BIT-Xiaomi’s Simultaneous Translation System for
AutoSimTrans 2022

Mengge Liu'* Xiang Li?
Silin Li'

Bao Chen'!
Yuhang Guo'f

Yanzhi Tian! Tianwei Lan!

Jian Luan®? Bin Wang?

'Beijing Institute of Technology, Beijing, China
2Xiaomi AI Lab, Beijing, China

liumengge@bit.edu.cn

lixiang2l@xiaomi.com

{chenbao,tianyanzhi,lantianwei,lisilin,guoyuhang}tabit.edu.cn
{luanjian,wangbinli}axiaomi.com

Abstract

This system paper describes the BIT-
Xjaomi simultaneous translation system
for Autosimtrans 2022 simultaneous trans-
lation challenge. We participated in three
tracks: the Zh-En text-to-text track, the
Zh-En audio-to-text track, and the En-Es
test-to-text track. In our system, wait-k is
utilized to train prefix-to-prefix translation
models. We integrate streaming chunking
to detect segmentation boundaries as the
source streaming reading in. We further
improve our system with data selection,
data augmentation, and R-Drop training
methods. Results show that our wait-k im-
plementation outperforms the organizer’s
baseline by at most 8 BLEU score and our
proposed streaming chunking method fur-
ther improves by about 2 BLEU score in
the low latency regime.

1 Introduction

Simultaneous translation (Cho and Esipova,
2016; Yarmohammadi et al., 2013; Ma et al.,
2019), is a task in Machine Translation (MT),
which intends to provide low latency transla-
tion in real-time scenarios. To achieve low la-
tency translation, the translation system needs
to begin translating before the end of source
sentences, which can be viewed as prefix-to-
prefix translation (Ma et al., 2019). Simulta-
neous translation is widely used in real-time
translation scenarios such as simultaneous in-
terpretation, online subtitles, and live broad-
casting. In these scenarios, low latency may
have equal or even higher priority than trans-
lation quality.

In simultaneous translation, the most chal-
lenge is the balance of translation quality and

*The work was done during the author’s internship
at Xiaomi.

 Corresponding author.

34

latency. Low latency translation requires be-
ginning translation with insufficient source in-
formation, which may cause incorrect trans-
lation results. How to find a simultaneous
policy to balance quality and latency is the
most challenging question. On another hand,
in most cases, the standard machine transla-
tion model is trained on full sentences, which
can achieve good performance in full-sentence
evaluation. But for prefix-to-prefix inference,
which is crucial for simultaneous translation,
the standard machine translation model al-
ways perform poorly.

Previous methods for simultaneous transla-
tion can be classified as the fixed policy and
the adaptive policy according to different si-
multaneous policies. Fixed policy uses fixed-
latency simultaneous strategy, for example,
set value K, and forces the translation to lag
behind source for K tokens (Ma et al., 2019).
The adaptive policy needs an agent module
to perform adaptive simultaneous translation.
The agent will consider the current translation
state, including the source prefix and the hy-
pothesis prefix, to decide whether to output
new tokens at the current state (Gu et al.,
2017; Arivazhagan et al., 2019; Ma et al.,
2020). Chunk-base (Xiong et al., 2019; Zhang
et al., 2020) simultaneous translation is a spe-
cial adaptive policy, which makes a decision
only based on the source prefix.

In our system, we propose a streaming
chunking method that can be combined with
a fixed wait-k policy. The streaming chunk-
ing method can significantly improve trans-
lation quality with little latency increase in
low latency regions. We train a segmenta-
tion model to detect boundaries in streaming
sources and employ a wait-k policy to decide
output token numbers. We pre-train trans-
former models with multi-path wait-k on a

Proceedings of the Third Workshop on Automatic Simultaneous Translation, pages 34 - 42
July 15-16, 2022 ©2022 Association for Computational Linguistics

mailto:liumengge@bit.edu.cn
mailto:lixiang21@xiaomi.com
mailto:chenbao@bit.edu.cn
mailto:tianyanzhi@bit.edu.cn
mailto:lantianwei@bit.edu.cn
mailto:lisilin@bit.edu.cn
mailto:guoyuhang@bit.edu.cn
mailto:luanjian@xiaomi.com
mailto:wangbin11@xiaomi.com

Track Corpus #Sentence Pairs
BSTC 38K

Zh-En o 9M

En-Es UN Parallel 22M
BSTC 68h

Zh ASR Alshell 150h

Table 1: Data statistics. Parallel corpus is counted
by sentence pairs. ASR corpus is counted by audio
time (hour).

large general corpus and fine-tune with single
k on a small domain corpus. We augment the
general corpus and domain corpus with Back-
Translation (BT) and Front-Translation (FT),
and further augment the domain corpus with
character-level pseudo ASR error. In train-
ing we incorporate R-Drop (liang et al., 2021)
method to improve translation quality. In
text-to-text tracks, we use text streaming in-
put provided by the organizer. In the audio-to-
text track, we train our ASR system to tran-
script audio into the streaming text as trans-
lation input.

The remainder of this paper is organized as
follows. We describe the techniques employed
in our system and the methods we propose in
Section 2. In Section 3 we show our experi-
ment settings and results, including data and
model. Finally, we conclude this paper.

2 Methods

In this section, we describe the data, the uti-
lized prefix-to-prefix translation model, and
the proposed streaming chunking method.

2.1 Data

We describe the data used in our system
from the following aspects: statistics, pre-
processing, filtering and data-augmentation.
All allowed bilingual training sets are em-
ployed, including the BSTC (Zhang et al.,
2021) and the CWMT21 for the Zh-En track,
the UN Parallel Corpus for the En-Es track.
For the ASR model in the Zh-En audio-
to-text track, we use the BSTC and the
Alshell (Hui Bu, 2017) corpus for training.
Data statistics are shown in Table 1.
Pre-processing. 1'is conducted
to normalize and tokenize English and Span-

Sacremoses

Thttps://github.com/alvations/sacremoses

35

ish sentences. Jieba? is used to segment Chi-
nese sentences. And redundant spaces in the
text are removed. After tokenization, we ap-
ply Subword-nmt? to learn byte-pair encoding
with 32K operations.

Data filtering. The noises in the original
data may bring a negative impact on trans-
lation quality, so we filter the training set as
following steps:

o First, the parallel corpus is filtered by
hand-crafted rules. Sentences that con-
tain less than 30% linguistic words will
be viewed as noise sentences. When any
sentence in a sentence pair is judged as
noise, this pair is discarded. For Chinese
sentences, we consider Chinese characters
as linguistic words. For En or Es, we con-
sider words only containing alphabet char-
acters as linguistic words.

Second, we utilize fast_align* to filter
out poorly aligned sentence pairs. We
calculate align scores for each sentence
pair and filter out sentence pairs with low
scores. Align score threshold is set as —7.

Third, language identification is applied
with 1angid®. Sentences in the wrong lan-
guages are viewed as low-quality samples
and removed.

Finally, we discard duplicate pairs and re-
move the pair with a length ratio greater
than 3.0 or the sentence with a length
more than 200.

Data selection Because the bilingual corpus
utilized in training is not all from the speech
domain, we use a language-model-based data
selection method select domain data, which
is similar to methods proposed by Moore and
Lewis (2010). We train two 5-gram language
model on source sentences with KenLM®, one on
the BSTC corpus (denoted as Im), another
on the CWMT corpus (denoted as Im°4t).
Than for each sentence in the CWMT cor-
pus, we compute the perplexity distances with
two language model, which denoted as domain

2https://github.com/fxsjy /jieba
3https://github.com/rsennrich /subword-nmt
“https://github.com/clab/fast_ align
Shttps://github.com/saffsd/langid.py
Shttps://github.com/kpu/kenlm

https://github.com/alvations/sacremoses
https://github.com/fxsjy/jieba
https://github.com/rsennrich/subword-nmt
https://github.com/clab/fast_align
https://github.com/saffsd/langid.py
https://github.com/kpu/kenlm

score for the sentence ppl_score = —(ppl™
ppl°®). We sort the corpus by domain score
and remove the pair with a large domain dis-
tance.

Data augmentation As the training corpus
is limited, we utilize back-translation (BT)
and front-translation (FT) to augment the
training corpus. We first train two translation
models in two directions: Zh-En and En-Zh,
then generate pseudo training corpus in two
directions.

2.2 R-Drop

R-Drop’ is a method to improve translation
quality in machine translation, which can
be easily incorporated with our translation
model. All models in our system are trained
with the R-Drop algorithm proposed by liang
et al. (2021).

2.3 Wait-k

Wait-k is a simple and effective method for
fixed-policy simultaneous translation, which
can train prefix-to-prefix translation ability for
We build our system
based on fairseq, which provides a wait-k
baseline similar to efficient wait-k (Elbayad
et al., 2020). Two-stage training is employed
to achieve better performance in the speech
domain. Model is firstly trained on large scale
parallel corpus with multi-path wait-k, which
randomly selects a value of k within the inter-
val (for example, [k, k+n]) for each training
batch (denoted as wait (k) -(k+n)). Secondly,
we fine-tune the model with a small speech do-
main parallel corpus with simple wait-k (de-
noted as wait(k)) or multi-path wait-k.

transformer models.

2.4 Streaming Chunking

In a streaming translation system, the source
is received token by token. The wait-k pol-
icy will try to translate each time source is
ahead of target for k tokens, which may bring
some mistakes when the source stops at a par-
tial phrase. Especially for Chinese streaming
input, in which source streaming is growing
by character. So some source prefixes may
contain incomplete word pieces which may
cause misunderstanding and incorrect transla-
tion. A stream case with error source prefixes

"https://github.com/dropreg/R-Drop

36

is shown in Table 2. We propose a streaming
chunking method, which employs a streaming
segmentation model to detect word boundaries
on-the-fly in streaming input.

2.4.1 Streaming Segmentation Model

We build our streaming segmentation model
base on chinese-roberta-wwm-ext® pro-
posed by Cui et al. (2021). Compared with a
vanilla Chinese word segmentation model, the
streaming segmentation model does not need
to obtain the complete sentence and can seg-
ment words without introducing an additional
delay. We treat the streaming word segmenta-
tion task as a sequence classification task and
use the final hidden state of the classification
token ([CLS]) to perform binary classification
through a 3-layer fully connected network to
determine whether the current source sentence
prefix end with complete words. We construct
training data using transcribed sentences from
the BSTC training set. The complete sen-
tences in the training data are segmented us-
ing pkuseg (Luo et al., 2019). The source sen-
tence prefixes ending with word boundaries are
considered positive examples, while the rest of
the source sentence prefixes are negative exam-
ples.

2.4.2 Combine with wait-k

We utilize the streaming segmentation model
to detect word boundaries and only enable
the wait-k policy at the word boundaries to
determine word numbers that need to trans-
late. Then the prefix-to-prefix translation is
performed, which can avoid translating on
source prefix containing incomplete words. Al-
gorithm 1 gives the pseudo code of our pro-
posed method. And Figure 1 shows how the
streaming segmentation model works with the
wait-k inference.

2.5 Evaluation

We evaluate our simultaneous translation
model in two aspects. First is translation qual-
ity, we compute BLEU (Papineni et al., 2002)
score with merged document translation re-
sults. Second, for latency, we utilize Average
Lagging (AL) (Ma et al., 2019) to represent
the text lagging of our model compared to

8https:/ /huggingface.co/hfl /chinese-roberta-wwm-
ext

https://github.com/dropreg/R-Drop
https://huggingface.co/hfl/chinese-roberta-wwm-ext
https://huggingface.co/hfl/chinese-roberta-wwm-ext

stream-id | char-stream word-stream
1 7l AL
2 i/ 9=1 gilis
3 =P Y=
4 AR E SEE AR SEE
5 AR E Sl AR e Selede
6 AR E SEle s AR E Sele s
7 AR E SEle e AR SElef s
8 AR ek LN AR e e
9 AR ESElee e a4 — BB SElefe a4
10 AE LN —T1 WE eI TeNg—T
11 BB E e e H— T e e AN H— T
12 e selefeseng— T, A W e de e —T
13 A E e EeNA—FRAD | BEEREENA - TRAD
na | shou xian | ne | wo | xian | jie shao | yi xia | wo zi ji
full sentence | AF | EHIE [WE|FK| & | N | —TF[HKEC
then | first | - | T | - |introduce| - | myself

Table 2: Case analysis of incomplete streaming in a Chinese sentence. Char-stream presents sentences by
characters. Word-stream presents sentence by word. The prefixes in red color mean error in char-stream,
which contains incomplete word-piece. The partial word piece may cause misunderstanding and incorrect
translation.

yong | yuin xiang | xin méi hdo de shi qing jiang fa shéng

dowees ok |m | MBI 2|7 0| E]H én B lx | &

S S N U N N N
Streaming Segmentation Model

T N\ L

Target: Always believe | that beautiful things are coming

Figure 1: This example shows how the streaming segmentation model works with a wait-k model. The
solid lines are the translation points of our proposed method, and the dashed lines are the additional
possible translation points of the wait-k model.

37

12

Algorithm 1: Wait-k decoding with
the streaming chunking method

Input: the translation model My, the
chunking model M., the source
sequence z, wait-k lagging K

Output: The translated sentence 3

Initialization: the read token sequence
& =[], the output sentence y = [],the
incomplete word read x, = "

while |3 # '</s>" do

if |Z| — |g| > K then

tokenpeqt = My(Z,9)

Yy =y + tokenpeqt

else

1, = xp + x.next_char()

// x, is a complete word

if M.(z,z,) then

+ Zp

% — "

end

=

11
end

end
return

13
14

ideal simultaneous interpretation, which is cal-
culated in the following equation:

-

L it
> 90) N

j=1

aL=1

T

(1)

where 7 = argmtin[g(j) = |1X]]
v =1|Yl]/|X]

3 Experiments and Results

In this section, we describe our experiment set-
tings and results on all the three tracks we par-
ticipate in.

3.1 Zh-En text-to-text track

For the Zh-En text-to-text track, we introduce
our experiments in detail, including model
configurations, data, as well as results of a
strong wait-k baseline and streaming chunking
method.

3.1.1 Model Configurations

In our experiment, we train transformer-big
models with the same parameters in Vaswani
et al. (2017). The token-level batch size is
about 100k on 8 GPUs for pre-training in all

38

experiments. The learning rate is set as 5e-4
for pre-training and 5e-6 for fine-tuning, con-
trolled by Adam optimizer (Kingma and Ba,
2015). We pre-train the model for 100000
steps and save the model every 2000 steps. We
fine-tune the model for 10000 steps and save
every 200 steps (batch size is about 30k).

3.1.2 Data

We filter the BSTC corpus and the CWMT cor-
pus with methods described in Section 2.1 and
apply language-model-based data selection to
the CWMT corpus. For the first edition stan-
dard transformer model, we mix the BSTC cor-
pus and the CWMT corpus for pre-training,
using the BSTC corpus for fine-tuning (de-
noted as M1). And following is the detail of
the M1 model.

For the pre-training stage, we show our re-
sults in each filtering step in Table 3. We
directly mix the CWMT and the BSTC par-
allel data as the DO corpus. The rules-filter
discards noise data containing few linguistic
words, which improves about 1.3 BLEU. In
align-langid-filter, we drop sentence pairs with
a align score less than —7 and sentences in the
wrong languages. In PPL-selection, we use
ppl__score computed by the language model
to sort sentence pairs and drop sentence pairs
with a ppl__score larger than 8000. With align-
langid-filter and PPL-selection, 1.5M sentence
pairs are dropped and nearly no BLEU de-
scend is observed. We get the D1 corpus af-
ter all the filtering and selection. Further, we
up-sample the BSTC corpus 5 times to enlarge
the proportion of domain data. The R-Drop
method is incorporated and we choose a larger
dropout value (default dropout 0.1). Results
in 4 show that the R-Drop (o = 5) method
significantly improves BLEU, and more in-
crease is observed as we employ these meth-
ods together. For fine-tuning, we filter the
BSTC corpus by hand-crafted rules and train
with the consistent R-Drop method in the pre-
training. Finally, we integrate the pre-training
and the fine-tuning to train the M1 model,
and the performance on the development set
is shown in Table 7.

As the training corpus is limited, we utilize
data augmentation methods. We perform data
augmentation with the M1 model, contain-
ing forward-translation (FT) and backward-

Pre-training (data) Data statistic dev (SacreBleu)

Orig BSTC+CWMT (D0) 9.1M 16.82
+rules-filter 7.7TM 18.09
+align-langid-filter 7.2M 18.04
+PPL-selection (D1) 6.2M 17.99

Table 3: Data filtering and selection in the pre-training stage. BLEU is computed by ScareBleu in sentence-level.
Filtering and selection methods are applied incrementally.

Pre-training (method)

Data statistic dev (SacreBleu)

BSTC+CWMT (D1)
+up-sampling
+dropout 0.25
+R-Drop (o = 5)

+up-sampling + dropout 0.25 + R-Drop

6.2M 17.99
6.34M 18.40
6.2M 18.59
6.2M 19.72
6.34M 21.48

Table 4:

ScareBleu in sentence-level.

translation (BT) on the pre-training and the
fine-tuning corpus. For the pre-training cor-
pus, we leverage the M1 model to perform
FT and BT on the D1 corpus, mixed with
D1 corpus as the augmented pre-training cor-
pus. Results in Table 5 show FT has better
performance than BT. For fine-tuning corpus,
we employ the M1 model to translate BSTC
corpus in forward and backward paths and
add all 5 beam results to the fine-tuning cor-
pus. What’s more, to strengthen the robust-
ness of the model, we add char-level augmen-
tation into the fine-tuning corpus, which con-
tains insertion, deletion, duplication, and ho-
mophone substitution. For homophone sub-
stitution, we use python-pinyin? to extract
homophone dictionary and substitute homo-
phone characters according to character fre-
quency. Results on the fine-tuning corpus are
shown in Table 6, which indicates that each
augmentation method is useful.

Finally, we add FT augmentation in pre-
training, add FT, and BT as well as charac-
ter augmentation in fine-tuning. The model
trained with augmented pre-training and fine-
tuning is denoted as the M2 models. Signifi-
cant improvement of the M2 model against the
M1 model could be observed in Table 7.

3.1.3 Wait-k Baseline

To improve prefix-to-prefix translation qual-
ity, we use wait-k training described in Sec-

“https://github.com/mozillazg /python-pinyin

39

Data statistic and BLEU on the development of our pre-training methods. BLEU is computed by

tion 2.3. Using the same training data of the
M2 model, we pre-train the model with multi-
path wait-k and fine-tune with simple wait-k
or multi-path wait-k. We report the results
of our model on the BSTC development set.
All trained model is listed in Table 8, and
we show the AL-BLEU curve of several mod-
els. We achieve good performance according
to Figure 2, in which our M2_wait1-9_waitbh
model exceeds the PaddlePaddle wait-5 model
by at most 8 BLEU. The model trained with
small k£ may achieve better performance in
the low-latency regime, but not perform well
in the high-latency regime. What’s more,
we ensemble the top-3 model in each infer-
ence k, which shows benefits across all latency
regimes. Same as Guo et al. (2022), standard
beam-search is utilized after the source stream
is finished. Our models achieve almost consis-
tent performance in high latency regime.

gt
il —--0-=%
;s___—-."_’___‘--—.'

-
M2_wait5-15_wait5-15
M2_wait5-15_wait9
M2_wait5-15_wait13
M2_waitl-9_waitl-9
M2_waitl-9_wait5
M2_ensemble
PaddlePaddle wait5

5 7 9 11 13 15 17 19
Average Lagging

Figure 2: Results of M2 wait-k models. Models are
list in Table 8. PaddlePaddle_wait5 is wait-k model
provided by organizer.

https://github.com/mozillazg/python-pinyin

Pre-training (Augmentation)

Data statistic (Pre-training) dev (SacreBleu)

M1 (only pre-train)
+FT pre-train
+BT pre-train

6.34M 21.48
10.95M 22.32
11.03M 19.90

Table 5:

Results of data augmentation in the pre-training stage. We use the M1 model to generate the FT and

BT augment data and mixed with the D1 corpus for pre-training.

Fine-tuning (Augmentation)

Data statistic (Fine-tuning) dev (SacreBleu)

M1 (fine-tuned on BSTC)
+5FT

+5BT

+char-aug

+5BT +5FT +-char-aug

36K 22.41
197K 22.92
211K 22.59
185K 22.80
525K 23.05

Table 6:

Results of data augmentation in the fine-tuning stage. The M1 model is leveraged to generate FT

and BT augment data, and beam 5 results are saved. For the char-aug, we use character-level augmentations
including insertion, deletion, duplication, and homophone substitution. The models in this table are all based on

the same pre-trained model.

Model dev (SacreBleu) dev (Mteval-v13a)
M1 22.43 27.26
M2 23.62 28.96

Table 7: Results of data augmentation on standard

transformer model. The M1 model is trained with pre-
training and fine-tuning. The M2 model leverage data
augmentation in both the pre-training and the fine-
tuning stage.

Model name Pre-train Fine-tune
M2_ wait5-15_ wait5 Kel[515] K=5
M2_ wait5-15_ wait7 Ke515) K=7
M2_ wait5-15_ wait9 Ke515 K=9
M2_ wait5-15_wait11 Kels15 K=11
M2_ wait5-15_ wait13 Kel515 K=13
M2_wait5-15_waitls5 K [5,15] K =15
M2 wait5-15 wait5-15 K € [5,15 K € [5,15]
M2_ wait1-9_ waitl Kel,99 K=1
M2_ waitl-9_ wait3 Kel,99 K=3
M2_ wait1-9_wait5 Ke[l,99 K=5
M2 waitl-9 waitl-9 Ke[1,9 K e€][l,9]

Table 8: Our wait-k models are pre-trained and fine-
tuned on the same data of the M2 model in Section 3.1.
We show the K value settings in pre-training and fine-
tuning wait-k training for all M2 wait-k models. Take
M2_ waith-15_waitd for example, we use multi-path
wait-k training with K € [5,15] for pre-training and
use simple wait-k with K =5 for fine-tuning.

40

3.1.4 Streaming Chunking

In this section, we add streaming chunking
methods. We first fine-tune our segmentation
model based on chinese-roberta-wwm-ext
on BSTC train set and get 92.0% accuracy and
93.7% F-score on the BSTC development set.
Then we employ our segmentation to perform
online source chunking to detect word bound-
aries. The results in Figure 3 show about 2
BLEU improvements in the low-latency regime
with a little increase in AL.

28 A

BLEU Score

N
o
L

v -e- M2_ensemble
/ -e- M2_ensemble_chunk

—
®

6 8 10 12 14 16

Average Lagging

Figure 3: Results of streaming chunking method.
M2__ensemble_chunk add streaming segmentation
model compare to M2__ensemble.

3.2 En-Es text-to-text track

For En-Es text-to-text track, we use the same
data filtering rules on the UN-parallel cor-
pus. Because of lacking speech corpus, we
didn’t perform data selection and augmenta-
tion. Standard and waitl-11 transformers are
trained and we report our results on the devel-

opment set in Figure 4.

66

BLEU Score

%
=)

/ -e- enes_track

v
&

8 10 12

6
Average Lagging

Figure 4: Results of En-Es text-to-text track. BLEU
is computed in document level with Mteval-v13a.

3.3 Zh-En audio-to-text track

In Zh-En audio-to-text track, we train a sim-
ple transformer ASR model'? with audio from
BSTC and Alshell. The audio wav files are
segmented by Silero-VAD(Team, 2021) and we
achieve 0.38 WER on development and 0.28
WER on the test. And we perform simultane-
ous decoding on the ASR transcriptions with
the same model and settings in the text-to-text
track. Results show on development Figure 5
shows that the translation BLEU dropped by
about 10 BLEU on audio input.

———--®
275 e
——‘_.‘
25.0 s O
o~
/
L 25 s
o /
(9] >
W 2001 @
)
w
Wrs
m =
15.0 JRESES ek s e
T -o- text_track
12,54 P e :
oris - audio_track
2 4 6 8 10 12 14 16

Average Lagging

Figure 5: Results of Zh-En audio-to-text track.
BLEU is computed in document level with Mteval-
v13a.

4 Conclusion

We elaborate on the BIT-Xiaomi simultane-
ous translation system in this paper. We in-
vestigate data filtering and augmentation to
enlarge high-quality corpus and utilize the R-
Drop method to improve translation quality.
We train our simultaneous translation models
Ohttps://github.com/facebookresearch /fairseq

/blob/main/examples/speech__to_ text/docs/
mustc__example.md

41

based on the wait-k strategy, and the stream-
ing chunking method is employed to avoid seg-
mentation errors in the source stream. The
results on Zh-En text-to-text track indicate
that the streaming chunking method can be
integrated with the streaming decoding and
improves translation quality. The slightly
worse quality on the audio track suggests that
the ASR error may affect translation quality
much. In the future, we will explore better
streaming ASR models and try more interest-
ing simultaneous policies to get better latency
and quality.

Acknowledgements

This work is supported by the Na-
tional Key RD Program of China (No.
2020AAA0106600).

References

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz,
Ruoming Pang, Wei Li, and Colin Raffel. 2019.
Monotonic infinite lookback attention for simul-
taneous machine translation. In Proc. of ACL.

Kyunghyun Cho and Masha Esipova. 2016. Can
neural machine translation do simultaneous
translation? arXiv preprint arXiv:1606.02012.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin,
Ziqing Yang, Shijin Wang, and Guoping Hu.
2021. Pre-training with whole word masking for
chinese bert. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing.

Maha Elbayad, Laurent Besacier, and Jakob Ver-
beek. 2020. Efficient Wait-k Models for Simul-
taneous Machine Translation. In Proc. of Inter-
speech.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and
Victor O.K. Li. 2017. Learning to translate in
real-time with neural machine translation. In
Proc. of EACL.

Bao Guo, Mengge Liu, Wen Zhang, Hexuan Chen,
Chang Mu, Xiang Li, Jianwei Cui, Bin Wang,
and Yuhang Guo. 2022. The xiaomi text-to-
text simultaneous speech translation system for
IWSLT 2022. In Proceedings of the 19th Inter-
national Conference on Spoken Language Trans-

lation (IWSLT 2022).

Xingyu Na Bengu Wu Hao Zheng Hui Bu, Ji-
ayu Du. 2017. Aishell-1: An open-source man-
darin speech corpus and a speech recognition
baseline. In Oriental COCOSDA 2017.

https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md

Diederick P Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In Proc.
of ICLR.

xiaobo liang, Lijun Wu, Juntao Li, Yue Wang,
Qi Meng, Tao Qin, Wei Chen, Min Zhang,
and Tie-Yan Liu. 2021. R-drop: Regular-
ized dropout for neural networks. In Proc. of
NeurIPS.

Ruixuan Luo, Jingjing Xu, Yi Zhang, Xuancheng
Ren, and Xu Sun. 2019. Pkuseg: A toolkit
for multi-domain chinese word segmentation.
CoRR.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie
Zheng, Kaibo Liu, Baigong Zheng, Chuanqgiang
Zhang, Zhongjun He, Hairong Liu, Xing Li, Hua
Wu, and Haifeng Wang. 2019. STACL: Simulta-
neous translation with implicit anticipation and
controllable latency using prefix-to-prefix frame-
work. In Proc. of ACL.

Xutai Ma, Juan Miguel Pino, James Cross, Liezl
Puzon, and Jiatao Gu. 2020. Monotonic multi-
head attention. In Proc. of ICLR.

Robert C Moore and William Lewis. 2010. Intelli-
gent selection of language model training data.
In Proceedings of the ACL 2010 conference short
papers.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for au-

tomatic evaluation of machine translation. In
Proc. of ACL.

Silero Team. 2021. Silero vad: pre-trained
enterprise-grade voice activity detector (vad),
number detector and language classifier.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Tukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Proc. of NeurIPS.

Hao Xiong, Ruiqing Zhang, Chuangiang Zhang,
Zhongjun He, Hua Wu, and Haifeng Wang.
2019. Dutongchuan: Context-aware transla-
tion model for simultaneous interpreting. arXiv

preprint arXiv:1907.1298.

Mahsa Yarmohammadi, Vivek Kumar Rangara-
jan Sridhar, Srinivas Bangalore, and Baskaran
Sankaran. 2013. Incremental segmentation and
decoding strategies for simultaneous translation.
In Proceedings of the Sixth International Joint
Conference on Natural Language Processing.

Ruiqing Zhang, Xiyang Wang, Chuanqiang Zhang,
Zhongjun He, Hua Wu, Zhi Li, Haifeng Wang,
Ying Chen, and Qinfei Li. 2021. BSTC: A
large-scale Chinese-English speech translation
dataset. In Proceedings of the Second Workshop
on Automatic Simultaneous Translation.

42

Ruiqing Zhang, Chuanqiang Zhang, Zhongjun He,
Hua Wu, and Haifeng Wang. 2020. Learning
adaptive segmentation policy for simultaneous
translation. In Proc. of EMNLP.

