities and their
associated attributes. It indicates integrating MaKG
is able to enhance the generation of clinically ac-
curate report by providing correct attribute descrip-
tions in the fine-grained level. This observation
is important because the correctness of the asso-
ciated attributes is necessary for the correctness
of the abnormality descriptions. The incomplete
or incorrect attributes of the same abnormalities
would result different or even incorrect follow-up
treatments. Noted that TRANS.+MAKG does not
obtain the first best score in CE which measures the
accuracy of 13 clinical observations and normality
observation. However, the best scores of CM and
Hits are observed shows that TRANS.+MAKG is
able to identify the most critical abnormalities and
cover most of the abnormalities that are frequently
mentioned in the report repositories.

As observed from Table. 3, no model could
detect all evaluated abnormalities for IU XRay
dataset. Thus, we further study the detailed results
as shown in Table. 2. As observed, there are some
abnormalities of which appearance ratio is around
5% in the whole training set which is relatively rare.

The failed detection could be caused by different
reasons, such too few training data (e.g., “Frac-
ture”) or too hard to learning (e.g., “Pneumothorax”
which is also very hard for clinicians to determine).

Class (%) Integration Module
- KG MaKG

No Finding (31.72%) 0.603 0.500 0.456
Enlarged Cardio. (13.3%) 0.000 0.000 0.034
Cardiomegaly (15.6%) 0.265 0.392 0.341
Lung Lesion (5.2%) 0.000 0.000 0.054
Lung Opacity (21.3%) 0.181 0.209 0.278
Edema (4.7%) 0.000 0.000 0.160
Consolidation (5.2%) 0.000 0.038 0.073
Pneumonia (3.0%) 0.000 0.000 0.000
Atelectasis (8.1%) 0.000 0.087 0.227
Pneumothorax (6.6%) 0.000 0.000 0.000
Pleural Effusion (10.2%) 0.089 0.172 0.278
Pleural Other (1.6%) 0.000 0.000 0.000
Fracture (2.9%) 0.000 0.000 0.000
Support Devices (3.9%) 0.091 0.114 0.242

Table 2: Detailed CE evaluation results (F1-measure) of
TRANSFORMER and integrating with KG and MAKG
in IU XRay dataset, respectively. The best scores are in
bold face

Natural Language Generation Metrics As the
experimental results show, the higher NLG scores
do not always indicate the clinically accurate re-
ports are generated. While the clinical accuracy
is a mission-critical requirement for radiology re-
port generation, the generated report is expected
to be clinically accurate using relatively readable
sentences. The TRANS.+MAKG achieves similar
NLG scores which indicates that the integration of
MaKG is able to generate more reasonable descrip-
tions of the abnormalities without decreasing the
informativeness from TRANS. much. More pow-
erful decoders (e.g., MemroyTrans. (Chen et al.,
2020) or AlignTrans. (You et al., 2021)) should be
able to enhance the overall performances.

Qualitative Results As shown in Fig. 2, two cases
of ground truth and generated reports are visual-
ized. The extracted clinical findings and the associ-
ated modifications are also attached. As observed,
TRANS.+MAKG is able to detect more correct ab-
normalities in such cases than TRANS.+KG. It is
believed to assistant clinicians to detect the abnor-
malities which are easy to ignored, thus increases
the usability of applying the MaKG in improving
the clinical accuracy in the report generation task.
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Dataset Model NLG Metrics Clinical Accuracy Metrics
B. M. R. C. CM CE MIRQI Hits (14)

IU
XRay

WORDSAT (Xu et al., 2015) 0.262 0.383 0.369 0.317 0.094 0.215 0.463 5.6
ADAATTN (Lu et al., 2017) 0.269 0.379 0.367 0.358 0.240 0.338 0.474 6.6
SENTSAT (Krause et al., 2017) 0.274 0.372 0.365 0.318 0.106 0.241 0.451 4.8
COATTN (Jing et al., 2018) 0.256 0.367 0.357 0.307 0.061 0.245 0.438 5.2
SENTKG (Zhang et al., 2020) 0.271 0.391 0.367 0.304 0.067 0.242 0.490 4.8
M2TRANS. (Cornia et al., 2020) 0.269 0.299 0.363 0.367 0.104 0.253 0.481 5.6
R2GEN (Chen et al., 2020) 0.251 0.367 0.342 0.461 0.100 0.322 0.389 9.0
R2GEN-CMN (Chen et al., 2021) 0.294 0.392 0.370 0.681 0.104 0.330 0.462 8.0
TRANS. (Vaswani et al., 2017) 0.264 0.390 0.357 0.587 0.147 0.394 0.486 5.0
TRANS.+KG 0.265 0.380 0.353 0.593 0.205 0.320 0.504 9.2
TRANS.+MAKG (ours) 0.265 0.378 0.353 0.523 0.262 0.362 0.515 10.8

MIMIC
CXR

WORDSAT (Xu et al., 2015) 0.160 0.284 0.249 0.082 0.354 0.324 0.391 10.0
ADAATTN (Lu et al., 2017) 0.151 0.301 0.248 0.096 0.384 0.366 0.438 12.0
SENTSAT (Krause et al., 2017) 0.182 0.236 0.252 0.073 0.412 0.364 0.411 11.3
COATTN (Jing et al., 2018) 0.181 0.235 0.253 0.070 0.423 0.364 0.418 9.7
M2TRANS. (Cornia et al., 2020) 0.165 0.299 0.249 0.102 0.458 0.469 0.518 13.7
R2GEN (Chen et al., 2020) 0.124 0.158 0.160 0.170 0.262 0.296 0.383 13.0
R2GEN-CMN (Chen et al., 2021) 0.123 0.162 0.163 0.128 0.329 0.356 0.485 10.0
TRANS. (Vaswani et al., 2017) 0.126 0.160 0.164 0.167 0.286 0.288 0.368 13.0
TRANS.+KG 0.109 0.280 0.214 0.119 0.406 0.398 0.535 12.0
TRANS.+MAKG (ours) 0.137 0.284 0.228 0.120 0.455 0.469 0.572 14.0

Table 3: Performance comparison of report generation models. The best scores are in bold face and the second best
are underlined.“B.”, “M.” “R.” and “C.” stand for BLEU, METEOR, ROUGE and CIDEr scores, respectively. The
maximum number of “Hits” is 14 which is defined by CheXpert labeling toolkit.

1 . no acute cardiopulmonary disease . 2 . stable mild cardiomegaly . 3 . prominent central vasculature . pa and
lateral views of the chest were obtained . tracheostomy tube . probable mild cardiomegaly . prominence of the
central vasculature unchanged . no pneumothorax pleural effusion or focal air space consolidation .

1 . probable small bilateral pleural effusions . 2 . possible lower thoracic <unk> deformity not well
<unk> on todays study . the lungs are clear . there appear to be small bilateral pleural effusions .
the heart is not grossly enlarged . there are atherosclerotic changes of the aorta . increased kyphosis
is seen in the may be a thoracic <unk> deformity that is not <unk> . arthritic changes are seen .

stable cardiomegaly . no acute infiltrate or effusion . mildly enlarged . the cardiac silhouette and mediastinal
contours are within normal limits . no pneumothorax or pleural effusion . clear .

1 . increased elevation right hemidiaphragm with right basilar atelectasis . left basilar airspace
disease and pleural effusion unchanged . 2 . interval removal of rightsided chest tube no pneumot-
horax . stable cardiomediastinal silhouette . there has been interval removal of the chest tube with
increased elevation of the right hemidiaphragm and unchanged in the left basilar atelectasis .

The heart and mediastinal contours are stable. Aorta
is calcified and tortuous, compatible with
atherosclerotic disease. Since the prior study, there's
been interval development of left lower lobe
airspace disease. The right lung is clear. 1. Interval
development of left lower lobe airspace disease.
This may be due to atelectasis or infiltrate. 

The heart size is moderately enlarged. There is evidence of
previous aortic valve replacement. XXXX sternotomy XXXX
are grossly intact. The pulmonary XXXX and mediastinum are
within normal limits. There is no pleural effusion or
pneumothorax. There are chronically increased interstitial lung
markings without superimposed focal airspace disease
identified. There are degenerative changes of the
spine. Cardiomegaly without superimposed acute disease noted.
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Figure 2: Illustration of reports generated by TRANS.+KG and TRANS.+MAKG. The extracted medical entities by
MIRQI evaluation toolkit are attached as [“keyphrase”, “category”, “negation”, “attributes”].

4 Conclusions

In this work, we propose a memory-aligned knowl-
edge graph (MaKG) to enhance the clinically accu-
rate report generation by modeling the relationship
between abnormal regions and particular abnormal-
ities. The experiments prove the effectiveness of
integrating MaKG with the generation model is
able to generate descriptive report with both cor-
rect abnormalities and associated attributes. In ad-

dition, the proposed MaKG is not limited to the spe-
cific knowledge graph structure which give the op-
portunities on incorporating different professional
knowledge for specific medical applications.
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