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Abstract

This paper shows my submission to the Third
Automatic Simultaneous Translation Workshop
at NAACL2022. The submission includes Chi-
nese audio to English text task, Chinese text to
English text tast, and English text to Spanish
text task. For the two text-to-text tasks, I use the
STACL model of PaddleNLP. As for the audio-
to-text task, I first use DeepSpeech2 to trans-
late the audio into text, then apply the STACL
model to handle the text-to-text task. The sub-
mission results show that the used method can
get low delay with a few training samples.

1 Introduction

The submitted system consists of two parts. One is
audio to text system, which can translate Chinese
audio into English text. The second part is the text-
to-text model, which can translate source text into
the target language.

In the text-to-text translation task, the used sys-
tem is STACL model (Ma et al., 2019). All training
data are processed by Byte Pair Encoding (Sen-
nrich et al., 2016). In addition, the strategies used
by the model in training and inference are the same.
For example, if the wait-k strategy in inference is
1, the wait-k in training is also 1.

In the audio to text translation task, the Deep-
Speech2 model (Amodei et al., 2015) is used as
the preprocessing of the STACL model. The Deep-
Speech2 model can translate audio (Chinese) seg-
ments into text (Chinese) segments and then input
the segments into the STACL model to generate
the target-language text.

The submitted results show that the used STACL
model has a low delay for text translation tasks.
But the system can only generate the results with a
high delay in the audio translation task.

The rest of the paper is organized as follows.
Section 2 describes the training data used in the
submitted system. Section 3 describes the model,

training strategy, and results. The conclusions are
given in Section 4.

2 Datasets

In this section, I describe the Datasets.

2.1 Zh-En Text Translation Dataset

The dataset used for the Chinese-to-English(Zh-
En) translation task is extracted from AST, which
is provided by the NAACL workshop. This data
set contains 214 JSON files, and each JSON file
contains parallel Chinese vs. English corpus. The
data, which is extracted from these JSON files, con-
tains 37,901 Chinese vs. English samples. After
byte pair encoding, the samples are used to train
the Zh-En translation model.

The BPE vocabulary of the Zh-En translation
task can be found in the Github project of Pad-
dleNLP (Contributors, 2021).

2.2 En-Es Text Translation Dataset

The dataset used for the English-to-Spanish(En-Es)
text translation task was obtained from the United
Nations Parallel Corpus(Ziemski et al., 2016). The
En-Es dataset contains 21,911,121 samples. After
byte pair encoding, the dataset is used to train the
En-Es text translation model.

For obtaining the BPE vocabulary, I segment
the source dataset into subword units by Subword
Neural Machine Translation (Sennrich et al., 2015).
The code for segmentation can be found in (Sen-
nrich, 2021).

2.3 Audio-to-Test Dataset

The training data of the Chinese speech recognition
model is AISHELL (Bu et al., 2017), which is
an open-source Mandarin speech corpus. In the
submitted system, I only use the pre-trained model
of the DeepSpeech2 model on AISHELL.
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Parameter Value
wait-k 1 or 3
max epoch 30
batch size 512
learning rate 2.0
max length 256
n layer 6

Table 1: Training parameters in Zh-En translation model

3 Models and Results

This section shows the models used in the submit-
ted system and discusses the results.

3.1 Text Translation System

3.1.1 STACL model
In the text translation task, the model is STACL
(Ma et al., 2019), which is a translation architecture
for all simultaneous interpreting scenarios. For
train the model, the wait-k strategy is adopted. The
model will wait for k words of the source text and
then start to translate. For example, when k is 2,
the model only starts translating the first word of
the target language after obtaining the second word
of the source text.

In the inference process, the model decodes one
word at a time. When the sentences to be trans-
lated are all read, the untranslated sentences will
be completed at once.

3.1.2 Results in Zh-En task
In the Zh-En translation task, I trained the model
with wait-k = 1 and wait-k = 3. The details of
training parameters are shown in table 1.

When the wait-k is 1, the AL of the submitted
result is -1.28, and the BLEU is 14.86. When the
wait-k is 3, the AL is -0.52, and the BLUE is 14.84.
The two results have almost the same accuracy,
demonstrating that the used dataset may not be
sufficient for the translation task.

3.1.3 Results in En-Es task
In the En-Es translation task, the max epoch is set
as 1, and other parameters are the same as table 1.

The AL of the submitted result is -1.61, and the
BLEU is 11.82.

3.2 Audio Translation System

3.2.1 DeepSpeech2 model
Deepspeech2 is an end-to-end automatic speech
recognition system based on the PaddlePaddle deep

Figure 1: Frame for audio translation system

learning framework (Amodei et al., 2015). In order
to translate the speech data into the correspond-
ing target-language text, I first segment the audio,
use deepspeech2 to covert the voice segment into
text, and then translate the recognized text into the
target language through the STACL model. Fig-
ure 1 shows the workflow of speech recognition
translation.

3.2.2 Results
Since each segment contains multiple Chinese char-
acters, decoding only one character at a time will
lead to excessive delay (CW value). To overcome
this issue, I decoded two characters at once. The
CW of submitted results is 19.21, and the BLEU is
7.3.

4 Conclusion

This paper describes my submitted system at the
Third Automatic Simultaneous Translation Work-
shop. The system submitted has a low delay. I will
conduct a further study about the speech recogni-
tion strategy in the future.
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