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Abstract

As ever larger language models grow more
ubiquitous, it is crucial to consider their envi-
ronmental impact. Characterised by extreme
size and resource use, recent generations of
models have been criticised for their voracious
appetite for compute, and thus significant car-
bon footprint. Although reporting of carbon
impact has grown more common in machine
learning papers, this reporting is usually lim-
ited to compute resources used strictly for
training. In this work, we propose a holis-
tic assessment of the footprint of an extreme-
scale language model, Noor. Noor is an on-
going project aiming to develop the largest
multi-task Arabic language models–with up to
13B parameters–leveraging zero-shot general-
isation to enable a wide range of downstream
tasks via natural language instructions. We as-
sess the total carbon bill of the entire project:
starting with data collection and storage costs,
including research and development budgets,
pretraining costs, future serving estimates, and
other exogenous costs necessary for this inter-
national cooperation. Notably, we find that in-
ference costs and exogenous factors can have
a significant impact on total budget. Finally,
we discuss pathways to reduce the carbon foot-
print of extreme-scale models.

1 Introduction

Recent progress in natural language processing
(NLP) has been driven by the emergence of so-
called foundation models (Bommasani et al., 2021).
This paradigm shift is characterised by a homogeni-
sation of modelling methods– crystallising around
the Transformer architecture (Vaswani et al., 2017)–
and by emergent capabilities (e.g. zero-shot gener-
alisation) predominantly arising from sheer scale
alone (Brown et al., 2020). NLP models are now
experiencing a 3-4 months doubling time in size, as
outlined by Figure 1. Most recent large language

models such as MT-NLG 530B (Smith et al., 2022),
Gopher 280B (Rae et al., 2021), or Jurassic-1 178B
(Lieber et al., 2021), all report training budgets
in the thousands of PF-days1 range. Because AI
accelerators performance per watt has plateaued
compared to deep learning budgets (Reuther et al.,
2021; Sevilla et al., 2022), practitioners have had to
scale-out training over an increasingly large num-
ber of accelerators (Narayanan et al., 2021). Ac-
cordingly, the energy cost of training state-of-the-
art models has grown significantly: increase in
compute is no longer fuelled by improvements in
hardware efficiency, but in hardware scale.

Although this increase in size and compute bud-
get is backed by empirical scaling laws drawing a
clear link between compute spent and model perfor-
mance (Kaplan et al., 2020), the societal benefits
of larger models have been questioned (Tomašev
et al., 2020; Bender et al., 2021). Specifically to
environmental concerns, in a time of climate cri-
sis when carbon emissions must be drastically cut
(Masson-Delmotte et al., 2018), one may question
whether these large compute budgets are justified.
A crucial step towards answering this question is an
in-depth evaluation of the footprint of large models.

Existing assessments of the environmental im-
pacts of large models are usually focused on hyper-
parameter tuning and pretraining costs (Strubell
et al., 2019; Patterson et al., 2021). This trend is re-
flected by the growing number of tools available to
help practitioners quantify the impact of machine
learning computations (Bannour et al., 2021). If
some studies have also endeavoured to quantify
select aspects of the machine learning pipeline (e.g.
conference attendance (Skiles et al., 2021), hard-
ware lifecycle (Gupta et al., 2021), etc.), end-to-end
evaluations of machine learning projects life cycle
emissions remain rare (Wu et al., 2022).

1A PF-day is 1 PFLOPs (10 A100) sustained for a day.
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Figure 1: Over the last four years, the size of state-
of-the-art language models has doubled every 3-4
months. Note that this trend has been slowing down,
due to scale-out limitations.

To fill this gap, we produce an end-to-end as-
sessment of the carbon footprint of Noor, a project
seeking to train a very large Arabic language model.
Our contributions are the following:

Holistic assessment. We evaluate the total car-
bon bill of the entire project: starting with data col-
lection, curation, and storage, including research
and development and hyper-parameters tuning bud-
gets, pretraining costs, future serving estimates,
and other exogenous impacts sparked by this inter-
national cooperation (e.g. flights, personnel, etc.)

Beyond pretraining. We identify pretraining
compute as driving more than half of the emissions
of the project. However, all combined, other R&D,
storage, and personnel counts still amount for 35%
of the carbon footprint. We also identify down-
stream use in the wild as potentially significant.
This leads us to recommend for the end-to-end foot-
print to be systematically assessed on a per-project
basis. Notably, in scenarios with a low-impact
training electric mix, costs beyond pretraining may
become the main sources of emissions.

Pathways to lower footprints. Finally, we dis-
cuss ways to reduce the environmental footprints
of projects involving large models, and put in per-
spective the footprint of similar projects.

2 Related work

In light of ever increasing computational budgets
(Sevilla et al., 2022) and of the need to cut on emis-
sions to abate global warming (Masson-Delmotte
et al., 2018), the environmental impact of deep
learning has drawn significant interest.

Strubell et al., 2019 notably highlighted the po-
tential high environmental costs of deep learning.
However, its headline figures were produced in
the specific context of neural architecture search,
a relatively rare practice for extreme-scale mod-
els nowadays. Lacoste et al., 2019; Lottick et al.,
2019; Schwartz et al., 2020 subsequently called for
AI research to be more aware of its environmen-
tal cost. An increasing number of tools, such as
codecarbon (Schmidt et al., 2021), have been
developed to help with tracking the impact of deep
learning experiments (Bannour et al., 2021). All
of these lines of research share similar recommen-
dations: the carbon footprint of deep learning is a
direct consequence of the electricity mix and effi-
ciency of the data center, suggesting that picking
an appropriate provider is the most straightforward
way to reduce environmental impact.

Specifically to extreme-scale models, Patterson
et al., 2021 estimated the energy consumption of
five large NLP models, including GPT-3. They
identified that a judicious choice of neural architec-
ture, datacenter and accelerator can help reduce
considerably carbon budgets. Thompson et al.,
2020 identified a clear relationship between large
models performance and their carbon impact, build-
ing upon work on neural scaling laws (Kaplan et al.,
2020). Taddeo et al., 2021 estimated the cost of
training GPT-3 in different data centers across the
worldwide, highlighting again the high dependency
on the local energy mix and specific infrastructure.

Two recent studies have provided insights into
the end-to-end carbon footprint of deployed mod-
els in the industry. Wu et al., 2022 studied the
impact of the increasingly large recommender sys-
tems leveraged at Meta, while Patterson et al., 2022
provided an assessment of the costs (including in-
ference) of large models at Google. They expect
the carbon footprint of training to plateau in coming
years, and then to shrink–owing to more efficient
high performance computing platforms. They also
assert that current studies are overestimating the
real environmental costs of large models, in light of
the wide availability of ”clean” compute platforms.

In the field of astrophysics, Aujoux et al., 2021
did an extensive study to estimate the carbon foot-
print of the Giant Array for Neutrino Detection
(GRAND) project, a multi-decade worldwide ex-
periment. Inspired by their holistic methodology,
we seek to establish the first end-to-end assessment
of an extreme-scale NLP project.
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3 The Noor Project

The current state-of-the-art generative language
model in Modern Standard Arabic is AraGPT (An-
toun et al., 2021), a 1.5B parameters model. The
Noor project seeks to expand upon this model, in-
troducing a 1.5B, 2.7B, 6.7B, and 13B Arabic mod-
els, trained a custom curated dataset of 150B to-
kens, inspired by The Pile (Gao et al., 2020). These
larger scales are expected to make the model able
to tackle novel tasks through zero-shot generaliza-
tion, as exhibited by GPT-3 (Brown et al., 2020) or
GPT-J (Wang and Komatsuzaki, 2021).

Noor is an on-going international cooperation
between the Technology Innovation Institute in the
United Arab Emirates and LightOn in France. The
Noor project can be split in four parts:

• Data curation. A custom curated dataset of
150B tokens has been assembled for Noor.
This dataset has been scrapped from diver-
sified sources, and also includes data from
Common Crawl. We filter this data with an
LM-based quality-scoring system inspired by
CCNet (Wenzek et al., 2019).

• R&D experiments. To validate tokenization,
dataset, architecture, and establish scaling
laws, we trained a number of R&D models
(100M-1.5B parameters on 10-30B tokens).

• Main training. We train a suite of four mod-
els of 1.5B, 2.7B, 6.7B, and 13B parameters.

• Model use. Prospectively, we include some
estimations of the future inference cost of
these models as they are put in use.

4 Factors influencing the carbon
footprint of large models

Before beginning our assessment, we propose to
identify some of the key influencing factors on the
potential carbon footprint of large models, focus-
ing first on factors directly related to the models
themselves and not to the project producing them.

Model size. The number of floating operations
per forward pass is directly proportional to the
size of the network. A common approximation
for the total compute budget C required for train-
ing a Transformer model with N parameters on D
tokens is C = 6ND (Kaplan et al., 2020). As the
optimal dataset size only grows sublinearly with
model size for autoregressive modelling (Henighan

et al., 2020), compute budget will scale more or
less linearly with model size. The larger the num-
ber of operations, the more energy is needed to
train the model. For inference, the cost for each to-
ken is reduced to a third compared to training, and
environmental impact will be driven by the total
number of words/tokens processed.

Hardware characteristics. The throughput (in
FLOPs) that can be tackled by the hardware will
drive the total time required to perform the task.
More efficient hardware will have more through-
put per Watt. We note however that most avail-
able chips suitable for large model training (e.g.,
NVIDIA GPUs, Google TPUs, etc.) exhibit similar
efficiency characteristics (Reuther et al., 2021).

Modelling decisions. We identified above two
key factors: number of tokens processed (for train-
ing or inference), and hardware throughput. We
note that both of these are also strongly impacted by
modelling decisions. A more fertile tokenizer will
use less tokens for the same text, leading to faster
processing. Similarly, small changes in model ar-
chitecture (e.g., choosing hidden sizes in accor-
dance with wave/tile quantization) and in imple-
mentation (e.g., 3D parallelism) can drastically in-
crease throughput, and reduce total training time.

Data center efficiency. The energy consumed
does not serve only to power up the servers, but
also to cool down the data center itself and to re-
spond to other electrical needs. The Power Usage
Effectiveness (PUE) is used to assess the overall
efficiency of a data center. It measures the quotient
of the total energy requirement and the final energy
used by the servers. The PUE will be influenced by
the data center architecture. Worldwide average is
around 1.8, but Google for instance reports an av-
erage PUE of 1.11. Waste heat in data centers can
also be reused for collective water heating, driving
down the PUE, as in the Jean Zay HPC.

Electricity mix. The breakdown of the energy
sources powering a data center is a crucial factor,
and depends primarily on the region. The elec-
tricity mix determines the carbon emissions per
kWh of electricity. Today, the world average of
carbon emission by kwh of electricity generated is
475 gCO2e/kWh, and an increasing number of data
centers from cloud providers are using 100% re-
newable or nuclear energy to power their hardware.
Taking Google Cloud as an example again, their
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Montreal facility reports 27gCO2e/kWH, twenty
times lower than the world average.

Beyond factors related to the models themselves,
we seek in this study to take into account a number
of other costs: storage, preprocessing, and trans-
fer costs for the dataset, personnel costs such as
travel and individual laptops, etc. We note however
one limitation from our study: we do not take into
account the lifecycle of the hardware used. Unfor-
tunately, numbers are scarcely available, and not
made public by the main manufacturers.

5 Carbon footprint of the Noor project

5.1 Electricity consumption
We begin by accounting for the electricity consump-
tion of all aspects of the project. The impact of
this consumption will be highly dependent on the
carbon intensity of the electricity mix used. Non-
electric sources (e.g., international flights) will be
added to the carbon budget in a second phase.

5.1.1 Data storage and transfers
The energy consumption of data depends on both
the energy required for powering the disks to store
the data, and the energy consumed when moving
the data from one server to another. We average
storage costs over the 6 months of the project.

Storage. Although disk wattage is generally re-
ported on per-disk level, Posani et al., 2019 esti-
mates the power per TB of data using aggregated
technical specifications. The paper reports that
the average peak consumption of cloud storage is
around 11.3W/TB. It means an energy consump-
tion of 99 kWh/TB a year. This estimation consid-
ers a PUE of 1.6 and a redundancy factor of 2 since
managed services will also have a back-up.

The breakdown of our data storage is as follows:

• Curated data. Including both raw and pro-
cessed data, we have accumulated around 2TB
of curated data. This is stored for the 6 months
of the project, resulting in 99kWh used.

• Bulk data. We use Common Crawl (CC) for
acquiring large amounts of web data. Each
CC dump is on average around 10TB, and we
discard it immediately after processing it. On
average, it takes 24 hours to fully process a
dump: we used 21 dumps from CC, meaning
we stored 210TB of data for 24hours, equiv-
alent to 57 kWh of energy consumption. Af-
ter processing the dumps, we got on average

1.2TB of data per dump, thus 25TB in total.
Considering that this data will be stored for 6
months, we end up with 1.3 MWh of energy
consumption for the bulk data. Note that we
keep the processed data in all languages (not
just Modern Standard Arabic).

• Models. The weights of the Noor models
(1.3B, 2.7B, 6.7B and 13B) are respectively
2.6GB, 5.4G, 13.4GB, and 26GB in half-
precision. This corresponds to training check-
points (including the full-precision optimizer)
of 20.8GB, 43.2GB, 107.2GB, and 208GB.
We save such checkpoints every 10B tokens.
In total, we end-up with 5.7TB of model
weights and intermediary checkpoints for fu-
ture analysis and interpretability work, con-
suming 0.3MWh in total.

Transfers. Posani et al., 2019 provided an esti-
mate of 23.9 kJ per GB (6.38 kWh per TB) trans-
ferred, using the formula of Baliga et al., 2011 and
the same hypothesis as Aslan et al., 2017 (800km
average distance between core nodes). The 210TB
of CC data are downloaded on the preprocessing
servers once; the 25TB of processed data are moved
once to our archival machines, and another time
to the HPC used for training; the curated data is
downloaded once, moved to the archival machines,
and then moved to the HPC; the 5.7TB of models
are moved once from our HPC, and then to our in-
ference servers for final models or to workstations
for intermediary checkpoints. Consequently, we
estimate the transfer energy bill at 1.8 MWh.

Total. Thus, the total energy consumption of data
is estimated to be about 3.5 MWh, dominated by
the multilingual Common Crawl data. We note
that as ideal dataset size increases sublinearly with
model size (Kaplan et al., 2020), we expect check-
points and model transfers to eventually dominate
the costs of storage and transfer for larger models.

Note that we neglect costs linked to a poten-
tial public release of the models, as it is difficult to
predict traffic. As a rough estimation, 10,000 down-
loads of the 13B model would represent 260TB of
traffic, and 1.66MWh consumed.

5.1.2 Data processing
We take all text data through a pipeline inspired
by CCNet (Wenzek et al., 2019) for preprocessing.
This pipeline takes care of deduplication, language
identification, and finally quality filtering with a
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Table 1: Training compute budget and energy used for training the Noor models. Assuming a pretraining
dataset of 150B tokens and a throughput of 100 TFLOPs per A100.

Model Budget [PF-days] Budget [A100-hours] HPC Consumption [MWh]

1.3B 13.5 3300 MeluXina 2.1
2.7B 28.1 6800 Noor-HPC 4.8
6.7B 69.8 17000 Noor-HPC 11.8
13B 135 33000 Noor-HPC 22.9

reference language model trained on Wikipedia.
Processing with our pipeline occurs on a CPU clus-
ter with 768 cores, split over 16 nodes.

Using average high-performance CPUs TDP fig-
ures, we estimate the average power consumption
of each node at 350W; hence, the power of the
cluster is 5.6kW. We processed 21 dumps of Com-
monCrawl, plus our curated data, for a total of 381
wall-clock hours. Accordingly, assuming a PUE
of 1.1 as reported by Google, the total energy con-
sumed by data preprocessing is 2.35MWh.

Note that for CommonCrawl data, this results
in data processed for every language supported
(176 for identification, 48 for quality filtering). Ac-
cordingly, this cost could be amortised over future
projects. For high-resource languages, this also
results in very large amounts of data: processing
more dumps would not be necessary, even to train
a 1 trillion parameters model.

5.1.3 Research and development
We carried experiments to validate tokenization
methods, dataset composition, tune hyperparame-
ters, and establish scaling laws. This early research
and development work was performed on MeluX-
ina, a high-performance super-computer located
in Luxembourg. We used a total of 16,800 A100-
hours in this phase. Each node used in MeluXina
has 4 A100 SXM 40GB with a TDP of 400W, and
two AMD EPYC 7763 CPUs with a TDP of 280W.
They report a PUE of 1.35. Thus, we estimate the
consumption of this R&D phase to be of 10.7MWh.

We expect the budget of this phase to roughly
scale with model size. Indeed, debugging poten-
tial issues (e.g., numerical instabilities (Kim et al.,
2021), etc.) for the final larger model will cost
significantly more.

5.1.4 Main training
Using the C = 6ND approximation, it is pos-
sible to calculate in advance the training budget
required for a specific model. We observe an ef-

fective throughput with our Megatron+DeepSpeed
codebase of around 100 TFLOPs2 across models,
in line with the state-of-the-art. We train four main
models (1.5B, 2.7B, 6.7B, 13B) on 150B tokens.

We train the smaller model on MeluXina, but
the other three on our own HPC cluster. Each node
contains 8 A100 80GB and 2 AMD EPYC 7763
CPUs. The PUE of our data center is 1.5, 20%
more efficient than the world average.

Table 1 outlines the costs of the main training.
The total electric energy consumed to train the
Noor suite of models is thus 41.6 MWh, 55% of it
spent on the largest 13B model.

5.1.5 Inference
As the models of Noor have yet to be deployed,
this is only a prospective estimate. Inference costs
in general are difficult to estimate in advance, even
more so for open source models which will be
deployed to platforms with varying characteristics.
We provide an estimate of the energy consumption
during inference per generated token.

We thereafter denote as processed tokens the to-
kens in the original prompt sent to the model, and
as generated tokens the tokens generated by the
model using the prompt. To simplify calculations,
we make the following assumptions from our expe-
rience with another large-scale API: (1) an A100 is
used, which is sufficient for Noor-13B, but could be
reduced to a more efficient T4 for Noor-1.5B/2.7B;
(2) inference time per generated token is constant,
whichever the number of processed tokens (per our
benchmarks, thanks to caching, this is true up to
512 processed tokens roughly); (3) batch size is
assumed to be 1, as batching is more challenging
and less consistent for inference workloads.

Under these hypothesises, an A100
can generate up to 72,000 tokens per
hour. Accordingly, we estimate that
26 Joules are required per token generated (400W

2These are effective FLOPs for training the model, not
hardware FLOPs. Hardware FLOPs are closer to 150 TFLOPs.
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Figure 2: Breakdown of the electricity consumption
(total 59.14 MWh) of the Noor project. Data prepro-
cessing is included in R&D, amounting for 20% of it.
We also note that R&D and dataset costs could be amor-
tised through other projects or larger models.

for the GPU, 70W for the CPU, and 1.1 PUE
on Google Cloud imply 517Wh of energy con-
sumption for 72,000 tokens. Converted to Joule,
it results in 26 Joules per token.) Accordingly,
3 billion tokens would have to be generated for
inference costs to catch up with training costs. At
some point during its beta, GPT-3 was reported
to generate 4.5 billion words per day (Pilipiszyn,
2021).

5.1.6 Additional costs
Beyond costs related to data, R&D, training, and
inference, one may wonder if direct electricity use
from scientists involved in the project is signifi-
cant. Assuming that the average laptop consumes
70W, plus 30W for an external screen, six research
scientists dedicating 100% of their time during 6
months for this project, 8 hours per day, will use up
0.604MWh. We could also include costs of e-mail
exchanges and video-conferences specifically, but
these were found to be negligible in Aujoux et al.,
2021. We round up the marginal costs to 1MWh,
and note that this is but a rough estimate.

5.1.7 Summary
We showed that the total electricity consumption of
the Noor project is not only about training the final
models, as outlined in Figure 2. Nearly a third of
the energy consumed (30%) went to tasks outside
of main models pretraining.

Because of larger uncertainties, we keep the serv-

ing/inference assessment out of the previous bud-
get. However, especially in the context of openly
available models, the inference budget can rapidly
catch up with the total budget outlined in 2.

5.2 Carbon footprint

Now, from the electricity consumption, and using
information on the local carbon intensity, we will
derive the full footprint of the Noor project. We
will also add energy use coming from non-electric
sources (e.g., flights). As the carbon intensity of the
electricity mix varies significantly across regions,
we outlined below the locations of interest:

• Storage. We used Amazon S3 in Bahrain;

• R&D. We used a GCP CPU cluster located in
Netherlands, and MeluXina in Luxembourg;

• Main training. The smaller 1.3B model was
trained on MeluXina, and the remaining mod-
els were trained on our dedicated HPC plat-
form in the United Arab Emirates (UAE);

• Other. Six full-time scientists were involved,
half in France and half in the UAE.

Table 2 shows the resulting carbon footprint for
each of the development stages of Noor project.
This highlights the importance of location for car-
bon footprint: notably, all calculations on per-
formed on the relatively low-carbon MeluXina
HPC end-up having very limited costs, even com-
pared to small items like storage in Bahrain.

In addition to these development costs, we con-
sider the carbon footprint of three round-trip flights
of four scientists between Paris and Abu Dhabi.
These trips were taken to run training workshops,
brainstorming sessions, and discussions related to
the project. We use the carbon emissions simula-
tor of the International Civil Aviation Organization.
One round-trip emits 527 kgCO2e per person, to-
talling 6.4 tons of emissions over all trips.

Finally, Figure 3 displays the total distribution
of the carbon footprint of the project. As shown
in the figure, factors like flights may be usually
neglected, but have a significant contribution in the
total carbon footprint. Specifically, as conference
returns in-person, this is a systematic impact that
exists on most papers. In the case of Noor, the few
flights operated account for 18% of the total carbon
emission of the whole project.
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Table 2: Carbon footprint of each phase of the Noor project.

Phase Provider Location Mix [gCO2e/kWh] Use MWh Footprint [tCO2e]

Storage Amazon S3 Bahrain 1188 3.5 4.2
R&D GCP Netherlands 410 2.35 0.96

MeluXina Luxembourg 60 10.7 0.65
Training MeluXina Luxembourg 60 2.1 0.13

Noor-HPC UAE 600 39.5 23.7
Others France 56 0.33 0.02

UAE 600 0.66 0.4

Interestingly, we note that with increasingly
clean electricity and efficient data centers, the ex-
ogenous costs linked to flights and personnel are
bound to increase in proportional impact.

Inference. Forecasting the carbon footprint of in-
ference is harder for open models: as they may be
downloaded and deployed by anyone, it is impossi-
ble to predict the carbon intensity of the electricity
they will use. We study two scenarios: an interme-
diate one, based on the world average emission per
kWh (475 gCO2e/kWh) and a best-case one, based
on the low-impact French mix (56 gCO2e/kWh).
These two scenarios correspond to around 300,000
tokens generated per kgCO2e, or to 2,500,000 to-
kens generated per kgCO2e in the best-case. Going
back to the 4.5 billion words per day of GPT-3, this
amounts to 30 tons of CO2e per day and 3.5 tons.

Figure 3: Breakdown of the carbon footprint (total
36.5t tC02e) of the Noor project. This breakdown is
highly dependent on the localisation of the workloads
and the local carbon intensity of the electricity mix.

6 Best practices and recommendations

From our experience with Noor, we highlight some
recommendations for future projects to minimise
their carbon footprint.

6.1 Modelling & engineering

A first angle of attack is to make the machine learn-
ing techniques used more efficient.

• Efficient architectures. Mixture-of-experts
(MoE) models split the large fully-connected
layers of a Transformer into distinct experts
(Fedus et al., 2021). Although larger, MoE
Transformers can bring significant energy sav-
ings during training and inference (Du et al.,
2021), as the experts are only sparsely acti-
vated. Recent work demonstrate that they may
even scale favorably compared to dense mod-
els (Clark et al., 2022). More broadly, even
small changes (e.g. better embeddings, acti-
vation functions) may have a non-negligible
impact on the overall carbon footprint.

• Efficient inference. As we have shown, infer-
ence costs can rapidly catch up with training
costs: it is also interesting to make the model
leaner for inference. Quantization (Yang et al.,
2019) reduces numerical precision at infer-
ence time and accelerates inference, but it has
seen limited adoption with large models. Dis-
tillation (i.e., training a smaller model from
the outputs of a larger one) is a promising di-
rection, already demonstrated for Transform-
ers applied to vision (Touvron et al., 2021).

• Efficient implementations. Crucially, dis-
tributed training implementations must be as
efficient as possible, to amortise the large idle
consumption of the hardware – MeluXina re-
ports for instance idle power of around 150W
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per GPU when accounting for CPU cores, in-
frastructure, etc. This includes taking into
account fine-grained effects depending on ar-
chitectures, such as wave and tile quantization,
to achieve the best throughput possible.

6.2 Hardware
A second angle of attack is to focus on the hardware
used to train these models.

• Data center choice. A data center with a
PUE of 1.1 will decrease energy consump-
tion by 39% compared to the world average of
1.8. Low PUE platforms should be preferred.

• Local carbon intensity. As highlighted by
Table 2, the carbon intensity of the electricity
mix significantly impacts the final footprint.
Locating training in an area with a clean mix
is an easy step to take that can drastically cut
the footprint of a project. This is especially
easy to do on online cloud platforms, which
have many areas of availability.

• Efficient inference. Carefully selecting a
proper AI accelerator for managed inference
workloads can limit the footprint of model
use. For instance, for smaller models (<3B),
it may be possible to use T4s rather than
A100s, which are 20% more energy efficient
per FLOP than A100s. Finally, specialised
accelerators are also starting to become avail-
able (Reuther et al., 2020). We note that this
may however require specific developments.

6.3 Other practices
Finally, it is important to not underestimate costs
beyond machine learning workloads.

• Minimising exogenous impact. Although
we found the final footprint to be dominated
by the main training runs, we still note the
significant impact of the international flights
taken during this cooperation (20% of the fi-
nal footprint). Minimising such high-intensity
cost center is important.

• Costs reporting and offset. The full cost of
model development is rarely, if ever, reported
in the literature. We highly recommend the AI
community to start reporting the full energy
consumption and the CO2e of their projects.
This reporting can also be used as the basis
for offsetting carbon emissions.

7 Discussion and conclusion

We undertook an end-to-end assessment of the car-
bon footprint associated with the development of
an extreme-scale language model. We took into
account data collection and storage, research and
development, pretraining, and included estimates
for future serving and inference. We also added
personnel costs, such as international flights to run
training workshops and brainstorming sessions.

In total, we estimate the development of the
suite of the four Noor models to have emitted
36.5 tons of CO2, 65% of which for training the
models, 18% for the international flights, 12% for
data storage, and 4% for small-scale research and
development experiments. To put this in perspec-
tive, the average carbon footprint per individual in
the US is around 20 tons, so our project generated
a little over two years of individual US emissions.

We find that the main driver of this carbon foot-
print is the carbon intensity of the mix used for
model training. Appropriately selecting the loca-
tion of calculations can significantly reduce the
environmental impact of a project. For instance, in
this project, running all computations in France
would have reduced the total footprint to 14.9
tCO2e, 42% of which from the international flights.
As the impact of the computations themselves be-
come smaller, it is important for practitionners to
more carefully weigh in exogenous contributions.

All-in-all, with careful considerations around
data center choice, it is possible to run extreme-
scale NLP projects with a low carbon impact.

Finally, we also identified that large-scale infer-
ence could also rapidly outtake pretraining costs in
terms of carbon impact. Inference, if not centrally
managed, is harder to control: with a publicly avail-
able model, it will happen on hardware decided by
the end user. We thus think its equally important for
practitioners to alert users regarding best efficient
inference practices, and regarding best practices to
limit the environmental cost of computations (e.g.
choosing an efficient data center, running inference
in a country with a low-impact mix, etc.)
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