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Abstract

Providing effective automatic essay feedback
is necessary for offering writing instruction at
a massive scale. In particular, feedback for pro-
moting coherent flow of ideas in essays is criti-
cal. In this paper we propose a state-of-the-art
method for automated analysis of structure and
flow of writing, referred to as Rhetorical Struc-
ture Theory (RST) parsing. In so doing, we lay
a foundation for a generalizable approach to
automated writing feedback related to structure
and flow. We address challenges in automated
rhetorical analysis when applied to student writ-
ing and evaluate our novel RST parser model
on both a recent student writing dataset and a
standard benchmark RST parsing dataset.

1 Introduction

Automatic writing feedback technologies (e.g.,
MI Write (Palermo and Wilson, 2020), Criterion
(Burstein et al., 2003), Coh-Metrix (McNamara
et al., 2010), Writing Pal (Roscoe and McNamara,
2013), and Revision Assistant (West-Smith et al.,
2018)) show promises in helping students to de-
velop writing skills at scale. One challenging area
where these technologies meet is in providing feed-
back for improving coherence of student essays
(Cotos, 2011; Fiacco et al., 2019b). Efforts have
been made to address the challenge of providing
structural level feedback via automatically extract-
ing discourse structure from essays (Burstein et al.,
2003). Extracting hierarchical discourse structure
and organization from documents has been shown
to be valuable for numerous applications includ-
ing text categorization, authorship attribution, and
automatic essay feedback (Feng and Hirst, 2014b;
Jiang et al., 2019).

A popular approach to analysis of the struc-
ture of writing that leverages principles of the
dependency-based hierarchical nature of text and

is common across genres is the discourse analytic
framework known as Rhetorical Structure Theory
(RST, described in section 3.1) (Mann and Thomp-
son, 1988). RST holds the promise of providing
specific structural writing feedback for free-form
essays (Burstein et al., 2001). However, RST pars-
ing has remained a challenging task due to the
dearth of annotated data and the challenges of deci-
sion making for discourse relations based on local
context (Mabona et al., 2019). This paper builds on
the same theoretical foundation using a Neural Net-
work Based RST parser as a means for automation.
Specifically, we propose a novel neural approach
to automated RST analysis that improves over the
best previously published approach from the field
of Language Technologies. In particular, of ex-
isting neural architectures for RST parsing, neural
transition based parsers have been making headway
(Yu et al., 2018; Mabona et al., 2019), however, at
their core, transition parsers make parsing deci-
sions locally. While they use recurrent models to
construct their stacks and buffers, in practice, recur-
rent models have been shown to primarily to use
very near context (Khandelwal et al., 2018). This
is a limitation for discourse parsing where knowl-
edge about the document as a whole may provide
essential context for judging relations.

We therefore propose and evaluate two improve-
ments to the neural transition parser paradigm that
provide better performance, both on standard RST
parsing and on student writing by utilizing the lim-
ited data more efficiently:

1. By adding a co-task of predicting the most
nuclear unit of the RST tree, we can increase
the model’s performance with the intuition
that it may incentivize the model to maintain
a broader document context that it can use for
predicting individual tree spans and nuclear-
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Figure 1: Example RST tree fragment with nuclearity
and relations. a) The traditional depiction of an RST
tree structure. b) The RST tree form corresponding to
the labeled attachment decisions of (a).

ity.

2. By selectively introducing parser states from
a previously trained parser into a new model
during training, we can guide the training of
the new model towards better performance on
less structured writing.

The first improvement builds on the general con-
cept of multitask learning in NLP (Bingel and Sø-
gaard, 2017; Peng et al., 2017) and the intuition
that a topic-like sentence, as a common key compo-
nent in many writing assessments and rubrics (Aull,
2015), may provide important contextual informa-
tion to aid local parser decision-making. The sec-
ond improvement suggests a potential for a reflec-
tive form of neural network learning related neural
component reuse that grows out of state-of-the-art
work in neural network interpretation.

In the following sections, we evaluate our pars-
ing model on both the standard English RST Dis-
course Treebank (RST-DT) (Carlson et al., 2003)
and a more recent RST dataset of student writ-
ing (Jiang et al., 2019).

2 Rhetorical Structure Theory

Rhetorical Structure Theory decomposes a doc-
ument into basic units of analysis called ele-
mentary discourse units (EDU) that can be com-
bined through rhetorical relations between units
into larger composite units (Mann and Thompson,
1988). Thus, the rhetorical relations combine to
build a hierarchical tree structure that represents the
overall structure of the document (Figure 1a). Each
relation has one (mononuclear) or more (multinu-

clear) nuclei where a nucleus is an essential span
which, if deleted, would leave the remaining text
incoherent. Mononuclear relations have satellites
that are related to the nucleus by means of a rhetor-
ical relation. They play a supporting role, and are
therefore not necessary for coherence of the docu-
ment. Each node of the tree represents a relation
tuple ⟨S,N,R⟩ where S is the span, N is the direc-
tion of nuclearity, and R is the relation label. This
is more readily seen in Figure 1b which depicts an
alternate representation of the RST tree structure.

RST has a long history (Mann and Thompson,
1988), and its original formulation continues to be
treated as authoritative. However, for some types of
writing, especially student writing, additional and
combined relations have been proposed in order to
bring the set of used relations in line with the writ-
ing practices that are applicable to the corpus (Jiang
et al., 2019).

3 Related Work

This paper makes its fundamental contribution to
work on automated feedback for student writing
by expanding analysis capabilities that lay a foun-
dation for a new form of support. Our technical
contribution is grounded within the field of neural
network modeling, contributing to work on neu-
ral approaches to Rhetorical structure analysis and
leveraging approaches originating in the area of
neural model interpretation.

An effective method for performing discourse
parsing has been to utilize techniques from syntac-
tic parsing and applying them at the document level.
While RST parsing research has more frequently
seen parsers influenced by another approach re-
ferred to as constituency parsing, it was shown that
using techniques pioneered for dependency parsing
could be as or more effective (Morey et al., 2018).
As methods for RST parsing moved from those
that rely on discourse markers and hand-coded
rules (Marcu, 2000; LeThanh et al., 2004) to those
that rely on deep learning (Li et al., 2014; Ji and
Eisenstein, 2014; Braud et al., 2017), many of the
improvements have been through techniques from
syntactic parsing (Soricut and Marcu, 2003; Luong
et al., 2013). In a similar way, our work builds
on past RST parsers using neural transition pars-
ing (Yu et al., 2018; Mabona et al., 2019). We ex-
tend this work by leveraging another area of neural
network research, namely neural network interpre-
tation, in order to yield a reflective form of learning
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that improves performance by leveraging lessons
learned in an earlier stage of the training, as in a
stage-based regression.

Neural pathways (Fiacco et al., 2019a) refer to a
method for pinpointing sets of a model’s neurons
that function together in groups. These groups of
neurons are referred to as pathways because they
cut across architectural layers and allow represen-
tation of the flow of activation through a network,
potentially from input all the way to output. For
our application, we follow the original authors and
use PCA (Hotelling, 1933) for this step as the re-
sulting factor loadings (DeCoster, 1998) can then
be used to determine which neurons belong to each
pathway, and that forms the basis for our pruning
approach. The remaining stages of this approach
are not used in the work reported here but offer
opportunities for promising follow up work.

In offering an abstraction over the details of a
neural model, this approach offers the possibility
of identifying portions of learned networks that can
be dissected from the network as a whole and then
reused as pre-packaged basic functionality within a
more complex model learned at a later stage. Thus,
we seek to harvest components pretrained on a sim-
pler dataset to aid in learning a more robust model
later on a more challenging dataset. While a deep
dive into the differences between the learned func-
tions of an RST parser trained on a relatively clean
standard dataset and one trained solely on a noisier
student writing dataset is beyond the scope of this
paper, we will demonstrate that this work provides
inspiration for development of what we will refer to
as a neural pruning method that protects important
simple generalizations while enabling accounting
for complex special cases as well, and to represent
an awareness of the difference between these in the
final decision making.

4 A Corpus of Student Writing

In this section, we first offer more understanding
about RST and then describe a corpus of student
writing that has been annotated with RST.

4.1 Applying Rhetorical Structure Theory to
Student Writing

Since we are using a neural approach, annotated
data is necessary for training. The English RST Dis-
course Treebank is a common benchmark dataset
for RST parsing. It includes 385 articles from the
Wall Street Journal (Carlson et al., 2003), consti-

Figure 2: Example RST tree of a fragment of student
writing.

tuting approximately 180,000 words of texts and
covering a wide range of topics, such as finance
and arts. These articles were created by profes-
sional writers, and are thus typically well-written,
consistently structured, and copy-edited. (Palmer
et al., 2010).

We also consider an RST corpus of less-polished
student writing (Jiang et al., 2019). The corpus con-
sists of 274 essays collected from Turnitin Revision
Assistant (West-Smith et al., 2018), responding to
standards-aligned formative writing tasks (Valencia
and Wixson, 2001). These tasks cover a range of
genres, including literary analysis, historical anal-
ysis, argumentative, and informative writing. For
example, one writing task asks the student write
an essay to the head of the school board, to ar-
gue whether competitive sports are more helpful or
harmful to young people. These essays are drawn
from a diverse set of secondary classrooms across
the United States, representing a broad range of
writing skills and student backgrounds. We hold
out 25 documents as a development set, and 28
documents as a test set.

4.2 Comparison of Datasets
As we bridge between work on the original cor-
pus and the student writing corpus, we must con-
sider differences in properties. In addition to un-
conventional grammar and usage, many develop-
ing student essays lack clear cohesion or structure.
These issues may make the modeling task more
challenging than with the relatively clean RST-DT
dataset. Common organizational issues in the cor-
pus include (1) essays lacking transitional phrases
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(e.g., "However," or "In conclusion" ), or transition
words used inappropriately; (2) pronoun reference
ambiguity; (3) paragraphs where the topic sentence
is not clearly indicated, or where there are multi-
ple main ideas (and sometimes contradictory ideas)
in one paragraph; (4) sentences not presented in
a logical progression. These areas of focus for
developing writers are also highlighted in the liter-
ature (de Jong and Harper, 2005). Ambiguous and
weakly structured essays may indicate an oppor-
tunity for automated feedback, but they also pose
challenges for the parsing task.

The prevalence of the JOINT relation captures
some of the difference between RST-DT and the
Turnitin corpus. JOINT indicates a lack of rhetori-
cal relations between nuclei. It indicates that there
is no relation that could describe the connection
between sentences (Jiang et al., 2019). In news-
paper articles, this lack of connection is very rare.
However, in student essays the lack of coherent
rhetorical relations is common because of the wide
range of experience among developing writers.

4.3 Designing Feedback from RST Relations

Three veteran secondary English teachers provided
feedback and commentary on the structure and flow
of 18 essays from the Turnitin dataset. Their com-
ments reveal a handful of organizing principles and
focal points for structure-driven feedback that pro-
vide guidance on how an RST style analysis could
form the foundation for automated feedback.

In particular, almost all of the suggestions for
improvement highlight a lack of connection or a
break in flow between units of the essay. Some
of these comments addressed breaks between con-
secutive sentences within a paragraph, for example
“Strange jump in focus here... The rest of the in-
tro does not lead to this statement naturally,” and
“Immediate departure from the initial question in
sentence 1.” Other comments, in contrast, deal
specifically with the logical flow between whole
paragraphs: “Transitions between paragraphs are
relatively non-existent and make for pretty large
jumps from one topic to another” and “To keep the
organizational structure clear, this needs a more
explicit connection to the introduction and thesis,
including attention to the two distinct texts.”

These comments, anchored to sentences or para-
graphs in the student texts, roughly correspond to
the locations of JOINT relations in the gold RST
annotations. For example, Figure 2 is part of a gold

RST annotation of student-generated essays. This
essay has five paragraphs. The subtree (sentence
14-18) is a part of the third paragraph arguing that
parents should guide children in evaluating "inap-
propriate" books, instead of pushing libraries to ban
them. While sentence 18 is related to the overall ar-
gument in this paragraph, the connection between
sentence 18 and other sentences is not clear. Po-
tential automated feedback could be: “There may
be ideas in this sentence that don’t clearly relate
to the paragraph’s focus. Connect these ideas to
the paragraph’s main point by adding transition
words, or consider whether this sentence should be
revised or removed.” This example shows that iden-
tifying the missing link (referring to the relation
of JOINT) holds the promise of triggering mean-
ingful revision actions. As our previous studies
suggested that teachers viewed the structure of a
developing essay as an archipelago of internally
cohesive text islands[cite book chapter], we seek to
validate RST’s suitability to represent this segmen-
tation. Using the locations of teacher comments as
gold-truth segment boundaries using WindowDiff
(Pevzner and Hearst, 2002) and Beeferman’s Pk
(Beeferman et al., 1999). Both WindowDiff and Pk
range from 0 to 1 where a lower value indicates a
lower probability that a given sentence is assigned
to an incorrect segment, in practice a value of 0.2
to 0.4 is considered reasonable in state-of-the-art
systems (Badjatiya et al., 2018). We observe a
mean WindowDiff of 0.31 and Pk of 0.34 between
these teacher-reviewed essays and the RST JOINT

annotations. This suggests a plausible upper bound
on an RST parser’s ability to identify these critical
boundaries.

5 Improving and Validating RST Parsing
for Student Writing

In this section, we begin with and then improve on
the best previously published approach in automat-
ing RST analysis for writing. Transition parsers
are common among state-of-the-art models for dis-
course parsing with RST in the past several years.
Their power lies in their ability to make strong lo-
cal decisions about the next action the parser must
take given an embedding that, because of recurrent
neural models, has the capacity to contain features
from the whole document. However, recurrent neu-
ral networks often do not in practice retain suffi-
cient context for long range dependencies (Bah-
danau et al., 2014; Khandelwal et al., 2018). We
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Figure 3: Diagram of neural transition parser model architecture for RST parsing augmented with our changes
(shaded purple and green). The parent parser state (purple) has the same basic architecture as the rest of the diagram
with the exception of having another parent parser state component. The dotted line from EDU Embedding to Most
Nuclear EDU Embedding (green) indicates choice made by the model for which EDU to use.

address this by providing an additional embedding
for the predicted most nuclear sentence of the doc-
ument to provide a reference point for the parsing
decisions. Furthermore, inspired by neural interpre-
tation techniques, we further augment the model
with a two stage parsing approach that allows the
second stage of the model to learn from mistakes
made by the first.

5.1 Neural Transition Parsing Model

The model presented in this work is based on a
recurrent neural network based RST parser (Yu
et al., 2018). For the benefit of the reader this
subsection provides an overview of the base model,
however, for a full mechanical description see their
paper. Our augmentations of the model follow in
the remaining subsections.

The model constructs a neural representation
that is used to decide whether to make a SHIFT

or REDUCE action analogous to those in a simple
LR-parser (Knuth, 1965). Furthermore, the model
maintains a neural analogue to a stack and buffer
to track progress through the parse, which is illus-
trated in the unshaded regions of Figure 3.

EDU Embedding: Each sentence in the document
is embedded using a BiLSTM over word embed-

dings for each word in the EDU. The final states of
the forward and backward LSTMs are used as the
EDU representation.

Dependency Parse Embedding: In addition to the
embedding generated by the BiLSTM, an embed-
ding of syntactic information was included (Braud
et al., 2017; Mabona et al., 2019). The information
was integrated via concatenating the produced arc
embedding from the dependency parse obtained
from a strong neural dependency parser (Dozat and
Manning, 2017) with the output from the BiLSTM
above.
Buffer: The buffer is an LSTM that inputs each
EDU embedding from the end of the document to
the beginning. Each state is stored in memory such
that it can be accessed sequentially as items are
removed from the buffer. Each state of the buffer
is therefore an aggregate representation of all of
the EDUs from the current EDU to the end of the
document.

Stack: The stack is a Stack LSTM (Swayamdipta
et al., 2016). The stack state is updated via the
result of an MLP given the two stacks states popped
off the stack during a REDUCE action procedure.
If an item is popped off the stack, the stack state
is updated to the output state of the LSTM of the
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previous cell.
Action and Relation Prediction: At each time-
step the parser either predicts a SHIFT action or
one of the many REDUCE actions. Each RE-
DUCE action has an associated relation label and
predicting the correct REDUCE action amounts to
choosing the correct relation for the current subtree.
The prediction is made by a multi-layer percep-
tron (MLP) that is provided a concatenation of the
EDU embedding, the current neural state of the
buffer, the current neural state of the stack, and
additional neural representations that will be de-
scribed in depth in the next sections. The input
layer to the MLP will be referred to as the parser
state at a given time. For each action, a determinis-
tic procedure is executed in line with the transition
parsing paradigm. In the case where there is only
one possible action, the model is forced to use that
action without choice.

5.2 Most Nuclear EDU Embedding
To provide the model a reference for making pars-
ing decisions for a given document, we include
in the parser state an EDU embedding of the pre-
dicted most nuclear EDU. Formally, we consider
the most nuclear EDU the leaf node of the RST tree
that is reached when, starting at the root node, one
follows the direction of nuclearity at each branch.
For multinuclear nodes, we arbitrarily take the left
branch. In Figure 1, the most nuclear EDU would
be “The coyote is building an elaborate trap.”

The most nuclear EDU SNUC is selected by the
model by choosing the EDU with the maximum
score computed by an MLP given the EDU em-
bedding and choosing the highest scoring sentence.
This can be formalized as:

SNUC = argmax
s∈S

W · s

Where S is a set of all of the sentence EDU com-
puted by the neural transition parser.

The most nuclear EDU embedding is constructed
via a BiLSTM in much the same manner as the
EDU embeddings in the neural transition parser.
This BiLSTM has its own set of learned parameters,
though it uses shared word embeddings as those
used for the EDU embeddings.

Because there is only one predicted most nuclear
EDU for a document, the effective training samples
for this embedding is equal to the number of doc-
uments in the training set rather than the number
of EDUs. Because of this, it is necessary to restrict

the size of the embedding to prevent overfitting.
Furthermore, the error from the RST parsing task
cannot backpropagate to W through the argmax so
we include a separate error signal for predicting the
correct most nuclear EDU. The most nuclear EDU
of a document can be trivially obtained from the
gold trees.

5.3 Parent Parser State

Recent work has shown there is evidence that neu-
ral models may be learning general heuristics and
memorizing exceptions to those heuristics that in-
crease performance on a given task (Fiacco et al.,
2019a). Assuming this is the case, we attempt to
exploit this behavior to offload some of the com-
plexity of learning the RST discourse parsing task
into multiple phases of training. A fully trained
parent model, which includes all of the features in
the previous sections, is executed concurrently to
the child model and a subset of the parser state of
the parent model is concatenated with the parser
state of the child model.

The parser state for the parent model is updated
along with the child model using the action chosen
by the child model, though with its own stack and
buffer representations. This ensures that even if the
parent and child models diverge in their predicted
actions, the parser states are consistent. Maintain-
ing this consistency is important for the neural tran-
sition parser as the representation of the stack can
contain a representation of a larger segment of the
document than just a single EDU.

Neuron Selection via Pathways: For datasets with
noisy data, we prune the parser state from the par-
ent model to only use the dimensions of the state
that correspond to the neurons that are part of the
neural pathways that explain the most variance of
the model. The intuition for this pruning is that the
groups of neurons that explain the largest amount
of variance in the model will regularize the model
via eliminating overfitted parameters.

These neurons are obtained by extracting the
parser state for each training instance and construct-
ing an activation matrix with the dimensions of the
parser state as columns and the training instances
as rows. A PCA is performed over the matrix, and
the subset of resulting factors that cumulatively ex-
plain more than a tunable threshold of the variance
are chosen as the subset of pathways of interest.
For each selected factor, the factor loadings of each
neuron are computed and the N neurons with the
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highest loadings are added to the set of neurons
to be transferred. The value of N can be tuned by
optimizing performance on a validation set.

5.4 Training
There are three phases to the training of the model:
parent model training, neuron selection, and child
model training. The procedure for training the par-
ent and child models are identical except for the
usage of the parent neurons as features for the child
model. The neuron selection phase is only applica-
ble for the noisier Turnitin data and is described in
the Parent Parser State section.

There are three objectives that are optimized us-
ing negative log likelihood loss during the model
training. The first training objective (Lm) is predict-
ing the most nuclear EDU at the document level.
The second objective (Ln), at the action level, is
to predict the nuclearity of each relation given the
parser state. This objective affects how the model
composes the embeddings when combining via a
REDUCE action. The final training objective, (La),
is to choose the correct action given the parser state.
We do not fine tune the embedding from the depen-
dency parser during training. The third phase of
training follows the same procedure as the first
phase with selected neurons from the parent parser
state included. The final loss for a document is
described as:

L = αmLm +αn ∑
A

Ln +αa ∑
A

La

where A is the set of all actions required for the
parse and each α is a scaling factor that can be
tuned for each loss.

For noisy datasets, an additional step is required
for the training procedure; the neurons that will be
used by the child model must be selected. This is
performed by computing the neural pathways of the
parent model using the parser state via PCA. The
pathways that explain the most variance are chosen
and the heaviest loaded neurons on those pathways
are selected. During training, no gradient is passed
back to the parent model so the neuron selection
process need not be continuous nor differentiable.
Training the child model thereby uses the parser
state of the parent model as though it were a fixed
input.

6 Experiments

We provide three quantitative evaluations of our
method: first, in order to compare our parser to

previous RST parsers, we train and evaluate our
parser on the English RST-DT corpus. Second, we
provide an ablation study of the added components
of our model along with the model we used as a
base. The ablation study uses the same test set as
the first experiment, so results are directly compa-
rable. Lastly, we train another version of our model
on the Turnitin dataset, which has a very different
set of properties when compared to the RST-DT
corpus. This last set of experiments is designed
to test the ability of the model to handle unpol-
ished, less structured text. The model is compared
to the strongest baseline from the RST-DT corpus
retrained on the Turnitin dataset.

6.1 Evaluation Metrics
The evaluations of this work follow the setup de-
scribed by a recent metric enhancement for RST
(Morey et al., 2017) and, for consistency, only com-
pare to models that were included in that repli-
cation study or use the same evaluation method.
The reason for this restriction is that it was found
that RST Parseval, the previous standard evaluation
metric, artificially raised scores and had been used
inconsistently (Morey et al., 2017). Our models
are therefore evaluated using micro-averaged F1
scores on labeled attachment decisions for the four
standard metrics: span attachments (S), span at-
tachments with nuclearity (N), span attachments
with relations (R), and span attachments with both
nuclearity and relation labels (F).

6.2 Implementation Details
The models were implemented using the DyNet
neural network toolkit (Neubig et al., 2017). Train-
ing was performed on a NVIDIA GTX 1080. Early
stopping was performed based on the F1 scores
of the model without an oracle on the develop-
ment set, with a patience of 3. The ADAM opti-
mizer (Kingma and Ba, 2014) is used for training
with a learning rate of 0.001. Dropout (Srivastava
et al., 2014) is used for regularization and a dropout
of 0.3 is applied to each hidden layer. All tunable
α hyperparameters were left at 1.

For the RST parsing models, word embeddings
for both the parent and child models were randomly
initialized with 128 dimensional vectors. Each
LSTM in the parent model had 256 dimensions
while in the child model, each LSTM had 512 di-
mensions. For neuron selection, the 16 neurons
with the highest factor loadings from the PCA were
chosen for each pathway that explained more than
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F1 Scores

Model Span Nuclearity Relation Full

JI & EISENSTEIN (2014)(JI AND EISENSTEIN, 2014)* 64.1 54.2 46.8 46.3
FENG & HIRST (2014)(FENG AND HIRST, 2014A)* 68.6 55.9 45.8 44.6
LI ET AL. (2016) (LI ET AL., 2016)* 64.5 54.0 38.1 36.6
BRAUD ET AL. (2016) (BRAUD ET AL., 2016)* 59.5 47.2 34.7 34.3
BRAUD ET AL. (2017)(BRAUD ET AL., 2017)* 62.7 54.5 45.5 45.1
MABON ET AL. (2019) (MABONA ET AL., 2019) 67.1 57.4 45.5 45.0
ZHANG ET AL. (2020)(ZHANG ET AL., 2020) 67.2 55.5 45.3 44.3

OUR MODEL 71.7 60.3 44.5 44.3
-DEPENDENCY PARSE EMBEDDINGS 71.2 58.4 43.6 43.6
-PARENT PARSER STATE 70.2 57.2 43.0 42.9
-MOST NUCLEAR EDU EMBEDDINGS 68.4 57.2 42.7 42.4
TRANSITION PARSER ONLY 67.2 53.7 39.9 39.8

Table 1: RST-DT test set micro-averaged F1 scores for labeled attachment decisions for our model with varying
components removed. Parsers from previous work are reported as they appear in their original publication, with the
exception of those marked with an * where the reported results come from the replication study with the improved
metric (Morey et al., 2017).

1% of the model variance. The number of dimen-
sions for the PCA was tuned to explain 90% of the
variance in neuron activations.

The dependency parser was pretrained on Uni-
versal Dependencies v1 (Nivre et al., 2016) derived
from the Penn Treebank 3 (Marcus et al., 1999)
using version 3.9.2 of the Stanford Universal De-
pendency Converter. Word embeddings and label
MLP dimensions were set to 64 while the recur-
rent layers and the arc MLP layers were set to 128.
Choice of optimizer, dropout, and early stopping
criteria were the same for the dependency parser
pretraining.

7 Evaluation

7.1 Parsing Results

Table 1 shows the performance across parsers on
the labeled attachments metrics for the RST-DT
test set. We include reported metrics for several
models beyond the best baseline in order to provide
a comprehensive view of recent work in the field,
including other neural based models. The best ver-
sion of our model gains a 4.5% increase in F1 score
for the span metric (S) and a 7.9% increase in F1
score for combined span and nuclearity metric (N)
in comparison with the Feng Hirst (Feng and Hirst,
2014a) model, the next best model for those met-
rics. The increase was gained with a competitive,
albeit 2.8% lower span and relation metric (R).

Furthermore, we achieve these results with only

the dependency parser as external data. Pretrained
embeddings of any kind were not required for either
the dependency parser nor the final RST parser and
were found to not contribute empirically. Using
pretrained GloVe embeddings (Pennington et al.,
2014) do not significantly improve the performance
over random initialization.

7.2 Ablation
We evaluated the model with key components re-
moved to evaluate the effects of each of those com-
ponents on the final performance of the model. The
components ablated were the dependency parser
embedding, the most nuclear EDU embedding, and
the parent parser state. These results are presented
in the lower section of Table 1.

From the results we see that the largest contribu-
tor to our model’s performance was the inclusion
of the most nuclear EDU co-task without which,
the parser does not outperform the previous state-
of-the-art on any metric. The parent model’s parser
state as a feature for action and relation prediction
had the next largest effect with the span and nucle-
arity metric (N) falling to the same level as when
the most nuclear EDU embedding was not used.
Lastly, the syntactic information carried in the de-
pendency parser embedding contributed the least,
but still had a significant effect on all metrics.

We also present the performance of the base
model, our implementation of the base neural tran-
sition parser (Yu et al., 2018) with the same settings
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F1 Scores

Model Span Nuclearity Relation Full

RST-DT
JI & EISENSTEIN (2014)(JI AND EISENSTEIN, 2014)* 64.1 54.2 46.8 46.3
OUR MODEL 71.7 60.3 44.5 44.3
OUR MODEL (W/ NEURON SELECTION) 70.6 59.7 44.4 44.3

Turnitin Corpus
JI & EISENSTEIN (2014)(JI AND EISENSTEIN, 2014)* 56.1 33.4 1.2 1.1
OUR MODEL 44.1 22.9 14.0 12.4
OUR MODEL (W/ NEURON SELECTION) 47.6 28.4 18.0 17.0

Table 2: Test set micro-averaged F1 scores for labeled attachment decisions for our model on the RST-DT corpus
and the Turnitin dataset. The models were evaluated on each dataset both with and without pruning the parent parser
state (W/ NEURON SELECTION).

as each of the other models from the ablation study.
While it has competitive performance to prior work
on the span only metric (S), all of the metrics are
considerably lower than the final model. All ab-
lation conditions were significantly different from
the final model with p < 0.05.

7.3 Model Robustness with Neuron Selection

As our goal is to facilitate automatic essay feed-
back with RST, we evaluated our model, as well as
the best performing model for predicting Relations,
on the Turnitin dataset to test the ability of each
model to handle the less consistently structured
student writing data. Table 2 shows a comparison
of the model performance on both the RST-DT
corpus and the Turnitin dataset. For each dataset,
we include versions of our model that use neuron
selection as described in the Parent Parser State
section and without. Each model was trained on
the RST-DT dataset and fine-tuned on the Turnitin
Corpus. All models saw significant degradation of
performance on the student writing data as com-
pared to the Wall Street Journal articles. Our model
variations both has significantly (p < 0.001) less
loss of performance for Relation prediction com-
pared to the previous best performing model. Our
model that used the neuron selection significantly
(p < 0.001) increased performance on the Turnitin
dataset compared to the model without.

Qualitatively, the JOINT relation was the most
problematic for each parser as it was being consid-
erably over-generated despite being only the 5th
most common relation type. For variably struc-
tured writing such as student essays, understanding
these conditions would likely go the furthest for

improving RST parsing performance.

8 Conclusion

We presented two principal augmentations to neu-
ral transition parsers for RST that resulted in a 7.9%
increase in span prediction and a 4.5% increase in
nuclearity prediction. These improvements were
made while remaining competitive on relation pre-
diction, though no improvement was observed for
that metric. Furthermore, we evaluated our model
on an alternate, noisier dataset. We found that on
this dataset our model had more accurate relation
predictions than past approaches from the inclusion
of a neuron selection step between the training of
parent and child models in a boosting-like neural
ensemble enhancement.

For future work, we want to empirically ver-
ify that the prediction of structural breaks (JOINT

relations) in student writing align with teacher-
identified organization feedback. This can enable
automated essay feedback on the absence of struc-
ture, providing support where it’s needed most.
Furthermore, conveying the necessary information
contained within RST trees to students and teach-
ers provides an additional rich area of inquiry. It
is worthwhile to further explore how prospective
users respond to the technological instruction sup-
port to facilitate students’ ability to locate places
for revision and teachers’ ability to integrate the
automated feedback into their instruction.
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