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Abstract

Spoken ‘grammatical error correction’ (SGEC)
is an important process to provide feedback for
second language learning. Due to a lack of
end-to-end training data, SGEC is often imple-
mented as a cascaded, modular system, consist-
ing of speech recognition, disfluency removal,
and grammatical error correction (GEC). This
cascaded structure enables efficient use of train-
ing data for each module. It is, however, diffi-
cult to compare and evaluate the performance
of individual modules as preceeding modules
may introduce errors. For example the GEC
module input depends on the output of non-
native speech recognition and disfluency de-
tection, both challenging tasks for learner data.
This paper focuses on the assessment and de-
velopment of SGEC systems. We first discuss
metrics for evaluating SGEC, both individual
modules and the overall system. The system-
level metrics enable tuning for optimal system
performance. A known issue in cascaded sys-
tems is error propagation between modules.
To mitigate this problem semi-supervised ap-
proaches and self-distillation are investigated.
Lastly, when SGEC system gets deployed it is
important to give accurate feedback to users.
Thus, we apply filtering to remove edits with
low-confidence, aiming to improve overall feed-
back precision. The performance metrics are
examined on a Linguaskill multi-level data set,
which includes the original non-native speech,
manual transcriptions and reference grammati-
cal error corrections, to enable system analysis
and development.

1 Introduction

Grammatical construction is one of the key ele-
ments in second language acquisition, and text-
based grammatical error correction (GEC) has been
widely studied over the past decade (Dale and Kil-
garriff, 2011; Ng et al., 2014; Bryant et al., 2017).
With speaking skills playing a big part in language
learning, it has become increasingly important to

analyse spoken grammars. Previous works have
investigated grammatical error detection (GED)
on spoken language transcriptions (Caines et al.,
2020), and tighter integration of disfluency removal
and grammar correction on spontaneous learner
speech (Lu et al., 2020). This paper focuses on the
spoken grammatical error correction (SGEC) task.
There are several challenges facing SGEC: running
automatic speech recognition (ASR) on learner En-
glish is harder than native speech due to potential
pronunciation and grammatical errors; spoken lan-
guage often comes with disfluent speech events
such as repetitions and false starts, which are dis-
ruptive to downstream tasks; there is very little end-
to-end speech to correction data that can be used
for training. In this paper, SGEC adopts a cascaded
structure: an ASR module produces transcriptions;
a disfluency detection (DD) (Zayats et al., 2016)
module recovers a fluent text flow; and a conven-
tional machine translation style GEC (Yuan and
Briscoe, 2016) module produces error corrections.

Several metrics have been developed to assess
text-based GEC. GLEU (Napoles et al., 2015) score
adopts BLEU (Papineni et al., 2002) based n-gram
precision over the reference. It rewards word-
level corrections, as well as correctly preserved
source text. MaxMatch M2 (Dahlmeier and Ng,
2012) captures phrase-level edits, and calculates
F0.5 scores accordingly. It assesses performance
in terms of edits, which suits well with feedback
oriented applications. For Spoken GEC assess-
ment, however, it is not straight forward to apply
those standard metrics. A common problem fac-
ing cascaded style spoken language applications is
that it is difficult to compare across models when
upstream modules (e.g. ASR) are different. For
example, input text to GEC module varies when
upstream ASR and DD models are changed. If stan-
dard GLEU and M2 F0.5 are to be applied, these
metrics mean differently every time ASR transcrip-
tions change, and thus results are incomparable
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across systems. Not only for cascaded systems,
evaluation metrics is not clearly defined for end-
to-end trained spoken systems. It is difficult to
migrate text-based metrics to spoken tasks, since
end-to-end models do not provide any intermediate
variables for assessment.

This paper first discusses metrics to assess cas-
caded SGEC systems. When evaluating individual
modules, standard metrics can be used. However,
these metrics are not suitable for system-level as-
sessment, since they sometimes take into account
module inputs. When downstream module inputs
change with its upstream modules, results can be-
come incomparable across systems. To make sys-
tems comparable, we use edit distance based met-
rics instead and focus on the output quality. A com-
mon issue in cascaded systems is error propagation,
since individual modules are trained separately. To
mitigate this issue, semi-supervised fine-tuning is
conducted. It aims to tune DD and GEC modules
for optimal system performance with non-native
ASR transcriptions. Self-distillation is also inves-
tigated, which learns from a rich distribution of
semi-supervised references. Both fine-tuning ex-
periments are conducted on learner English without
readily available annotations. For system devel-
opment purposes, we focus on optimising output
quality; and for assisting language learning, we
shift the emphasis to give high quality feedback.
We first remove ambiguous corrections, and further
filter out low-confidence edits to improve feedback
precision as well as the overall quality.

2 Evaluation metrics

Cascaded spoken grammatical error correction
(SGEC) consists of three modules, namely speech
recognition (ASR), disfluency detection (DD) and
grammatical error correction (GEC). It converts
disfluent, grammatically incorrect audio sequences
into fluent, grammatically correct text. Variables
are notated as such: x for input audio, w for speech
transcriptions, t for disfluency tags, wf for tran-
scriptions with disfluencies removed, and y for
grammatically correct outputs. N.B.: bold letters
are used to represent sequences, with subscripts
omitted, e.g. x short for x1:T .

x1:T
ASR−−→ w1:N

DD−−→ t1:N , wf
1:M

GEC−−→ y1:L (1)

When evaluating individual modules, standard
metrics can be used. Word error rate (WER) is
used for ASR to compute word-level edit distance.

DD is modeled as a sequence tagging task, and F1

score is used to indicate the mean of precision and
recall (use hat, e.g. â, to indicate hypothesises):

SASR = WER(ŵ,w) (2)

SDD = F1(t̂, t) (3)

For GEC module, a standard evaluation is to
compare reference and hypothesised edits, and use
F0.5 score to reflect a weighted precision and recall:

E = M2(wf ,y) (4)

Ê = M2(wf , ŷ) (5)

SGEC = F0.5(Ê, E) (6)

where reference and hypothesised edits E, Ê are
extracted using MaxMatch (M2) (Dahlmeier and
Ng, 2012) alignment between inputs and outputs.
Each edit is defined by a triplet [st, ed, cor]
(st: start location of the error, ed: end location,
cor: correction).

For cascaded systems, it is also important to look
at system-level evaluation, which assesses a com-
bination of modules. When evaluating ASR and
DD combined, the standard DD metric F1 score no
longer apply. The reference tags t have a one-to-
one correspondence with input word tokens w, and
we need a different set of reference t for different
ASR transcriptions. It is therefore not feasible to
compare across systems that have different ASR
transcriptions if F1 is used. Thus, we use WER
instead, to directly analyse the output quality from
disfluency removal:

SASR+DD = WER(ŵf ,wf ) (7)

When evaluating ASR, DD and GEC modules
combined i.e. the SGEC system, standard GEC
metric M2 F0.5 cannot be used, since it does not
allow comparison across systems. It requires input
sequences wf to be given for edit extraction, and
changes in upstream ASR and DD modules will
lead to a different set of reference edits E. There-
fore the focus is laid on the quality of outputs. We
adopt sentence error rate (SER) to analyse sentence-
level matches between references and hypotheses.
To achieve greater granularity, we also adopt trans-
lation edit rate (TER) (Snover et al., 2006) to assess
word-level distance from references.

SASR+DD+GEC = SER/TER(ŷ,y) (8)
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Individual module evaluation SASR, SDD and
SGEC helps develop each module separately.
System-level metrics SASR+DD and SASR+DD+GEC
both emphasise output quality, which enables com-
parison across systems even when upstream mod-
ules change. They also help guide further tuning
and development of the SGEC system as a whole.

3 Module error mitigation

Each module in the cascaded SGEC system is
trained individually. DD is trained on a native spo-
ken corpus, and GEC is trained on written text that
is processed to be like speech transcripts (details
in 5). Individual training allows efficient use of
data on one hand, yet on the other hand, it suffers
from error propagation due to mismatches between
training and evaluation. For example, DD and GEC
modules have not seen any ASR transcriptions dur-
ing training, and thus any ASR error at evaluation
time would potentially disrupt their performance.
Ideally, fine-tuning on a non-native spoken corpus
would most effectively mitigate error propagation,
but similar to many other speech to text tasks, there
is no readily available data for training. There-
fore in this section, we adopt semi-supervised ap-
proaches to fine-tune the SGEC system on a spoken
learner corpus without manual annotations. Here
we use the ASR training corpus, which is compara-
tively abundant and less costly to obtain, compared
to end-to-end SGEC annotation. It consists of au-
dio sequences x and manual transcriptions w.

3.1 Semi-supervised fine-tuning

Figure 1: Semi-supervised fine-tuning pipeline. Orange de-
notes reference generation, blue denotes hypotheses. The
greyed (ASR) block is frozen during fine-tuning; DD and
GEC modules are separately tuned.

Fine-tuning aims to train the system to be more
robust against error propagation. The ASR train-
ing set provides non-native audio sequences and
their corresponding manual transcriptions, yet lack-
ing references for grammatical error corrections.
We generate pseudo references by feeding manual
transcriptions through the baseline system, and hy-
potheses by feeding through audio sequences. The
pseudo references are not impacted by ASR errors,

and therefore minimising distance between refer-
ences and hypotheses should help mitigate ASR
error propagation. Figure 1 shows the fine-tuning
pipeline. When fine-tuning the DD module, refer-
ences and hypotheses are generated as such:

t,wf = DD(w) (9)

t̂, ŵf = DD(ASR(x)) (10)

Reference tags and fluent text are produced by
feeding manual transcriptions through DD mod-
ule, and hypotheses are generated by feeding audio
sequences through ASR and DD modules. For se-
quence tagging tasks, reference tags change with
input word tokens, and thus reference tags t of
manual transcriptions cannot be directly applied
to ASR transcriptions during fine-tuning. Recall-
ing that WER is used to assess output wf when
evaluating ASR and DD combined, we can apply
the same idea and directly compare fluent text wf

and ŵf after disfluency removal. Reference tags t′

can be derived by aligning wf and ŵf : all inser-
tions in ŵf are treated as disfluencies, substitutions
and matches are tagged as fluent words, whereas
deletions are ignored (Table 1):

wf a cat si- sit on the mat
ŵf a cat sat on um the mat
Aln M M D S M I M M
t′ O O - O O E O O

Table 1: An example of converting wf and ŵf to t′

M:match, D:deletion, S:substitution, I:insertion
E:disfluent, O:fluent, ’-’: no label for deleted words

Following this tagging scheme, applying binary
cross entropy loss between t̂ and t′ is equivalent
to optimising for lower WER (SASR+DD). For GEC
module fine-tuning, both ASR and DD modules are
frozen. To obtain references y, manual transcrip-
tions are fed through DD and GEC modules; and
for hypotheses ŷ, audio sequences are fed through
ASR, DD and GEC modules:

y = GEC(DD(w)) (11)

ŷ = GEC(DD(ASR(x))) (12)

To optimise for a lower SER (SASR+DD+GEC), a stan-
dard cross entropy loss can be used with teacher
forcing training:

L = logP (y|ŵf ) =
∑

l logP (yl|ŵf , y1:l−1)
(13)

Minimising cross entropy loss is equivalent to max-
imising sentence-level probabilities, and therefore
should directly help improve SER.
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3.2 Self-distillation
Semi-supervised fine-tuning relies on pseudo ref-
erences generated from manual transcriptions, the
quality of which largely depends on the perfor-
mance of the baseline SGEC system. DD and GEC
are trained on native spoken and non-native writ-
ten corpora respectively, both of which have not
encountered any in-domain non-native spoken data.
Therefore, it is likely that the pseudo references
generated on the non-native spoken corpus are er-
roneous. To alleviate the potential degradation
caused by this, we further apply self-distillation.
Self-distillation is originated from knowledge dis-
tillation (Hinton et al., 2015), which often trains
a student model to learn from predictions made
by a teacher model. The teacher is usually su-
perior to the student, e.g. larger in size than the
student, or an ensemble teacher for a single model
student. Self-distillation (Zhang et al., 2019) is
originally proposed in the computer vision commu-
nity. It extends the idea of knowledge distillation by
proposing to use the same model for both teacher
and student. It has been shown to be effective for
improving both image (Zhang et al., 2019) and
text-based tasks (Xu et al., 2020).

Here we adopt the same self-distillation idea,
but use a semi-supervised corpus for training. The
teacher model is always frozen, and the student
model will be trained. The training objective is to
minimise the Kullback–Leibler (KL) divergence of
the per word posterior distribution between teacher
and student:

LKL =
∑

l KL[Pt(yl|ŵf , y1:l−1), Ps(yl|ŵf , y1:l−1)]
(14)

where Pt, Ps are teacher and student distributions.
Another common practice is to interpolate the KL
divergence with cross-entropy loss in Eqn. 13:

Ldist = αLKL + (1− α)L (15)

Despite the empirical success of self-distillation,
the intuition behind adopting self-distillation on
semi-supervised data here is to guide the student
model with richer probability distributions, rather
than relying solely on one-best predictions.

4 Feedback and confidence filtering

Section 2, 3 mainly focus on evaluating and opti-
mising output quality. Another important aspect
for language learning applications is feedback to
learners, since feedback quality directly impacts

learner’s progression in language learning. This
section first describes how feedback is extracted
and assessed for SGEC systems, then introduces
confidence-based filtering that aims to improve
feedback precision.

For GEC tasks, feedback usually suggests where
the error is and how to correct it. In written
GEC, feedback edits are extracted using Eqn. 5
by comparing input and output sequences. Its qual-
ity is analysed using F0.5 (Eqn. 6) by comparing
hypotheses against reference edits. This is not
applicable to spoken GEC, since reference edits
change with upstream ASR transcriptions, are con-
sequently F0.5 scores are not comparable across
systems. Here we modify the definition of refer-
ence and hypothesised edits as such:

E = M2(wf ,y) (16)

Ê = M2(ŵf , ŷ) (17)

F0.5 can be calculated as before. Reference edits E
are generated using manual fluent transcripts wf

as source sequences. With reference E defined in-
dependent from ASR or DD module, feedback F0.5

can be compared across systems. Hypothesised ed-
its Ê use hypothesised fluent transcriptions ŵf as
source sequences. Therefore Ê account for errors
from all three modules, and reflects the true feed-
back given to users when the system is deployed.
Note that such mismatched source sequences in E
and Ê put extra penalty on F0.5. To given an exam-
ple: when system output ŷ matches with reference
y i.e. the system output is perfectly correct, differ-
ences in wf and ŵf will still result in differences
in Ê from E, leading to degraded F0.5 score.

SGEC is a very challenging task due to potential
errors coming from transcriptions, disfluencies as
well as the correction process. To avoid giving er-
roneous feedback to language learners, we do not
want to give feedback on edits that our models have
little confidence in, assuming lower confidence in-
dicates lower accuracy. To conduct confidence fil-
tering, we need to define a confidence measure. In
the cascaded SGEC pipeline (Eqn. 1), each module
produces a token-level confidence score associated
with its prediction. We first define sentence-level
confidence for each module as the lowest token
probability over the entire sentence. Sentence-level
filtering can be conducted by rejecting sentences
with low confidence. We also explore the option
of using edit-level confidence, i.e. confidences are
calculated over each edit instead of sentence. Note
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that for ASR module, we always use the lowest
over sentence, to mitigate a known issue of ASR
error propagation. The overall confidence is cal-
culated using a weighted sum of all thee modules:

logP = α logPASR + β logPDD + γ logPGEC
(18)

where PASR, PDD and PGEC are sentence/edit-level
confidence of each module.

5 Experimental results

5.1 Corpora and models

Corpus Spoken Use #Sent #Word %Dsf

ASRtrn ✓ ASR Train 62K 2.5M* -
SWBD ✓ DD Train 154K 940K 11.1
CLC ✗ GEC Train 1.9M 25.2M 0.0
BEA ✗ GEC Train 1M 11.5M 0.0

FCEtst ✗ Eval 2,681 37K 0.0
LIN ✓ Eval 3,361 38K 5.0

Table 2: Corpora statistics. Spoken: whether it is derived
from speech; Audio: whether it provides audio sequences;
%Dsf: percentage disfluencies contained in the corpus. (*:
approximated value, no manual transcriptions available)

ASRtrn is used for ASR training, as well as
module error mitigation in Section 3. It consists of
334 hours of an online English speaking test data,
which mainly covers 28 L1s and the 5 CEFR (Coun-
cil of Europe, 2001) grades ranging from A1 to
C2. Different from usual ASR training corpus,
it only provides crowd source transcriptions, the
quality of which is far worse than manual tran-
scriptions. A remedy for this is to use multi-stage
teacher-student training: bootstrap the system with
crowd source data, and use an ensemble teacher
to generate higher quality transcriptions to guide a
single student model (Wang et al., 2018). For ex-
periments described in Section 3, by manual tran-
scriptions we always refer to this higher quality
transcriptions generated using the teacher ensem-
ble. Switchboard (SWBD) (Meteer et al., 1995)
consists of 260 hours of telephone conversations of
native American English speakers. The Treebank-
3 annotation (Taylor et al., 2003) provides man-
ual transcripts and disfluency annotations on the
Switchboard corpus. Cambridge Learner Cor-
pus (CLC) (Nicholls, 2003) is a collection of writ-
ten exams of candidates from 86 L1s at different
proficiency levels. The corpus is annotated with
grammatical errors. BEA (Bryant et al., 2019) is
a collection of text-based grammatical error cor-

rection corpora, including Write & Improve, LOC-
NESS, Lang-8 and NUCLE (FCE train split ex-
cluded, since it overlaps with CLC). FCEtst (Yan-
nakoudakis et al., 2011) is a hold out subset of
the CLC for test. Punctuation and capitalisation
are removed from all corpora derived from writ-
ten text, to make them look more like speech tran-
scriptions. Linguaskill (LIN) is derived from an
English speaking test. It consists of 833 learners
from over 15 L1s, evenly distributed across CEFR
grades. Manual transcriptions are segmented at
phrase level, with incomplete or ambiguous phrases
rejected. The remaining set is annotated with dis-
fluencies and grammatical errors. Relevant corpora
statistics are summarised in Table 2.

Cascaded SGEC consists of three modules: ASR,
DD and GEC. ASR uses a hybrid deep learning-
HMM graphemic system. It is a teacher-student
trained TDNN-F model (Povey et al., 2018; Wang
et al., 2018) with trigram lattice generation. Suc-
ceeding word RNNLM (Chen et al., 2017) is used
for rescoring. It has a WER of 19.97% on LIN.
Confidence scores are returned by the ASR en-
gines, followed by piece-wise linear mapping (Ev-
ermann et al., 2005). DD is a binary classifica-
tion model which consists of a BERT layer (Devlin
et al., 2019) in the version provided by the Hugging-
Face Transformer Library (Wolf et al., 2019) (bert-
base-uncased), a first dense layer of 768 nodes, a
second dense layer of 128 nodes, and finally the
output layer of size 2. The model is trained on
SWBD and uses an Adam optimiser (Kingma and
Ba, 2014) with batch size 64, learning rate 1e-06
and dropout 0.1. GEC adopts a transformer-based
sequence to sequence model. It is initialised from
Gramformer1, which is a T5 model (Raffel et al.,
2020) trained on WikiEdits processed with syn-
thetic error generation techniques (Lichtarge et al.,
2019). It is further fine-tuned on CLC and BEA.
Training uses Adam optimiser with a batch size
of 256, and learning rate of 5e-4 with warm up.
Maximum sentence length is set at 64, and the final
model parameters are calculated using checkpoint
averaging (Izmailov et al., 2018), which takes the
average over the 5 best checkpoints. N.B.: all re-
sults are reported without standard deviations, since
we initialise both DD and GEC modules with large
pre-trained models and deviations due to random
dropout are relatively small.

1https://github.com/
PrithivirajDamodaran/Gramformer
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5.2 Metrics and tuning

In-domain eval LIN-MAN eval
Modules Metric Data Score Input Score

ASR WER ↓ - - x 19.97
DD F1 ↑ SWBD 89.66 w 79.52

GEC M2 ↑ FCEtst 56.60 wf 53.57

Table 3: Individual module evaluation at their respective oper-
ating point. ASR uses LM scale=11, DD uses threshold=0.5.

Table 3 lists performance of each individual mod-
ule in the SGEC system, comparing out-of-domain
evaluation on manual transcriptions of LIN against
in-domain test sets. ASR training is conducted in a
semi-supervised fashion, therefore we only report
WER on LIN-MAN. We always use manual tran-
scriptions for individual module evaluation. For
DD, going from native to non-native spoken En-
glish, a 10 percent loss is seen in F1 score. For
GEC, going from written to fluent spoken style
data loses 3 points on M2 F0.5. Compared to do-
main mismatch, much larger degradation is induced
by ASR errors. Table 4 evaluates combination of
multiple modules for LIN, focusing on the over-
all output quality. It shows significant impact of
ASR transcriptions, with the overall SER and TER
increasing by 33.50 and 19.62 points respectively.

Modules Metric MAN ASR

ASR+DD WER ↓ 1.96 21.20
ASR+DD+GEC SER ↓ 43.26 76.76

TER ↓ 8.27 27.89

Table 4: Evaluating combination of modules on LIN corpus.
MAN and ASR columns show performance on manual and
ASR transcriptions at their respective operating points.

Figure 2: System tuning using SER/TER/M2. Plot shows a
sweep over DD thresholds at the chosen LM scale = 11.

Having defined system level metrics, we can
jointly tune the modules in cascaded SGEC for
better overall output quality. Here we focus on
two variables: ASR language model (LM) scale
factor, and DD disfluency removal threshold. A

two-dimensional grid search is conducted over a
range of LM factors (6-13) and DD threshold (0.0-
1.0). Fig. 2 shows a sweep over disfluency removal
thresholds at the chosen LM scale factor. It can
be seen that all edit distance based metrics are
relatively insensitive to the sweep, whereas feed-
back F0.5 shows a stronger preference (more feed-
back analysis in Section 5.4). The best WER for
the intermediate output wf is at 0.7, and the best
SER/TER for the overall output y sits at 0.4. Al-
though differences are insignificant, this shows that
an intermediate optima can be different from the
overall optima, and confirms the necessity of over-
all performance metrics. The operating point is
chosen according to SER/TER, at a LM scale of 11
and a disfluency threshold of 0.4.

5.3 Module error mitigation
As shown in Table 4, ASR errors result in large
degradation, partly because DD and GEC modules
have not encounter any non-native spoken data dur-
ing training. Fine-tuning on a non-native spoken
corpus is the most efficient way to mitigate ASR er-
ror propagation, yet limited by data availability, we
conduct semi-supervised fine-tuning instead. As
explained in Section 3.1, we use the SGEC pipeline
to generate pseudo reference. Its performance on
LIN-MAN (in Table 4) gives an approximation of
how much we fall behind supervised fine-tuning.
Table 5 lists the impact of tuning DD and GEC
modules respectively.

ASR+DD ASR+DD+GEC
Models WER↓ SER↓ TER↓

Base 21.20 76.76 27.89
TuneDD 21.06 76.79 27.83

TuneGEC - 76.35 27.47

Table 5: Impact of fine-tuning DD and GEC modules. Note:
combination of the two doesn’t yield better performance, thus
using TuneGEC for future development.

Tuning DD module gives 0.14 decrease on WER
of DD output wf , yet fails to improve SER/TER
of GEC output y. When generating reference tags
t′ as described in table 1, we minimise the edit
distance between ŵf and wf , which directly opti-
mises for lower WER. However, optimising for the
intermediate output does not always help improve
the overall output, and thus changes in WER of
DD don’t seem to have significant impact on down-
stream GEC. Tuning GEC module improves both
SER and TER. The fine-tuning process maximises
sentence-level probabilities, which helps to achieve

56



lower SER/TER.
Semi-supervised fine-tuning of GEC module im-

proves SER/TER, yet it is still not as effective
as supervised fine-tuning. Aiming to further im-
prove the output y, we adopt semi-supervised self-
distillation, which trains the model to learn a prob-
ability distribution at each time step, rather than
predicting the correct word. The rationale is that
probability distribution potentially offers richer in-
formation than a single prediction, especially when
the reference y is synthetically generated.

Model Init KL coeff. SER↓ TER↓
Teacher - - 76.35 27.47

Student Base 0.5 76.58 27.49
1.0 76.44 27.46

Teacher 0.5 76.41 27.46
1.0 76.35 27.51

Table 6: Self-distillation results. Base and teacher models are
Base and TuneGEC from Table 5. Init: initialisation point of
the student model. KL coeff.: coefficient of loss interpolation
(α in Eqn. 15). Softmax temperature is set at 0.8 for all.

Table 6 contrasts the impact of student initial-
isation and coefficient of KL loss. The standard
approach is to initialise from the teacher, which
tends to lead the student to land on a local optima
close to the teacher. An alternative is to initialise
from Base, which allows the student to explore a
larger space, potentially landing on a local mini-
mum further away from the teacher. Larger KL
coefficient forces the student to mimic the teacher
predicted distribution rather than one-best predic-
tion. However, both SER and TER are quite insen-
sitive to self-distillation, although feedback F0.5

shows some improvement (in Section 5.4).

5.4 Feedback and confidence filtering
Previous experiments focus on system analysis and
development, this section shift the focus to anal-
yse feedback quality. For optimal feedback, we
adopt a slightly different operating point from be-
fore according to Fig. 2 (LM scale 11, DD thresh-
old 0.5). Table 7 tabulates the results of system
tuning evaluated using system TER and feedback
F0.5. Compared to system TER, feedback F0.5

proves to be much more sensitive to system tuning.
Semi-supervised fine-tuning and self-distillation
improves feedback by 1.66 and 0.65 points respec-
tively. We use the optimal F0.5 (22.57) as our base-
line for confidence filtering.

Feedback from SGEC, also called edits, suggests
the error location, type and correction. To give

Models Base +Tune +Distill

TER↓ 27.89 27.47 27.46
Fdbk F0.5↑ 20.26 21.92 22.57

Table 7: Impact of semi-supervised fine-tuning and self-
distillation on TER & feedback M2 F0.5. +Distill: self-
distillation model initialises from Base, and uses KL coeff.=1.

high quality feedback to learners, it is important to
pass on a clear and accurate message in terms of
corrections as well as error types. Feedback edits
are automatically typed using a rule-based frame-
work ERRANT (Bryant et al., 2017). Some exam-
ples of error types: M:PREP (missing preposition),
U:DET (unnecessary determiner). It sometimes
predict error type as OTHER when edits do not fall
into any other category. A large part of OTHER are
paraphrases, which can be ambiguous to learners.
Therefore we exclude edits typed as OTHER.

Table 8 shows that excluding OTHER removes
approximately 10-15% edits from reference and
hypothesis. Note that removing OTHER edits in
reference reduces the total number of edits, and
makes it much easier for models to achieve higher
F0.5 since most rejected edits are ambiguous and
difficult to predict. Both precision and recall get
boosted, thus improving the baseline F0.5. OTHERs
are excluded from scoring for confidence filtering
experiments below.

F0.5↑ %Edits Exc.
Eval Inc. Exc. REF HYP

FCEtst 56.60 59.73 13.87 9.65
LIN 22.57 24.30 14.21 12.54

Table 8: Feedback F0.5 inc./exc. OTHER, and %edits being
removed from reference and hypothesis by excluding OTHER.

To improve feedback precision, sentence-level
and edit-level confidence filtering are applied to
reject ill-conditioned edits. When conducting fil-
tering, we expect both true positives (TP: correctly
predicted edits) and false positives (FP: incorrectly
predicted edits) to reduce. Under the hypothesis
that there are more FPs than TPs in the low confi-
dence region, we expect precision to improve, and
consequently help F0.5.

Fig. 3 shows change in feedback F0.5 score as we
filter out an increasing number of edits by setting
higher confidence thresholds. Both sentence-level
and edit-level filtering peak midway, and drop back
as we continue to filter out more edits. Filtering
operating at sentence-level tends to work better
than edit-level. This can be explained by the na-
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Figure 3: Comparing sentence-level and edit-level confidence
filtering. Moving from left to right, confidence threshold
increases, and more edits get filtered out.

ture of grammatical corrections being intertwined
within one sentence, i.e. removing one edit from a
sentence could potentially result in inconsistencies
with other corrections made to sentence. Table 9
shows the operating points of confidence filtering.
Removing 33.8% of the edits using sentence fil-
tering gives significant gains in both precision and
F0.5; whereas edit filtering gives mild improve-
ment when 3.7% of edits are filtered out. When de-
ploying SGEC systems, we can always change the
confidence threshold to strike a balance between
percentage removal and precision improvement.

Filter P R F0.5 %Rm

None 27.75 16.24 24.30 0
Sent 33.96 13.15 25.80 33.8
Edit 28.53 16.05 24.69 3.7

Table 9: Operating points of confidence filtering. P: precision,
R: recall, %Rm percentage edits being removed

As explained in Eqn. 18, system confidence com-
bines probabilities from all three modules. Fig. 4
analyses the impact of individual modules by con-
trasting filtering using sentence-level confidence
of each module. As an increasing number of edits
get filtered out, precision-recall curves move from
bottom right to top left corner (precision increases,
and recall decreases). Larger area under the curve
indicates higher F0.5 scores throughout the sweep.
Filtering with Pa outperforms both Pd and Pg, sug-
gesting that ASR confidence is quite indicative of
feedback quality. Another implication from this
observation is that quality of ASR transcriptions
largely impacts downstream performances.

We also take a closer look at the impact of
sentence-level filtering on different edit types. Ta-
ble 10 shows the change in precision, recall and
F0.5 scores before and after filtering. Confidence
filtering improves feedback F0.5 on most edit types,
among which most significant ones are R:PREP,

Figure 4: Precision and recall curves: filtering using sentence-
level confidences of individual modules. Pcomb: combined
confidence, Pa: ASR, Pd: DD, Pg: GEC. From right to left, fil-
tering out an increasing number of edits. The final α, β, γ co-
efficients are selected using the optimal M2F0.5 score, which
gives α = 0.3, β = 0.4, γ = 0.3.

U:DET, M:PREP2. The two degraded edit types
are R:VERB:TENSE, R:VERB:FORM, both of
which often have more than one feasible correc-
tions. Confidence-based filtering tends to remove
edits with diverse solutions, due to the high entropy,
thus low confidence in the hypotheses. Such rejec-
tion pattern leads to significant drop in recall, and
consequently reduces F0.5 of edits with diverse cor-
rections. On the other hand, for edits like R:PREP,
U:DET, M:PREP, there usually exists a single, def-
inite fix. Baseline F0.5 scores on those edits are in
general quite high, and confidence filtering helps to
further improve the performance. Such observation
suggests that confidence filtering helps to reduce
feedback on ambiguous edits, and in the meantime,
boosts precision on more deterministic corrections.

NoFilter Sent
Edit Type P R F0.5 P R F0.5

M:DET 30.18 27.39 29.57 35.86 22.61 32.10
R:PREP 37.86 18.47 31.29 46.88 15.68 33.53
R:NOUN:NUM 37.88 20.66 32.47 44.68 17.36 33.98
R:VERB:TENSE 35.63 13.60 26.91 35.00 9.21 22.44
U:DET 23.20 16.20 21.36 29.49 12.85 23.42
R:VERB 27.27 11.69 21.53 33.33 10.39 23.12
R:NOUN 11.77 4.29 8.72 18.52 3.57 10.08
M:PREP 23.29 13.39 20.29 35.56 12.60 26.06
R:VERB:FORM 31.17 20.00 28.04 38.10 13.33 27.78
R:VERB:SVA 31.92 27.78 30.99 37.31 23.15 33.25

Table 10: Comparing P,R, F0.5 before and after sentence-
level confidence filtering, breakdown by edit types.

2There are three prefixes - R: replacement, U: unnec-
essary, M: missing. The error types are defined using part-
of-speech (POS) tags. E.g. R:PREP means replacement of
preposition. More details on edit types see Bryant et al. 2017.
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6 Conclusions

This paper focuses on assessing and developing
cascaded SGEC systems. We discuss standard
metrics for individual module assessment, as well
as edit distance based metrics for system output
evaluation. To mitigate module error propaga-
tion in cascaded systems, we experimented with
semi-supervised fine-tuning and self-distillation ap-
proaches, aiming to improve system output quality.
Lastly, confidence-based filtering is investigated,
and it proves to be effective in improving feedback
precision as well as the overall quality.

For future work, we plan to experiment with the
state-of-the-art end-to-end ASR systems, which po-
tentially gives lower WER and further improves the
SGEC performances. Another research direction is
to investigate tighter integration of modular SGEC
systems, which allows a richer information flow
cross module connections.
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