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Abstract

Large-scale language modeling and natural lan-
guage prompting have demonstrated exciting
capabilities for few and zero shot learning in
NLP. However, translating these successes to
specialized domains such as biomedicine re-
mains challenging, due in part to biomedical
NLP’s significant dataset debt — the technical
costs associated with data that are not consis-
tently documented or easily incorporated into
popular machine learning frameworks at scale.
To assess this debt, we crowdsourced cura-
tion of datasheets for 167 biomedical datasets.
We find that only 13% of datasets are avail-
able via programmatic access and 30% lack
any documentation on licensing and permit-
ted reuse. Our dataset catalog is available at:
https://tinyurl.com/bigbio22.

1 Introduction

Natural language prompting has recently demon-
strated significant benefits for language model pre-
training, including unifying task inputs for large-
scale multi-task supervision (Raffel et al., 2019)
and improving zero-shot classification via explicit,
multi-task prompted training data (Wei et al., 2022;
Sanh et al., 2022). With performance gains re-
ported when scaling to thousands of prompted train-
ing tasks (Xu et al., 2022), tools that enable large-
scale integration of expert-labeled datasets hold
great promise for improving zero-shot learning.
However, translating these successes to special-
ized domains such as biomedicine face strong head-
winds due in part to the current state of dataset
accessibility in biomedical NLP. Recently data cas-
cades was proposed as a term-of-art for the costs
of undervaluing data in machine learning (Sam-
basivan et al., 2021). We propose a similar term,
dataset debt, to capture the technical costs (Sculley
et al., 2015) of using datasets which are largely

open and findable, but inconsistently documented,
structured, and otherwise inaccessible via a con-
sistent, programmatic interface. This type of debt
creates significant practical challenges when inte-
grating complex domain-specific corpora into pop-
ular machine learning frameworks.

We claim that biomedical NLP suffers from sig-
nificant dataset debt. For example, while Hug-
gingFace’s popular Datasets library (Lhoest et al.,
2021) contains over 3,000 datasets, biomedical data
are underrepresented and favor tasks with general
domain appeal such as question answering or se-
mantic similarity (PubmedQA, SciTail, BIOSSES).
To assess the state of biomedical dataset debt, we
built, to our knowledge, the largest catalog of meta-
data for publicly available biomedical datasets. We
document provenance, licensing, and other key at-
tributes per (Gebru et al., 2021) to help guide future
efforts for improving dataset access and machine
learning reproducibility.

Our effort found low overall support for pro-
grammatic access, with only 13% (22/167) of
our datasets present in the Datasets hub. Despite
a proliferation of schemas designed to standard-
ize dataset loading and harmonize task semantics.
there remains no consistent, API interface for easily
incorporating biomedical data into language model
training at scale.

2 Data-Centric Machine Learning

Deep learning models are increasingly moving to
commodified architectures. Data-centric machine
learning (vs. model-centric) is inspired by the ob-
servation that the performance gains provided by
novel architectures are often smaller than gains ob-
tained using better training data. We outline some
key challenges and opportunities in data-centric
language modeling. These are broadly applicable
to NLP, but have strong relevance to biomedicine
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and the current state of dataset debt.

2.1 Curating and Cleaning Training Data

Popular language models such as GPT-3 (Brown
et al., 2020) do not incorporate scientific or medical
corpora in their training mixture, contributing to
their lower performance when used in biomedical
domains and few-shot tasks (Moradi et al., 2021).
Additionally, simply training the language model
on in-domain data might lead to non-trivial risks
associated with the recapitulated biases from the
training corpora (Zhang et al., 2020; Gururangan
et al., 2022).

In scientific literature, discounting source prove-
nance could manifest as language models parroting
conflicting or inaccurate scientific findings. Zhao
et al.(Zhao et al., 2022) curated scientific corpora to
identify patient-specific information (e.g., mining
PubMed Central to identify case reports that re-
spect licensing for re-use and re-distribution). With
sufficient metadata and dataset provenance, this
level of curation could be extended to the entire
training corpus for a biomedical language model.

Data cleaning has a large impact on language
model performance. Deduplicating data leads to
more accurate, more generalizable models requir-
ing fewer training steps (Cohen et al., 2013; Lee
etal., 2021). Cleaning up the consistency of answer
response strings was reported to improve biomedi-
cal question answering (Yoon et al., 2021). Dupli-
cation contamination is a serious risk in biomedical
datasets, which often iteratively build or extend
prior annotations, introducing risk of test leakage
in evaluation (Elangovan et al., 2021).

2.2 Programmatic Labeling

Biomedical domains require specialized knowl-
edge, making expert-labeled datasets time-
consuming and expensive to generate. In limited-
data settings, distant and weakly supervised meth-
ods (Craven and Kumlien, 1999) are often used to
combine curated, structured resources (e.g., knowl-
edge bases, ontologies) with expert rules to pro-
grammatically label data. These approaches have
demonstrated success across NER, relation extrac-
tion, and other biomedical applications (Kuleshov
et al., 2019; Fries et al., 2021). However these
approaches typically are applied to real, albeit
unlabeled data, creating challenges when model-
ing rare classes. A recent trend is transforming
structured resources directly into realistic-looking,
but synthetic training examples. KELM (Agarwal

etal., 2021) converts Wiki knowledge graph triplets
into synthesized natural language text for language
model pretraining.

Natural language prompting has emerged as
a powerful technique for zero/few shot learning,
where task guidance from prompts reduces sam-
ple complexity (Le Scao and Rush, 2021). Cross-
lingual prompting (English prompts, non-English
examples) has demonstrated competitive classifi-
cation performance (Lin et al., 2021). Training
language models directly on prompts has resulted
in large gains in zero-shot performance over GPT-
3 as well as producing models with fewer trained
parameters (Sanh et al., 2022; Wei et al., 2022).

PromptSource (Bach et al., 2022) is a recent soft-
ware platform for creating prompts and applying
them to existing labeled datasets to build training
data. These developments highlight a promising
trend toward defining programmatic transforma-
tions on top of existing datasets, enabling them to
be configured into new tasks. However, leverag-
ing large-scale prompting remains challenging in
biomedicine due to the lack of programmatic ac-
cess to a large, diverse collections of biomedical
datasets and tasks.

2.3 Diverse Evaluation and Benchmarking

Inspired by standardized benchmarks in general
domain NLP research (Wang et al., 2018, 2019),
BioNLP takes similar initiatives by establishing a
benchmark of 10 datasets spanning 5 tasks (Peng
et al., 2019, BLUE), an improved benchmark on
BLUE with 13 datasets in 6 tasks (Gu et al., 2022,
BLURB), and a benchmark of 9 different tasks
for Chinese biomedical NLP (Zhang et al., 2021,
CBLUE). While these benchmarks provide tools
for consistent evaluation, only BLURB supports
a leaderboard and none directly provide dataset
access. Evaluation frameworks that provide pro-
grammatic access are often restricted to single and
well-established tasks and impose pre-processing
choices that can make inconsistent performance
comparisons (Crichton et al., 2017; Weber et al.,
2021).

To the best of our knowledge, there are currently
no zero-shot evaluation frameworks for biomedi-
cal data similar to BIG-Bench!, which currently
contains little-to-no biomedical tasks.

Evaluation frameworks must also allow probing
the trained language models’ intrinsic properties,

"https://github.com/google/BIG-bench
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rather than only measure downstream classification
performance. Following (Petroni et al., 2019) in
the general NLP domain, (Sung et al., 2021) intro-
duce BioLAMA, a benchmark making available
49K biomedical knowledge triplets to probe the re-
lational knowledge present in pre-trained language
models.

3 Datasets Summary

3.1 Metadata/Datasheet Curation

Our inclusion criteria targeted expert-annotated
datasets designated as public, reusable research
benchmarks for one or more NLP tasks. We ex-
cluded: (1) multimodal datasets where remov-
ing the non-text modality undermines the task,
e.g., visual question answering, audio transcrip-
tion, image-to-text generation; (2) general re-
source datasets, e.g, the PMC Open Access Subset,
MIMIC-III (Johnson et al., 2016); (3) derived re-
sources, e.g., knowledge bases constructed via text
mining; and (4) modeling artifacts, e.g., static em-
beddings or pretrained language models.

We recruited 8 volunteers to identify datasets
and crowdsource their metadata curation for an
open, community dataset catalog. Participants re-
viewed dataset publications and websites which
described the curation process, and then completed
the metadata schema outlined in Table 1 This
schema loosely assesses compliance with FAIR
data principles (Wilkinson et al., 2016).

Our initial effort identified 101 datasets. We
combined this list with a contemporaneously cu-
rated catalog of biomedical datasets, identified via
systematic literature review (Blagec et al., 2022).
Since the catalog described in Blagec et al. (2022)
was generated using broader inclusion criteria (e.g.,
non-public data, imaging and video datasets) we
identified 104/475 entries that met our criteria.
After merging, we conducted a second round of
crowdsourcing to annotate metadata, resulting in
our current catalog of 167 biomedical datasets.
We did not conduct a formal assessment of inter-
annotator agreement.

4 Results

4.1 Dataset Access

Only 22/167 (13%) of biomedical datasets are avail-
able via the Datasets API, despite 123/167 (74%)
being openly hosted on public websites. The re-
maining datasets require authentication to access

Field Description

Name Dataset name

Task Types  NER, NED, QA, NLI, corefer-
ence resolution, etc.

Domain Corpora domain: biomedical

or clinical/health

File Format

BioC, JSON, etc.

Annotations  Expert label provenance

API Access  Available via HuggingFace
Datasets?

Splits Canonical definitions for train-
ing/validation/testing splits

License Provided license type

Languages  Included languages

Multilingual  Parallel corpora

Publication = Manuscript describing dataset

Year Publication year

Citations Google Scholar counts

Homepage  Website describing dataset

Public URL  Open URL (no authentication)

Dead Link Dataset no longer accessible

Table 1: Metadata collected for all biomedical datasets.
See Appendix A for more details on each category.

(21%) or were dead links (5%).

Format Name Count Total
Structured BioC 5 3%
Structured BRAT 16 10%
Structured CoNLL 11 7%
Structured PubTator 4 2%
Semi-structured XML 26 16%
Semi-structured JSON 43 26%
Semi-structured TSV/CSV 15 9%
Semi-structured TMX 1 1%
Plain Text Standoff 13 8%
Plain Text Text 25  15%
Plain Text ARFF 1 1%
Binary Word 1 1%
Binary Excel 2 1%
Unknown Unknown 4 2%

Table 2: Distribution of file formats for biomedical

datasets.

Table 2 outlines the diversity of commonly used

biomedical file formats. Most datasets are pro-
vided in semi-structured form (51%), followed by
structured (22%), and non-standard plain text files
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(17%). There are several structured formats which
propose a data model for parsing and standardiz-
ing task semantics (e.g., BRAT (Stenetorp et al.,
2012), BioC (Comeau et al., 2013)). However, for
information extraction tasks which could use these
formats, only 31/86 (36%) actually do.

Table 2 outlines dataset licensing, broken down
into six categories, largely based on commercial vs.
non-commercial restrictions. These cover broad
classes of licensing, ranging from permissive Cre-
ative Commons Share-Alike licenses to dataset-
specific data-use agreements (DUA). Nearly 30%
of datasets are publicly available online yet do not
include any licensing information. A further 16.8%
have DUA requirements, but include unclear lan-
guage on what restrictions are placed on dataset
usage.

License Restrictions Count Percent
Public C/NC 56 33.5%
Public NC 13 7.8%
DUA C/NC 12 7.2%
DUA NC 8 4.8%
DUA ? 28 16.8%
Unknown ? 50 29.9%

Table 3: Dataset licenses. Restrictions are commercial
(C), non-commercial (NC) and unknown (?).

4.2 Dataset and Task Diversity

Biomedical datasets (i.e., tasks built from scientific
publications) made up 68% of available datasets
while clinical datasets (patient notes, health news,
clinical trial reports) made up 32%.
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Figure 1: All NLP tasks, broken down into 5 categories
(see legend). Note datasets often support multiple tasks.
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Figure 2: Cumulative count of datasets by task, ordered
by year of dataset release. The black dashed line indi-
cates the total number available via the Datasets API.

Fig.2 shows the overall homogeneity of public
biomedical datasets as of 2022. Information extrac-
tion tasks (e.g., NER, NED, releation extraction,
coreference resolution) comprise 56%, followed
by 20% text classification (e.g, document labeling,
sentiment analysis), 13% question answering, and
6% semantic similarity.

Task Category Eng. Non-Eng.
Information Extraction 128 34
Text Classification 33 10
Question Answering 21 0
Semantic Textual Similarity 10 0
Other 12 6

Table 4: Task category counts by English (Eng.) and
Non-English (Non-Eng.) languages.

Given all tasks, 14 languages are covered. Five
languages make up 95% of all datasets. En-
glish is the majority (80%), followed by Spanish
(7.5%), German (2.4%), French (2.4%), and Chi-
nese (2.4%). Table 4 contains counts of task cate-
gories binned into English and Non-English . Ques-
tion answering and semantic similarity have zero
non-English datasets.

5 Conclusion

In this work, we outlined several challenges in
training biomedical language models. With in-
creasingly large biomedical language models (Yang
et al., 2022), limitations in the quality and proper-
ties of training data grow more stark. We argue that
biomedical NLP suffers from significant dataset
debt, with only 13% of datasets accessible via API
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access and readily usable in state-of-the-art NLP
tools. Current biomedical datasets are homoge-
neous, largely focusing on NER and relation ex-
traction tasks, and predominantly English language.
These limitations highlight opportunities presented
by recent data-centric machine learning methods
such as prompting, which enables experts to inject
task guidance into training and more easily recon-
figure existing datasets into new training tasks.
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A Appendix

A.1 Metadata Overview

This section contains detailed descriptions of each
metadata field collected for the dataset catalog.

A.1.1 Name

The dataset name, preferring short forms
(BC5CDR) as typically used on homepages or sci-
entific publications over verbose ones (“BioCre-
ative 5 Chemical Disease Relation Task").

A.1.2 Task Types

Datasets contain labels for one or more tasks. Ta-
bles 5 and 6 outline the tasks we consider in this
work.

Name Abbreviation
Named Entity Recognition NER
Named Entity Disambiguation NED
Relation Extraction RE

Event Extraction EE
Coreference Resolution COREF
Span Classification SPAN
Document Classification DOC
Sentence Classification SENT
Semantic Textual Similarity STS
Question Answering QA
Translation TRANSL
Paraphrasing PARA
Summarization SUM
Natural Language Inference NLI
Part-of-Speech Tagging POS
Information Retreival IR

Table 5: All task types.

A.1.3 Domain

Source domain of the dataset.

* Biomedical: Tasks are defined for scientific
literature (e.g., PubMed abstacts, full-text pub-
lications from the PMC Open Access Subset).

* Clinical: Tasks are defined for clinical notes
from patient electronic health records, health-
related questions from social media or news
websites, clinical trial reports, etc.

A.1.4 File format

File formats provided by the original dataset cre-
ators.
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Category Abbreviation
Information Extraction NER
Information Extraction NED
Information Extraction RE
Information Extraction EE
Information Extraction COREF
Information Extraction SPAN
Text Classification DOC
Text Classification SENT
Semantic Textual Similarity STS
Question Answering QA
Other TRANSL
Other PARA
Other SUM
Other NLI
Other POS
Other IR

Table 6: Task categories.

A.1.5 Annotations

Provenance of labels used to create a dataset.

* Manual: Expert annotators directly label data
instances. This may include multiple rounds
of adjudication.

* Model-assisted Manual: Experts verify, cor-
rect, or augment the output of a model (e.g.,
pre-annotated entities are used by annotators
to define relations).

* Crowdsourced: Labels are the result of a vot-
ing process over multiple annotator’s labels.

* Rules: Heuristics developed by experts and
applied to unlabeled text to create annotations.
This includes a wide range of weak/distant
supervision techniques.

e Found: Generated from "in-the-wild" data,
such as aligned pairs of translated text mined
from web pages.

* Unlabeled: no human-generated labels (e.g.,
the PMC Open Subset).

A.1.6 API Access

URL of HuggingFace’s Datasets implementation,
otherwise “no".

A.1.7 Splits

Are canonical train, validation, and test sets de-
fined by the dataset creators? If so, which sets are

provided. value € { NONE, train, valid,
test }.

A.1.8 License

License information accompanying the dataset. Un-
known licenses means the annotator could not
find any information or formal legal documents
on the homepage, software repository (e.g, GitHub,
Google Code), or README with the data itself.

e Public: Creative Commons (CC BY 3.0/4.0,
CC BY-SA 3.0/4.0), Public Domain, GNU
Free Documentation License, GNU Common
Public License v3.0, MIT License, Apache
License 2.0

* Public Non-commercial: Creative Commons
(CC BY NC 2.0/3.0/4.0, CC BY-NC-SA 4.0),
CSIRO Data License (Non-commercial), Pub-
lic for Research

* DUA-NC: DUA for non-commercial use only.

e DUA-C/NC: DUA for commercial and non-
commercial uses.

e DUA-UNK: DUA with unknown restrictions.

* Unknown: Public-Unknown, Public w/ Regis-
tration

A.1.9 Languages
Languages used in the labeled dataset.

A.1.10 Multilingual

Dataset contains aligned pairs for two or more lan-
guages.

A.1.11 Publication, Year

URL to the manuscript, DOI, and year of publica-
tion.

A.1.12

Current citation count from Google Scholar, as of
(02-22-2022. This measure was collected to provide
a weak measure of dataset visibility. We note that
citation count is a problematic measure of valuation
and subject to many criticisms (Gruber, 2014).

Citations

A.1.13 Homepage, Public URL

URL of website describing and hosting the dataset.
If the dataset has a direct download link, denote if
it is public or only available after authentication.

A.1.14 Dead Link

URL of dataset homepage, as documented in the
source publication, is no longer active.

144



A.2 Domain-specific
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Figure 3: Scientific/biomedical domain (e.g., PubMed
abstracts) cumulative distribution of available tasks, or-
dered by year of dataset release.
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Figure 4: Clinical domain (e.g., patient notes) cumula-
tive distribution of available tasks, ordered by year of
dataset release.

A.3 Languages
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Task English Non-English
NER 60 18
NED 21 9
RE 22 3
EE 8 0
COREF 8 0
SPAN_CLASS 9 4
SENT_CLASS 12 2
DOC_CLASS 21 8
QA 21 0
STS 10 0
TRANSL 3 5
PARA/SUM 2 0
IR 3 0
NLI 3 0
POS 1 1

Table 7: Tasks by language



