
Proceedings of BigScience Episode #5 – Workshop on Challenges & Perspectives in Creating Large Language Models, pages 26 - 41
May 27, 2022 c©2022 Association for Computational Linguistics

You Reap What You Sow:
On the Challenges of Bias Evaluation Under Multilingual Settings

Zeerak Talat1, Aurélie Névéol2, Stella Biderman3,4, Miruna Clinciu5,6,7, Manan Dey8,
Shayne Longpre9, Alexandra Sasha Luccioni10, Maraim Masoud11, Margaret Mitchell10,

Dragomir Radev12, Shanya Sharma13, Arjun Subramonian14,15, Jaesung Tae10,12,
Samson Tan16,17, Deepak Tunuguntla18, Oskar van der Wal19

1Digital Democracies Institute, Simon Fraser University 2Université Paris-Saclay, CNRS, LISN
3Booz Allen Hamilton 4EleutherAI 5Edinburgh Centre for Robotics 6Heriot-Watt University

7University of Edinburgh 8SAP 9MIT 10Hugging Face 11Adapt Centre, Trinity College Dublin
12Yale University 13Walmart Labs, India 14University of California, Los Angeles 15Queer-in-AI

16AWS AI Research and Education 17National University of Singapore 18Independent
Researcher 19University of Amsterdam

Abstract
Evaluating bias, fairness, and social impact in
monolingual language models is a difficult task.
This challenge is further compounded when
language modeling occurs in a multilingual
context. Considering the implication of eval-
uation biases for large multilingual language
models, we situate the discussion of bias eval-
uation within a wider context of social scien-
tific research with computational work. We
highlight three dimensions of developing mul-
tilingual bias evaluation frameworks: (1) in-
creasing transparency through documentation,
(2) expanding targets of bias beyond gender,
and (3) addressing cultural differences that ex-
ist between languages. We further discuss the
power dynamics and consequences of training
large language models and recommend that re-
searchers remain cognizant of the ramifications
of developing such technologies.

1 Introduction
Machine learning (ML) systems, especially large lan-
guage models (LLMs), are prone to (re)produce harmful
outcomes and social biases (Bender et al., 2021; Raji
et al., 2021; Blodgett et al., 2020; Aguera y Arcas et al.,
2018). Despite recent advances in LLMs (Bender and
Koller, 2020), they have shown to disproportionately
produce harmful content when addressing certain topics
(Gehman et al., 2020; Lin et al., 2021) and demograph-
ics (Sheng et al., 2019; Liang et al., 2021; Dev et al.,
2021a)—in part due to the training data used (Dunn,
2020; Gao et al., 2020; Bender et al., 2021), and the
design of modeling processes (Talat et al., 2021; Hovy
and Prabhumoye, 2021). In response, previous work has
explored ways in which such social biases can be mea-
sured and counteracted (Nangia et al., 2020; Gehman
et al., 2020; Czarnowska et al., 2021). Typically, these
issues have been addressed either by conceptualizing
the underlying systemic discrimination as “bias” or by
developing evaluation datasets that shed light on how
LLMs produce harmful social outcomes. However, in
the former case, as Blodgett et al. (2020) points out,
these conceptualizations often lack clear descriptions,

e.g., type of systemic discrimination and affected demo-
graphics. This results in a highly under-specified “bias”,
which could lead to a downstream issue in the validity
of the technical approaches that are developed (Blodgett
et al., 2021). Similarly, the ill-defined “bias” is fur-
ther compounded by the specifics of many benchmarks.
Often, benchmarks exhibit discrepancies between un-
derstandings of the unobservable theoretical constructs
against which “bias” is being measured and their opera-
tionalization (Jacobs and Wallach, 2021; Friedler et al.,
2021). Furthermore, many prior benchmark datasets
were developed with specific modeling architectures in
mind (Nangia et al., 2020). They are limited to English
and are culturally Anglo-centric.1

In this position paper, we present an overview of
the current state-of-the-art concerning challenges and
measures taken to address bias in language models.
Specifically, we document the challenges of evaluat-
ing language models, with a focus on the generation of
harmful text. By engaging our challenges with the rele-
vant social scientific literature, we propose (1) a more
transparent evaluation of bias via scoping and documen-
tation, (2) focusing on the diversity of stereotypes for
increased inclusivity, (3) careful curation of culturally
aware datasets, and (4) creation of general bias measures
that are independent of model architecture but capture
the context of the task.

We recognize that many of the challenges that we
have encountered and described here are large open
problems that will require joint work to address. Our
goal is to analyze these challenges and provide scaffold-
ing for future work.

2 Grounding Bias, Fairness and Social
Impact across Disciplines

Considering biases in socio-technical systems as a
purely technical construct is an insufficient consider-
ation of the problem (Blodgett et al., 2020). In this
section, we situate LLMs, and their applications, within
the wider interdisciplinary literature on social harms
and discrimination.

1For example, the BigScience biomedical working group
has estimated that 82% of evaluation datasets in the biomedical
and clinical field are for corpora in English (Datta et al., 2021).
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2.1 Social Discrimination
Issues of socially discriminatory (human and techno-
logical) systems have long been the subject of study
for scholars across disciplines, e.g. in Science and
Technology Studies (Haraway, 1988), discard studies
(Lepawsky, 2019), social anthropology (Douglas, 1978),
philosophy of democracy (Fraser, 1990), gender and
LGBTQIA+ studies (Spade, 2015; Rajunov and Du-
ane, 2019; Keyes et al., 2021; D’Ignazio and Klein,
2020), media studies (Gitelman, 2013), archival studies
(Agostinho et al., 2019), sociolinguistics (Labov, 1986;
Cheshire, 2007), and critical race theory (Noble, 2018;
Benjamin, 2019).2

Scholars argue that technical systems are embedded
in social contexts (Lepawsky, 2019; Haraway, 1988) and
are therefore necessarily evaluated as socio-technical
systems interacting with complex social hierarchies
(Winner, 1980; Benjamin, 2019; Costanza-Chock, 2018;
Friedler et al., 2021). When technological systems pri-
oritize majorities, there is a risk they oppress minori-
ties at the personal, communal, and institutional levels
(Costanza-Chock, 2018). Haraway (1988) argues that
researchers default to a “view from nowhere”, without
reflecting on the context or use of their research. This
default view often represents the interests of dominant
majorities, disregarding knowledges from marginalized
communities. Considering machine learning systems,
Chun (2021) argues that the development of such tech-
nological systems relies on faulty assumptions (e.g., that
past data collections can adequately and fairly predict
future human behavior) which can lead to embedded
social biases. Situating ourselves in the wider academic
literature of social discrimination and marginalization,
compels us to recognize that our technical systems must
be considered in the social context in which they exist.

2.2 Machine-learned Systems in Social Context
On the topic of socially discriminatory systems within
machine learning, Buolamwini and Gebru (2018) and
Raji and Buolamwini (2019) show that there are sig-
nificant disparities along gendered and racialized lines
in commercially available facial recognition and anal-
ysis systems. Similar issues of discriminatory social
biases in natural language processing (NLP) systems
have resulted in emerging research dedicated to the iden-
tification, quantification (e.g. Rudinger et al., 2018; De-
Arteaga et al., 2019; Czarnowska et al., 2021), and miti-
gation of bias (Bolukbasi et al., 2016; Sun et al., 2019;
Garimella et al., 2021) in NLP systems.

However, these methods tend to obscure rather than
remove social biases (Gonen and Goldberg, 2019), and
are particularly brittle when applied to complex, contex-
tual language representations (Dev et al., 2020).

Further, operationalization of under-specified “bias”

2Many recent works on socially biased technological sys-
tems are interdisciplinary, e.g., ‘Race After Technology: The
New Jim Code’ (Benjamin, 2019) spans critical race theory,
science and technology, Black feminism, and media studies.

has varied widely across studies, and in some cases has
been internally inconsistent with their stated goals (Blod-
gett et al., 2020; Jacobs and Wallach, 2021). The recent
surge of LLMs is no exception to such concerns. Hovy
and Prabhumoye (2021); Talat et al. (2021), and Cao
and Daumé III (2020) argue that socially discriminatory
biases can be encoded in several stages of the LLM
development process (Biderman and Scheirer, 2020),
including data sampling, annotation, selection of input
representations or model, research design, and how the
models are situated with regards to the language com-
munities that they are applied to. Language generation
models, despite their inference-time flexibility, are par-
ticularly susceptible to reproducing hegemonic social
biases and generating offensive language, even when
not explicitly prompted to do so (Sheng et al., 2021;
Wallace et al., 2019; Bender et al., 2021).

In efforts to address the expression of such social
biases, a number of bias evaluation benchmarks have
been proposed (Dev et al., 2021b; Zhao et al., 2018; Cao
and Daumé III, 2020). However, common evaluation
benchmarks are fraught with pitfalls in their concep-
tualization of bias, stereotypes, and harms, including
meaningless or poorly formed stereotype constructions,
non-intersectional examples, contexts that don’t reflect
downstream use, and reliance on specific model archi-
tectures (Blodgett et al., 2021; Jin et al., 2021). Further-
more, bias evaluation benchmarks often make strong
assumptions about the validity, reliability, and existence
of observable properties, e.g. pronouns, as signals for
unobservable theoretical constructs such as gender (Ja-
cobs and Wallach, 2021). This is particularly problem-
atic when building benchmarks for biases against com-
munities that resist categorization based on observable
characteristics (e.g. LGBTQIA+ and racialized people)
and leads to reliance on existing stereotypes (Tomasev
et al., 2021; Dev et al., 2021a).

This rapid development of NLP resources and tools
have further yielded a non-inclusive environment,
skewed heavily towards English and Anglo-centric bi-
ases (Joshi et al., 2020). Sambasivan et al. (2021) and
Chan et al. (2021) contend there remains a significant
gap between the communities governing and governed
by AI, and advocate for a redistribution of powers and
responsibilities in developing responsible AI.

Considering gender bias, Stanczak and Augenstein
(2021) show that existing methods (1) largely avoid eth-
ical considerations or evaluations of gender bias, (2)
focus primarily on binary gender treatment, in mostly
Anglo-centric settings, and (3) employ limited or flawed
evaluation methodologies. Such issues are in part ex-
acerbated by the general poverty of documentation of
datasets (Gebru et al., 2018; Bender and Friedman,
2018) and machine learning models (Mitchell et al.,
2019). One way to mitigate these biases includes cre-
ating diverse teams with varied backgrounds and life
experiences to assure the expression of diverse perspec-
tives (Monteiro and Castillo, 2019; Nekoto et al., 2020).
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However, as critiqued by Talat et al. (2021); West et al.
(2019), incorporating the diversity factor may be in-
adequate. Biases in language representations and task
models can not only reflect, but also amplify bias present
in the datasets (Barocas and Selbst, 2016; Wang et al.,
2019). These biases have been investigated and attempts
made at creating interpretable representations and pro-
viding post-hoc explanations of model predictions.

2.3 Bias, Fairness, and Explainability
Given the grave consequences that inherent or concep-
tualized biases in ML systems can inflict, responsible
AI has received a growing amount of research atten-
tion (Amershi et al., 2020). Responsible AI refers to the
creation of ethical principles for AI and the development
of AI systems based on these principles (Dignum, 2017;
Schiff, 2020). Colloquially, responsible AI encompasses
distinct machine learning fields such as fairness, explain-
ability, privacy, and interpretability. Concretely, how
can responsible AI principles best contribute to the de-
velopment of equitable systems?

Examining this question, Friedler et al. (2021) pro-
pose that building just ML systems requires an a priori
definition of fairness. However, contemporary decision-
making systems build on a so-called what-you-see-is-
what-you-get (WYSIWYG) approach that implicitly
imbibes multiple fairness definitions or world views,
leading to a system based on the conflict between the
underlying value systems. To tackle this issue, ML en-
gineers should explicitly state the underlying systemic
values, as systems will inevitably comprise certain as-
sumptions (Birhane et al., 2021). Thus, implying that
biases as inherent to these decision-making systems and
should be clearly articulated (Bender et al., 2021) by
explaining the whys and whats (explainability).

However, a more promising course of action for re-
searchers would be to prioritize fairness in the entire life
cycle of a language model. The tendency to consider
and mitigate undesirable biases in models after train-
ing has completed leaves harmful residues that affect
the communities we seek to protect (Dev et al., 2021a).
Hence, a fruitful approach could be to reduce systemic
unfairness by grounding the discussion on clear defini-
tions of fairness based on input from the communities
that could be harmed by the system (Liao and Muller,
2019), explaining the inherent biases, and, if possible,
minimizing bias issues by employing the measures dis-
cussed in, both, the previous and the following sections.

3 Challenges of Bias
Evaluating the social impacts and harmful biases LLMs
exhibit is an important development step. However,
despite the increased interest in developing bias bench-
marks, the field still faces various challenges in evaluat-
ing LLMs with off-the-shelf benchmarks. In this section,
we provide examples of existing bias measures currently
used in NLP. We then discuss the challenges that orig-
inate from these: (1) they rely on vague definitions of

bias, (2) are restricted to particular model architectures,
(3) have limited relevance for different cultural contexts,
and (4) are difficult to validate and interpret.

3.1 Examples of Bias Measure Studies

Recently, researchers and practitioners have begun to
pay more attention to bias measures in NLP systems
(Blodgett et al., 2020; Dev et al., 2021b). One line of
work has focused on identifying bias in word embed-
dings: The Word Embedding Association Test (WEAT,
Caliskan et al., 2017) measures bias by comparing the
relative distances of two sets of target words (e.g. occu-
pation words: nurse, doctor) with respect to two sets of
attribute words (e.g., gender attributes: male, female)—
and has inspired other similar approaches (Kurita et al.,
2019; May et al., 2019; Dev et al., 2020).

Although word embeddings may help identify biases
in the context of LLMs, it is often difficult to access
the learned contextual language representations of the
model (Abid et al., 2021; Dev et al., 2020). Further-
more, such methods are developed to address static
word embeddings rather than the dynamic contextual
word embeddings LLMs rely on (Subramonian, 2021).

Another research direction is the use of causal in-
ference for measuring biases in LLMs, for example to
analyze if the generated text by an LLM is affected
considerably by only changing the protected attributes
or categories in the input (Huang et al., 2020; Madaan
et al., 2021; Cheng et al., 2021). In line with this idea,
Huang et al. (2020) used a sentiment classifier to quan-
tify and reduce the sentiment bias existent in LLMs.
Similarly, the CrowS-Pairs benchmark (Nangia et al.,
2020) leverages the paradigm of minimal pairs to con-
trast sentences expressing stereotypes against social cat-
egories with the same sentences addressing different
social categories. Crows-Pairs is designed such for
language models to be probed for disparate behavior
between the sentences pairs, with the hypothesis that
systematic difference in the treatment reflecting the pref-
erence for stereotype indicates the presence of bias in
the language models. Other examples of bias measures
benchmarks include StereoSet (Nadeem et al., 2020),
WinoMT (Stanovsky et al., 2019), BBQ (Parrish et al.,
2021), BOLD (Dhamala et al., 2021), and Toxicity Com-
ment Classification competition (Jigsaw, 2017).

3.2 Defining Bias

The term “bias” is overloaded in the ML and NLP com-
munities, as it is used in the lay (a prejudice towards
or against some entity) and the statistical sense (a sys-
tematic deviation from a distribution’s mean) (Campolo
et al., 2018). Moreover, researchers often refer to vague
definitions of bias and gloss over the details, which re-
sults in methods that lack specificity (Blodgett et al.,
2020). When discussing methods to address bias, it is
critical to be precise about the bias being addressed.

Bias can, for instance, be made more specific by be-
ing defined along socially relevant dimensions. Nangia
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et al. (2020) consider the protected categories from the
US Equal Employment Opportunities Commission and
Queer in AI uses a similar list (gender identity and ex-
pression, sexual orientation, disability, neurodivergence,
skill set, physical appearance, body size, race, caste,
age, nationality, citizenship status, colonial experience,
religion), yet other characteristics may be relevant else-
where in the world (e.g. illness, migrant, and social
status).3 However, protected classes are only one dimen-
sion along which to define bias; researchers should also
be mindful of political biases and biases resulting from
the focus on prestigious, highly resourced language va-
rieties, in additions to the intersections of multiple di-
mensions (Kearns et al., 2018; Buolamwini and Gebru,
2018; Crenshaw, 1991).

With respect to any of the aforementioned dimen-
sions, a “bias” is a preferential disposition towards or
against an entity. Colloquially, it is perceived negatively
and considered to be unfair treatment. As pointed out
by Barocas et al. (2017), biases in language models can
manifest in the form of quality-of-service and represen-
tation disparities. As quality-of-service bias describes
subpar performance of a language model when used by
a particular group. For example, LLM-driven machine
translation systems provide significantly better support
for “prestigious”, high-resource languages, and conse-
quently deny quality performance to individuals who do
not speak these languages (Nekoto et al., 2020). Further-
more, in fundamental NLP tasks such as coreference
resolution, LLMs can fail for people who use neopro-
nouns, and often capture meaningless representations
for language associated with trans and non-binary indi-
viduals. (Cao and Daumé III, 2020; Dev et al., 2021a).
Additionally, Blodgett et al. (2018) show that parsing
systems trained primarily on White Mainstream Ameri-
can English exhibit disparate performance on African
American English and Tan et al. (2020) show that En-
glish question answering and machine translation sys-
tems often fail on the morphological variation that is
often present in non-prestige and Learner Englishes.

Representation biases consist of stereotypes and
under-representation (or over-representation) of data
or model outputs. Stereotyping is a cognitive process
that manifests from often negative cultural norms about
a characteristic; stereotyping permeates what people
do, say, or write. A long line of work has shown
that language models capture social stereotypes, for
example, with respect to binary gender and occupa-
tions (Zhao et al., 2018; Bordia and Bowman, 2019;
de Vassimon Manela et al., 2021). With regard to
(under)representation, in MIMIC-III, a clinical notes
dataset, only 1.9% of patients identify as Asian, in com-
parison to 71.5% who identify as white (Chen et al.,

3Queer in AI (http://queerinai.org/) is a grass-
roots D&I organization that seeks to empower queer and trans
researchers in AI and advance research at the intersections of
AI and queerness. Their list of categories can be found here:
http://queerinai.org/code-of-conduct.

2020). Furthermore, blocklists in the Colossal Clean
Crawled Corpus (C4) dataset disproportionately filter
words related to queerness and language that is not
White-aligned English (Dodge et al., 2021). Notably,
quality-of-service and representation biases are not mu-
tually exclusive; for instance, the brittle representations
learned by a LLM for language associated with trans
and non-binary individuals largely stems from the se-
vere under-representation of this in training data (Dev
et al., 2021a; Barocas and Selbst, 2016).

The breakdown of biases into quality-of-service and
representation disparities is only one of many possi-
ble lenses. It is also critical to explicitly consider bi-
ases stemming from disparities in resources, broadly
defined in terms of data availability, time to invest into
dataset curation, access to compute resources, financial
resources, and more (Bender et al., 2021).

3.3 Overreliance on Model Architectures

Current benchmarks often measure bias in specific
downstream tasks (e.g. Machine Translation (Stanovsky
et al., 2019), Question Answering (Parrish et al., 2021),
or Text Generation (Dhamala et al., 2021)), while others
focus on bias in LLMs more generally (e.g Kurita et al.,
2019; Nadeem et al., 2020; Nangia et al., 2020). This
has the advantage of being more widely applicable, as
many NLP systems are based on LLMs, and it avoids
the need for creating and validating a new benchmark
for each possible downstream task. Yet, when the bench-
marks heavily rely on the model architecture rather than
the task specification, quantitative comparison between
different models based on these benchmarks is no longer
possible. In such cases, it also becomes more difficult to
assess the validity of the bias measure in how it relates
to other benchmarks (criterion validity) and the more
abstract notion of fairness (construct validity).

Some researchers circumvent this problem by adapt-
ing the original bias metric, but care should be taken
when doing so. For instance, bias metrics originally de-
veloped for masked language models have been adapted
by using perplexity (e.g. Nadeem et al., 2020) or prompt-
ing (e.g. Gao et al., 2021; Sanh et al., 2021) instead.
While these could still result in important insights, they
also open new questions. Are the underlying assump-
tions of the bias measure still valid? Can you compare
the bias metrics across different (future) types of mod-
els? Do the results of the initial validation of the bench-
mark still hold? And how does the kind of training data
impact the evaluation that assumes a different training
domain (e.g., legal texts vs. social media)?

While bias is ideally defined independently of the
particular model architecture—not least because imple-
mentations change over time—we should not fall into a
generalization trap either. As argued before, bias is in-
herent to systems and context-sensitive, and we should
not strive for a panacea bias measure. Instead, the goal
should be to develop methods that are task-specific yet
independent of a given architecture, to the degree that
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this is possible. Researchers should keep this tension be-
tween task- and architecture-specific measures in mind
when designing methods for measuring biases in LLMs.

3.4 Bias Measures are Anglo-centric

Despite the need for evaluating LLMs for a wide range
of languages, bias benchmarks that cover non-English
languages are rare (Zhou et al., 2019; Joshi et al.,
2020). As a solution, simply translating existing En-
glish benchmarks is not ideal: manual translation is a
labor-intensive and highly skilled task, while automated
translations are prone to errors and could potentially
introduce new algorithmic sources of bias. Moreover,
translated benchmarks may only test for Anglo-centric
biases, which do not necessarily hold in many non-
Western cultural contexts. For instance, many gender
bias evaluations focus on Western professions, which
are grammatically gendered in some languages (Chen
et al., 2021; Zhou et al., 2019) or may not cover other
prevalent occupations outside the U.S. (Escudé Font
and Costa-jussà, 2019). WinoMT (Stanovsky et al.,
2019) is one of the few benchmarks that covers multiple
languages, but it comes with its own downsides. The
sentences are generated from templates that capture a
limited range of actual language use; the samples are
translated from English examples, which may not re-
flect how stereotypes would occur in other languages;
and the scope is limited to machine translation systems,
and therefore WinoMT may not be suitable for multi-
lingual models that are not trained on this specific task.
The tightly coupled nature of bias and cultural context
should be emphasized when designing a multilingual
bias benchmark.

3.5 Validity of Bias Measures

Towards making NLP systems more just, we must under-
stand the flaws of common bias measures and develop
better guidelines to address biases. According to Jacobs
and Wallach (2021) and Blodgett et al. (2021), bias mea-
sures are measurement models which link observable
properties, e.g., quality-of-service and representational
biases, with unobservable theoretical constructs such
as social discrimination, power dynamics, and systemic
oppression. Consequently, bias measures are deeply
political. Notably, a vast majority of bias measures
themselves rely on other measurement models, such as
the presence of gendered pronouns, to infer theoreti-
cal protected categories, e.g., gender. Moreover, bias
measures may cause further epistemic violence onto the
marginalized by creating a veneer of fairness, in spite of
ongoing marginalization (Gonen and Goldberg, 2019;
Talat et al., 2021; Jacobs and Wallach, 2021). In ensur-
ing the reliability, validity, and correct interpretation of
bias measures, it is critical to examine all components
in a bias measurement method.

Upstream measurement models that infer protected
categories can be unreliable or even non-existent. For
instance, pronouns and gendered names are usually em-

ployed as proxies for binary gender, which is problem-
atic (Dev et al., 2021a). Furthermore, characteristics
like sexuality and disability are usually unobservable,
which can lead to a reliance on hegemonic stereotypes
and unnatural language in bias evaluation benchmarks
(Tomasev et al., 2021; Hutchinson et al., 2020).

With regard to validity, Blodgett et al. (2021) reviews
how bias measures often rely on operationalization of
stereotypes that are invalid for reasons such as misalign-
ment and conflation. Additionally, the mathematical
formalization of most bias measures is based on notions
of parity-based fairness and do not reflect other con-
ceptualizations of fairness such as distributive justice
(Jacobs and Wallach, 2021). Another source of invalid-
ity of bias measures lies in the purported generality of
associated benchmarks. Raji et al. (2021) argue that the
“instantiation [of benchmarks] in particular data, metrics
and practice” undermines the validity of their construc-
tion to have “general applicability.” Moreover, mea-
surement models for protected categories fallaciously
assume that the identities being indirectly observed can
be discretized. Hence, Dev et al. (2021b) advocate for
documenting the limitations of bias measures and re-
lated data in terms of their validity. In this process, it is
critical to describe the relationship between the context
of the data, model usage, and bias measure at stake.

4 The Elephant in the Room: Power,
Privilege, and Point of View

Throughout the paper, we have primarily discussed bias
in language models as a mechanical phenomenon. How-
ever, it is important to situate these discussions within
the context and power dynamics of the way that NLP is
practiced — both in research and in application (Miceli
et al., 2022). In this section, we discuss sociopolitical in-
fluences on AI ethics and bias research in NLP. We argue
that contemporary developments of LLMs have been an
exercise in financial, institutional, ecological, linguis-
tic, and cultural privilege. They are the consequence of
the political will to create totalizing technologies and
evaluation of bias, fairness and social impact should be
viewed as a countervailing power mechanism, although
in some cases serve to obscure these.

4.1 Large Language Models are Expensive
The current dominant paradigm in natural language pro-
cessing is driven by the creation of ever-larger pretrained
transformer models (Brown et al., 2020). As the size
of LLMs increases, so do the requirements for hard-
ware, energy, and time. For example, GPT-NeoX 20B
(Black et al., 2022) was trained for 1830 hours on 96
A100 GPUs, consuming 43.92 MWh of electricity and
emitting 23 metric tons of CO2. Based on the current
price listing of the cloud provider the model was trained
on, training such a model would cost between 250,000
and 500,000 USD.4 While this is not on the scale of the

4The lower end of this range reflects the common practice
of giving discounts of up to 50% for large purchases, while
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largest research programs, it is a significant amount of
money and beyond the funding of many institutions, or
beyond their political will to spend.

While the development of such models can contribute
towards improving the ability of people with less re-
sources to pursue cutting edge downstream research,
such pursuits have significant costs and barriers to entry
for upstream research. This creates a stratification of
research, wherein money is a barrier of entry for some
forms of research but not for others.

4.2 Language is Multicultural, Language Models
are Not

Although there are thousands of spoken languages in
the world, the overwhelming majority of LLMs are
monolingual and encode white respectability politics
(Thylstrup and Talat, 2020; Kerrison et al., 2018) onto
minoritized variants of English (Gehman et al., 2020).
In this way, the cost of the developing LLMs extends
from externalizing computational and infrastructural
costs, to externalizing languages and language variants
(Lau, 2021). Specifically, the vast majority of LLMs are
trained to operate on an unspecified variant of “English”
(Bender, 2019), and in some cases Chinese (see Table 1
for a detailed overview of the top 25 LLMs). The domi-
nance of English, and to a lesser degree Chinese, reifies
cultural hegemonies and precipitates technological im-
perialism. Even when researchers seek to include other
languages, these purportedly multilingual models often
underserve certain languages and communities (Kerri-
son et al., 2018; Virtanen et al., 2019; Kreutzer et al.,
2022; Gururangan et al., 2022). We also note that few
of these models have been assessed for bias or fairness
(see table 1).

This act relies on two foundations. First, LLMs
should only be used for languages that they have been
developed for, with the cultural stereotypes that they
have been trained on, thus limiting LLMs to be used
within a small set of cultural contexts, or casting cultural
contexts for which they are trained onto ones that they
are not developed for. Second, should a multilingual
LLM be trained, its primary data sources will still be
in English, whereas the remaining languages will only
be incidental to it. Such cultural imperialism is evident
from the fact that only 2 of the 14 organizations involved
in developing LLMs have teams in multiple countries
(see table 1). Further, all multinational LLM efforts,
except for one, draw their membership from the USA,
UK, Germany, & Australia. GPT-NeoX 20B (Black
et al., 2022) is an exception, as it also includes authors
from India. A commonly-used resource for develop-
ing LLMs, CommonCrawl, relies on data that primarily
stems from the US (Dodge et al., 2021) and is written
in privileged dialects of English (Dunn, 2020). This
prioritization is reflected by 16 teams being physically
located in the U.S. Consequently, the current state of
LLM development is a totalizing endeavor (Talat et al.,

the upper end reflects the sticker price of the systems.

2021), which engages in externalization across a num-
ber of axes, as is apparent from the infrastructural and
development practices and the efforts to evaluate and
mitigate social harms that arise from such technologies.

4.3 Large Language Models Allow Powerful
Actors to Control NLP Research

Due to the costs involved with training large language
models and the small number of actors who have de-
cided to train them, the overwhelming majority of re-
search studying their properties is not carried out by
people who train LLMs. When the actors that do pos-
sess the models choose to not publicly release them,
model trainers are afforded control over the research that
can be conducted with and by these models. Famously,
OpenAI’s initial announcement of GPT-3 asserted that
access to the model would be heavily restricted while
the company continued to research ethical interventions
in their model. OpenAI is not alone in this; the idea
that it is inherently dangerous to release models to the
public has been put forth by several other actors in this
space (Weidinger et al., 2021a; Askell et al., 2021).

It is essential to recognize that the decisions regarding
access and the kind of research that can be conducted on
large language models (or any ML models, for that mat-
ter) is an inherently political one (Leahy and Biderman,
2021). Regardless of the truth of the aforementioned
claims, they are highly contentious political claims and
should be treated as such rather than passively accepted.

Direct access to LLMs is important to perform inde-
pendent research on their datasets, functions, and soci-
etal impact (Kandpal et al., 2022; Carlini et al., 2022).
While language models produced by the academic re-
search community are widely available for critical ex-
amination, commercial systems are often only available
through APIs provided by the developers (see table 1
for an overview on access for the 25 largest pretrained
language models. Such restrictions to access to the mod-
els and resources that they are developed for provide a
significant barrier to a) principles of open science and
b) research on how the datasets and language models
themselves embed and amplify social biases.

5 Addressing Bias
Researchers have developed various strategies to ad-
dress bias in large language models. As discussed in
earlier sections, however, these strategies are insuffi-
cient to tackle multiple dimensions of bias. Below, we
enumerate a few ways in which bias can be addressed
by the research community to effectively engage with
our aforementioned concerns: (1) moving towards a
more transparent way of evaluating bias, (2) focusing
on the diversity of stereotypes and increasing inclusivity,
and (3) considering the impact of linguistic and cultural
differences on the identification and mitigation of bias
in designing culturally comparable datasets. We would
like to highlight that these suggestions are not exhaus-
tive. They will, however, guide the work in this area.
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5.1 Transparency Through Documentation
Stereotypes and biases cover a broad definition and vary
in conceptualization across geographical and cultural
contexts. To ensure that the nuances are well communi-
cated and that practitioners understand the applicability
of the evaluation approach, we suggest documenting a
thorough analysis of the scope. Below, we provide a
starting point based on Mitchell et al. (2019); Gebru
et al. (2018); Dev et al. (2021b); Blodgett et al. (2020).

Defining the scope of the approach Blodgett et al.
(2020) found that works around bias "often fail to ex-
plain what kinds of system behaviors are harmful, in
what ways, to whom, and why." It thus becomes imper-
ative to question what underrepresented groups would
benefit more from a given evaluation benchmark. We
therefore urge researchers and practitioners to clearly
specify the demographic a particular method is rele-
vant for. Moreover, given how social hierarchies inter-
twine tightly with language and may present themselves
through its peculiarities, we also encourage researchers
to specify the limitations and scope of their approaches.

As an example, we consider the gender bias evalu-
ation in English (Zhao et al., 2018; Stanovsky et al.,
2019; Levy et al., 2021; Sharma et al., 2021), where the
bias might present itself through strong associations be-
tween grammatical constructs like pronouns. The same
does not hold true for genderless languages, despite
the existence of the bias (Zmigrod et al., 2019). Thus,
evaluation benchmarks and approaches do not always
transfer well to other languages. Additionally, while
such benchmarks use gender associations to professions
for their evaluation, this method covers only one aspect
of the social hierarchy, and does not address gender bias
in language in its entirety. By being binary in nature and
tightly coupled to Anglo-centric contexts (see §3) bench-
marks are limited in their scope and relevance. While
most recent works do include ethical considerations, the
limitations and scope are only vaguely specified. We ad-
vocate for such limitations to be highlighted and pointed
out for the community to have a clearer picture about the
steps that need to be taken towards greater inclusivity.

Documenting the demographics Previous work has
highlighted the importance of engaging with individuals
on the receiving end of the bias (Bender et al., 2021). It
thus becomes important to understand the demographics
of those involved in the creation of the benchmarks. As
previously shown (Al Kuwatly et al., 2020) there exists a
relation between annotators’ identities and toxicity/bias
in dataset. On this basis, we urge the researchers to
collect and document the demographic information and
annotator attitude scores (Sap et al., 2021). Building
upon the same, we encourage the collection and report-
ing of this information about the researchers involved.

5.2 Diversity Beyond Gender Bias
The majority of previous work on bias has focused par-
ticularly on gender bias (Zhao et al., 2018; Stanovsky

et al., 2019; Levy et al., 2021; Sharma et al., 2021) and
the very few works (Nadeem et al., 2020; Nangia et al.,
2020) that take other dimensions of biases into account,
have their own shortcomings, as discussed in Section 3.
It thus becomes important to diversify the range of bias
and stereotypes that are being investigated by research,
and covered by a certain evaluation technique. In ex-
tending the coverage to more dimensions, context stands
as an important aspect of bias. The contextual aspects
of bias as represented in language, culture, and history
hold a significant role in forming and assessing the bias
itself. Hence, as a practice, we encourage researchers
to consider these three aspects when constructing bias
measures and datasets.

In discussing bias, it is important to note that discrim-
ination does not occur in a vacuum. An act of discrimi-
nation against a person may be directed towards several
intersecting identities. Considering bias using a single-
axis framework makes it impossible to engage with and
evaluate the harms extended to the social groups that
lie at the intersection of multiple identities (Crenshaw,
1991). In an Indian context, for example, even those
who identify as belonging to the “same” caste (Malik
et al., 2021), can have varied lived experiences based
on class, gender, and other identities. More precisely,
it is impossible to disentangle which specific identity a
discriminatory act is directed against. Previous works
have highlighted the importance of studying intersec-
tional bias (Bender et al., 2021; Buolamwini and Gebru,
2018; Field et al., 2021; Guo et al., 2019; Crenshaw,
1991) but little research has been conducted around
addressing such biases (Magee et al., 2021; Guo and
Caliskan, 2021). We thus encourage researchers to de-
velop measures and benchmarks which are grounded
in intersectional understanding of bias and adequately
address the lived experiences of various social groups,
towards increased inclusivity and fairness.

Not only can the dimensions and context influence
our definitions and approaches to bias, but the categories
(values) assigned to each dimension (e.g., age) can also
limit our understanding and solution of bias. For in-
stance, the majority of gender-bias evaluation datasets
solely deal with binary gender, i.e., male and female,
with just a handful covering non-binary genders with
only minimal representation (Dev et al., 2021a; Cao and
Daumé III, 2020). As a result, category inclusiveness is
critical in the development of a high-quality bias evalua-
tion dataset. A set of categories that can act as a starting
point are provided by Queer in AI in Section 3.2.

5.3 Acknowledging Differences

Stereotype and bias formation is influenced by culture.
As a result, what might be a stereotype in a given
culture might not stand relevant in another. For in-
stance, the characterization that parental leave
is for mothers is considered stereotypical in the
United States, but not in Sweden, where parental leave
is split between both parents.
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Organization Author Location Language Parameters Model Access Bias Eval

MT-NLG Microsoft, NVIDIA USA English 530 B Closed Smith et al. (2022)
Gopher DeepMind USA English 280 B Closed Weidinger et al. (2021b)
ERNIE 3.0 Baidu China English, Chinese 260 B Closed —
Yuan 1.0 Inspur AI China Chinese 245 B Closed —
HyperCLOVA NAVER Korea Korean 204 B Closed —
PanGu-α Huawei China Chinese 200 B Closed —
Jurassic-1 AI21 Labs Israel English 178 B Commercial —
GPT-3 OpenAI USA English 175 B Commercial Brown et al. (2020)
LaMDA Google USA English 137 B Closed Thoppilan et al. (2022)
Anthropic LM Anthropic USA English 52 B Closed Askell et al. (2021)
GPT-NeoX-20B EleutherAI Multinational English 20 B Open (Gao et al., 2020; Biderman et al., 2022)
Turing NLG Microsoft USA English 17 B Closed —
FairSeq Dense Meta AI Multinational English 13 B Open —
mT5 Google USA Multilingual 13 B Open —
ByT5 Google USA English 13 B Open —
T5 Google USA English 11 B Open —
CPM 2.1 Tsinghua University China Chinese 11 B Open —
Megatron 11B NVIDIA USA English 11 B Open —
WuDao-GLM-XXL Beijing Academy of AI China Chinese 10 B Open —
WuDao-GLM-XXL Beijing Academy of AI China English 10 B Open —
BlenderBot Meta AI USA English 9 B Open —
Megatron-LM NVIDIA USA English 8 B Closed —
XGLM Meta AI Multinational Multilingual 7 B Open —
GPT-J-6B EleutherAI Multinational English 6 B Open (Gao et al., 2020; Biderman et al., 2022)

Table 1: The 25 largest pretrained dense language models, ranging from 6 billion parameters to 530 billion. Models
are overwhelmingly trained by teams located in the US and on English text. Less than half of the language models
were evaluated for bias by their creators.

Previous sections have criticized the Anglo-centricity
in the research of NLP bias and the influence on lan-
guages other than English. In particular, the lack of
culturally-aware datasets limits the degree to which fu-
ture NLP algorithms can be evaluated for biases. More
crucially, these unspecified languages and cultures are
on the receiving end of unmanaged effects. As a re-
sult, researchers are encouraged to develop bias datasets
and benchmarks for non Anglo-centric cultures and lan-
guages (Bender et al., 2021). Involving experts in re-
lated areas, especially participants with lived experi-
ences of language-related harms, might aid decisions at
all parts of this process, e.g. deciding what groups and
content to include in research or dataset design (Liao
and Muller, 2019; Dev et al., 2021a; McMillan-Major
et al., 2022). Overall, having culturally diverse and com-
parable datasets for a diverse set of languages (ideally
covering all languages) is critical for evaluating mul-
tilingual models. Moreover, the applicability of bias
measures across various languages suggests the neces-
sity for cross-linguistic metrics or measurements that
can be extended to different languages or cultures (Zhou
et al., 2019; Escudé Font and Costa-jussà, 2019; Malik
et al., 2021).

6 Conclusion

Recent improvements in LLMs to mimic human text
have led to a surge in research that seeks to identify and
address the harms arising from their training and de-
ployment. However, the considerations on social harms
that arise has been limited to narrow, Anglo-centric,
contradictory, and often underspecified definitions of
fairness and bias. Furthermore, the development of
contemporary methods has conflated task-specific and
architecture-specific designations. Compounded with

the structural inequalities around resources, language,
and identity, this has yielded an overreliance on prestige
forms of English for developing LLMs and interrogat-
ing and addressing the social biases that they harbor.
Situating these methods within such Englishes has had
the consequence of over-emphasizing Western-centric
social categories. Moreover, datasets for evaluating so-
cial biases in LLMs have traditionally failed to denote
and specify the context within which biases are situated.
Such concerns have been the cause for questions around
the validity of the developed measures, and in particular
for multilingual LLMs.

To address such challenges, we propose that develop-
ing methods for multilingual LLMs requires researchers
to provide thorough documentation of their approaches,
including documenting the scope, demographics of
speakers, and potential annotators. Additionally, we also
recommend that researchers situate their bias evaluation
methods within the specific context of the languages
that the model operates on. In doing so, bias evaluation
methods can be made to specifically address biases un-
der the conditions and contexts that they occur in each
of the model’s languages. Furthermore, we recommend
that researchers examine diversity issues beyond gen-
der bias, with a particular focus on intersectional issues
(Guo and Caliskan, 2021).

Finally, we recommend that researchers are cognizant
of the social and environmental harms that developing
LLMs have. For instance, developing ever-larger lan-
guage models that achieve marginal improvements for
English may bring a smaller benefit than developing a
LLM for other languages. Thus, in a consideration of de-
veloping a new language model, we implore researchers
to consider ways in which harms can be limited, or the
benefits can come to compensate for their costs.
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