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Abstract 

In view of the “predictive turn” in translation studies, empirical investigations of the 
translation process have shown increasing interest in studying features of the text which can 
predict translation efficiency and effort, especially using large-scale experimental data and 
rigorous statistical means. In this regard, a novel metric based on entropy (i.e., HTra) has 
been proposed and experimentally studied as a predictor variable. On the one hand, 
empirical studies show that HTra as a product-based metric can predict effort, and on the 
other, some conceptual analyses have provided theoretical justifications of entropy or 
entropy reduction as a description of translation from a process perspective. This paper 
continues the investigation of entropy, conceptually examining two ways of quantifying 
cognitive load, namely, shift of resource allocation and reduction of entropy, and argues 
that the former is represented by surprisal and ITra while the latter is represented by HTra. 
Both can be approximated via corpus-based means and used as potential predictors of 
effort. Empirical analyses were also conducted comparing the two metrics (i.e., HTra and 
ITra) in terms of their prediction of effort, which showed that ITra is a stronger predictor 
for TT production time while HTra is a stronger predictor for ST reading time. It is hoped 
that this would contribute to the exploration of dependable, theoretically justifiable means 
of predicting the effort involved in translation. 

1. Introduction

In recent years, process-oriented translation studies which investigate the “black box” of the 
translator’s mind have been prolific and less of a speculative nature, due to the emergence of 
new methodologies for collecting, processing, and analysing behavioural data. While early 
research depends heavily on think-aloud protocol, more recent ones tend to adopt relatively 
sophisticated techniques including eye tracking, electroencephalography (EEG), functional 
magnetic resonance imaging (fMRI), etc. Such experimental tools have largely enabled 
translation process research (TPR) to become increasingly predictive (Schaeffer et al., 2019). 
Large-scale, multilingual, and comparable behavioural data collected via these tools (e.g., the 
CRITT TPR-DB; see Carl, Schaeffer et al., 2016), and analysed through rigorous statistical 
approaches, have provided a necessary means for building models of human translation 
“which makes specific, falsifiable predictions regarding the process and the product of 
translation” (Carl, Bangalore et al., 2016, p. 4). This allows for systematic investigations 
beyond the description of translation, taking a step further towards explaining, and especially 
predicting, translation phenomena from empirical observations.1 

1  When Holmes (1972) argued for an independent academic status for translation studies, it was 
described as an empirical discipline in nature, where there are two main objectives of inquiry: “(1) to 
describe the phenomena of translating and translation(s) as they manifest themselves in the world of our 
experience, and (2) to establish general principles by means of which these phenomena can be explained 
and predicted.” (Quoted from the republished version of Holmes’ paper in Venuti, 2000, p. 176) 
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Not surprisingly, it has been argued that a “predictive turn” is now being triggered in 
translation studies, constituting a new paradigm where predictive methods and models, driven 
by large-scale empirical data, are adapted to the cognitive processes of translation (Schaeffer 
et al., 2019). 

This is the result of two aspects of technological development, namely, the machine 
learning approaches to translation (e.g., Neural Machine Translation) and the computational 
techniques that facilitate the empirical modelling of the human translation process (ibid). For 
the latter, the fact that many aspects of behaviour and cognition have become increasingly 
measurable and quantifiable (e.g., translators’ strategies, typical translation patterns, and 
cognitive effort), and the use of rigorous statistical and computational tools, seem to have 
made it possible “for the first time to empirically model the translation process” (ibid, p. 5). 

 
1.1 Entropy as a predictor variable 
 
In view of this predictive turn, there has been increasing interest in investigating, especially 
by statistical means, particular features of the text that can predict the efficiency and cognitive 
load/effort 2  of translation, post-editing, interpreting, and other modes of translation 
production. These studies examine the translation product in relation to those aspects of the 
process which can be used as measurements of translation efficiency or difficulty. For 
example, eye-key span has been shown to be predicted by the number of translation 
alternatives for the ST word in question (Dragsted, 2010; Dragsted and Hansen, 2008), and 
reading time can be predicted by the change of word order between the ST and TT, the 
number of occurrences of the word in previous context, the length of phrases, etc. (Jensen et 
al., 2009) 

Another novel metric which has been recently proposed and empirically examined is 
word translation entropy (see, e.g., Carl, Schaeffer, et al., 2016 p. 29-33). This entropy-based 
predictor variable, often denoted as HTra, is typically considered a statistical measure of the 
translation product which represents variance, literality, and translation ambiguity (Carl, 
2021b; Carl, Bangalore, et al., 2016), and is used in many empirical investigations to analyse 
its correlation with effort, to find evidence for early priming processes, and to discuss ways of 
quantifying translation difficulty. It has also been considered a better measure for the 
variation of the translation alternatives than simply counting the number of these alternatives 
(Bangalore et al., 2016). Further studies on word translation entropy show a positive and 
statistically significant effect on different measures of effort, including, among others, first 
fixation duration, word production duration, the probability of a fixation, and total reading 
time (e.g., Carl and Schaeffer, 2017; Schaeffer et al., 2016). In other words, HTra predicts 
effort. On the basis of such empirical findings, words with higher HTra values have often 
been considered more difficult to translate (Carl et al., 2019). 
 
1.2 Entropy as a mental process 
 
For such and many other studies, the concept of entropy seems to be consistently used as a 
measure of the product, rather than as a representation of specific aspects of mental states 
during the process, nor as a way of describing the process of transition between one mental 

 
2 Although the terms “cognitive load” and “cognitive effort” can sometimes be confusing and are often 
used interchangeably, this paper considers cognitive load as the difficulty that is posed by a task or 
process (i.e., the required amount of cognitive effort), and considers cognitive effort as the actual effort 
expended in the process or task, where this effort is realised by optimising the allocation of limited 
cognitive resources. 
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state and another. An exception, however, is the “systems theory perspective” (Carl et al., 
2019), where the human translation process is considered “a hierarchy of interacting word and 
phrase translations systems which organize and integrate as dissipative structures” (p. 211), 
and where entropy is defined as the internal order of these word translation systems. 
Expenditure of cognitive effort to arrive at a translation solution –– where this effort is 
described as “average energy” (ibid) –– decreases the internal entropy (i.e., disorder) of the 
system. In this regard, the definition of entropy is apparently from a systems theory 
perspective. 

In terms of the conceptual investigations of entropy in relation to the mental states, 
Wei (2021) analyses translation entropy from a different perspective, focussing more on the 
probabilistic nature of this concept (as Kullback-Leibler divergence, see Kullback, 1959), the 
dynamic change of probability distribution, the uncertainty of choice, its representation of 
cognitive resource allocation in the activation, suppression, competition, and selection of 
candidates when multiple options are available (i.e., when the ST is translation-ambiguous), 
and the specific processes in which entropy is reduced through the transition of mental states. 
The process of lexical translation selection is analysed in close detail through the lens of 
entropy and entropy reduction. This brings the concept into the assumed mental states, using 
entropy to describe and explain cognitive activities when mental states transition between one 
another during lexical activation and selection. Following these conceptual explorations, 
Wei’s (2021) study also examines the behavioural manifestations of this process through 
detailed observation of eye movements in a large database (i.e., the CRITT TPR-DB). 

In Wei’s (2021) analyses, the mental processes in translation are conceptualised under 
the assumption of non-selective co-activation of both source and target languages, similar to 
most studies that draw inferences from bilingualism. Upon encounter of a particular ST item, 
possible translations for this item would be subliminally co-activated, and the translator is 
assumed to “engage in an activation pattern where the activated items receive different 
degrees of priority for resource allocation” (p. 170). This pattern would then be dynamically 
updated during lexical selection, where there is continual shift of cognitive resource allocation 
as mental states transition from one towards another. The shift of resource allocation results in 
reduction of entropy and expenditure of cognitive effort. In this view, the amount of cognitive 
effort needed in the process (i.e., the cognitive load imposed) can thus be quantified via two 
means –– either the shift of cognitive resource allocation, or the reduction of entropy (ibid). 

The present paper examines these two ways of quantification, and argues that the shift 
of resource allocation can be represented by surprisal of the item selected (i.e., ITra, see 
below), and that the reduction of entropy can be represented by HTra (as formulated in Carl, 
Schaeffer, et al., 2016). 

Section 2 briefly reviews the concept of surprisal, focusing on its conceptualisation as 
a means of quantifying cognitive load in psycholinguistics. This lays the foundation for the 
discussion on relative entropy in the subsequent section 3, where surprisal (also described as 
ITra in recent studies) will be shown to be equivalent to the relative entropy between the final 
and initial mental states of the translation choice. This means that the required amount of 
cognitive effort in the transition between these mental states can be determined by surprisal 
(ITra), if one adopts the formulation in resource-allocation processing difficulty. 

Section 4 demonstrates that if one adopts another means for quantifying effort (i.e., 
reduction of entropy value), this effort would be represented by HTra. 

Section 5 provides further discussion on HTra and ITra, leading to an empirical 
investigation in Section 6 where the two metrics are compared in terms of their prediction of 
translation effort. Section 7 ends the paper with concluding remarks. 
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2. Surprisal and ITra 

In psycholinguistics, surprisal (i.e., negative logarithm of probability) is often used as an 
important quantification of cognitive load (Attneave, 1959; Hale, 2001; Levy, 2008, 2013; 
Levy and Gibson, 2013), especially in the context of structural disambiguation. The surprisal 
of a word in its context is considered a useful quantification of the cognitive effort required to 
process this word during online sentence processing (see Hale, 2001). This is because, from 
that view, incremental sentence comprehension is a step-by-step disconfirmation of possible 
phrase-structural analyses for the sentence, which means that cognitive load can be interpreted 
as the combined difficulty of disconfirming the disconfirmable structures at a particular point 
of the sentence (i.e., at a given word). 

This quantification of cognitive load also raises “a unified treatment of structural 
ambiguity resolution and prediction-derived processing benefits” (Levy, 2013 p. 158). Both 
Hale (2001) and Levy (2008) illustrate much successful use of the surprisal framework for 
explaining a variety of psycholinguistic phenomena, many of which are closely relevant to 
garden-path sentences (i.e., temporary ambiguity). In addition, theoretical justifications for 
surprisal as a metric for cognitive processing difficulty has not been lacking (see e.g., Levy, 
2013), especially within the frameworks of rational cognitive models (Shepard, 1987; 
Tenenbaum and Griffiths, 2001). Difficulty, or measurable disruption, in real-time sentence 
processing can arise either from an overload in memory (i.e., an overload in the cognitive 
resources for the storage and retrieval of the representational units which are used to analyse 
the linguistic input), or from a sufficiently unexpected input which causes a shift in cognitive 
resource allocation “to various alternatives in the face of uncertainty” (Levy, 2013 p. 144). 
Although theories based on the former (i.e., resource-limitation theories) have been a 
dominant paradigm for studies of differential processing difficulty, the latter (i.e., resource-
allocation approach) has been a line of investigation which largely has ambiguity resolution as 
a primary concern (Levy, 2008). 

In the latter approach (i.e., resource-allocation), the size of the shift in cognitive 
resource allocation which is induced by a word is indicative of the difficulty in processing this 
word, and the size of this shift is equivalent to the change (i.e., update) in the conditional 
probability distribution over all interpretations before and after the word (Levy, 2013). 
Mathematically, this change would be measured in terms of entropy (e.g., Cover and Thomas, 
1991) –– specifically, the relative entropy of the conditional distributions before and after 
encountering the word. 

This seems largely consistent with the use of word translation entropy to measure the 
difficulty of a translation choice in the face of uncertainty (at the lexical, rather than syntactic, 
level), where this difficulty can be represented by the conditional probability distribution over 
TT alternatives. 

Of particular note is that in sentence comprehension, the relative entropy mentioned 
above has been shown to be equivalent to the surprisal of the word in question (Levy, 2008 
pp. 1131-1132), which Levy views as the reranking cost in incremental disambiguation where 
cognitive resources are re-allocated to the possible analyses of the sentence. 

Here, it is worth mention that the concept of surprisal is also known –– in different 
contexts –– as information, self-information, or Shannon information content, all referring to 
essentially the same mathematical equation (i.e., the negative logarithm of probability). In 
some recent papers, the surprisal regarding a particular translation item is specifically called 
word translation information, and denoted by ITra (see e.g., Carl, 2021a; Heilmann and 
Llorca-Bofí, 2021). These terms, although focusing on quite different aspects, are in fact 
mathematically expressed in the same manner as the surprisal discussed here (i.e., the 
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negative logarithm of probability, or equivalently, the logarithm of the inverse of the 
probability). 

3. ITra and relative entropy 

As mentioned in 1.3, the cognitive effort that is required in the word translation selection 
process (i.e., the cognitive load imposed by this process) is proposed to be quantifiable by 
either the shift in resource allocation, or the reduction of entropy (see Wei, 2021 for details). 
The size of the shift in cognitive resource allocation would be represented mathematically by 
relative entropy (i.e., Kullback-Leibler convergence), whereas the reduction entropy would 
simply be the absolute difference of entropy values, regarding the initial and final stages of 
the process. 

In other words, there are two ways of representing cognitive load via entropy –– 
relative entropy and decrease of entropy. Here, the relative entropy of the mental state at the 
end of the process, with respect to the initial stage of activation, will be shown below as being 
equal to the surprisal (i.e., ITra) of the TT item eventually chosen by the translator. 

At the end of the selection process (i.e., when the mental processing has arrived at a 
decision as to which particular target item is to be selected), the distribution of cognitive 
resources in the mental state can be reasonably assumed to have, after a series of continual 
update (or shift) which incurs cognitive effort, eventually concentrated on one single item 
(i.e., the item chosen by the translator) whose probability therefore equals 1 given this mental 
state. According to the definition of Kullback-Leibler divergence (i.e., relative entropy), the 
divergence of the updated distribution Q(x) from the original distribution P(x) equals the 
expectation of the logarithmic difference between Q(x) and P(x), with the expectation taken 
using Q(x). Suppose there are n possible items in the mental lexicon (i.e., n values for x in 
x∈χ), among which the item chosen by the translator is W, then the above description would 
mean that Q(W)=1, that Q(x)=0 when x≠W, and that P(x) represents the probabilities in the 
initial activation pattern for both x=W and x≠W. In this case, the divergence DKL(Q || P) 
would be: 

 
 
As                                                       and 
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it then follows that 

                   
In other words, the Kullback-Leibler divergence of these two distributions (i.e., the 

relative entropy between initial activation and final selection) equals the surprisal of the item 
that is eventually chosen by the translator, i.e., -logP(W). 

As the P(W) in the surprisal equation here represents the probability of W in the initial 
activation pattern (i.e., when W is first activated together with all other items), this surprisal 
should in theory refer to the surprisal in the corresponding mental state at the initial stage, 
rather than the surprisal of the item in the textual material. 

However, if the activation of lexical items is modulated by context and the frequency 
of the different meanings/translations (e.g., in the re-ordered access model, see, e.g., Duffy et 
al., 2001), the P(x) which describes the mental state of activation would be the same as the 
probabilities that can be observed in the text. This means that the initial surprisal for this item 
W in the mental state, i.e., -logP(W), can be approximated by, if not equivalent to, its surprisal 
in the text. 

In this manner, the relative entropy with respect to the above mental process would be, 
albeit arguably, equal to the corresponding surprisal in the text. Cognitive load can thus be 
represented by this surprisal (consistent with Levy’s formulation), and in turn approximated 
by corpus-based analyses. As mentioned in Section 2, this surprisal is the same as word 
translation information (ITra).3 

4.  HTra and decrease of entropy 

Similarly, the initial entropy value in the mental state would be equal to the entropy value that 
is observed in the text (i.e., HTra). If the decrease of entropy value, i.e., the absolute 
difference between the two respective entropy values regarding the initial and final mental 
states, is used as a measurement of cognitive effort in the selection process, then at the point 
when the translation choice is made, this decrease would equal the initial entropy when all the 

 
3 It is important to note that the CRITT TPR-DB estimates this value on the basis of the translation 
choices made by all participants in each experiment. However, the surprisal here can in fact be 
approximated in other ways as well, using different corpus data, and would result in different ITra 
values than those in the CRITT TPR-DB. This is the same for HTra. 
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TT candidates are activated given the ST item (i.e., the entropy in the mental state between 
activation and selection), and in turn equal the HTra value. This will be shown below in 
detail. 

Specifically, when the choice is made, the entropy in the mental state refers to the 
entropy for distribution Q(x), which equals zero: 

 

 
The initial entropy associated with the pattern of activated lexical items, i.e., the 

entropy in the initial mental state, is as follows: 

 
where P(xi) refers to the conditional probability with which xi is to be selected, given the 
mental state at the initial stage of activation. 

Accordingly, the decrease of entropy between these two points, i.e., from P(x) to Q(x), 
or from initial activation to final selection, would be simply: 

 
Here, if the activation of lexical items is modulated by context and the frequency of 

meanings/translations, as mentioned in Section 3, the P(x) in this equation can be considered 
equal to the probabilities observed in the text. This means that the H(x) here would be the 
same as the entropy equation which is formulated in Carl et al. (2016), i.e., that which is 
calculated from the probabilities in the text and approximated from the sample. In other 
words, the decrease of entropy value in the mental state is perhaps equal to the HTra value.4 

5. HTra and ITra 

The above sections have shown that between the two ways of quantifying cognitive load in 
lexical translation choice, namely, shift of resource allocation and reduction of entropy (see 
Wei, 2021), the former is equal to surprisal of the chosen item and the latter is equal to the 
entropy generalising over all alternative options. Both can be approximated from the text (as 
ITra and HTra), and can perhaps be used as theoretically justifiable ways of quantifying 
cognitive load. This means that these two formulations can provide useful means for 
predicting the effort of translation at the lexical level. 

 
4 See previous footnote. 
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So two metrics, HTra and ITra, merit further discussion. If they are considered from a 
product perspective, the difference between them seems straightforward –– HTra generalises 
over different translation items while ITra indicates the unpredictability of a specific 
translation item given a particular ST token (see also Carl, 2021a, p. 122; Heilmann & Llorca-
Bofí, 2021, pp. 213-214). From a process perspective, the above sections have shown that 
between the mental state of initial activation and that of final selection, HTra represents the 
reduction of entropy while ITra indicates the size of the shift in cognitive resource allocation. 

In terms of their mathematical expression, HTra represents the initial P(x) distribution 
when alternative options are activated, whereas ITra indicates the surprisal of the final choice. 
HTra is equivalent to the absolute difference of entropy between the two mental states, while 
ITra is equivalent to the relative entropy of the final mental state with respect to the initial 
mental state. 

In this regard, it is worth asking –– which metric is a better predictor of translation 
behaviour, if we examine the empirical data? To answer this, a few smaller questions need to 
be addressed: Does HTra still predict effort if we control for the effects of ITra, and vice versa? 
If so, which one has a larger strength of prediction? When HTra is controlled, does ITra make 
an additional contribution in explaining variance in effort (and vice versa)? 

6. Prediction of effort 

A subset of the CRITT TPR-DB5 was used to examine these two predictors (i.e., HTra and 
ITra) in terms of their significance and strength in predicting production time and ST/TT 
reading time. This data is within the multiLing dataset, where six English texts are translated 
into various languages. In total, the data used for analysis includes 500 experimental sessions 
from six studies (AR19, BML12, ENJA15, KTHJ08, RUC17, and ST12). 

Production time is represented by Dur and refers to the duration of TT production for 
each ST token. For reading time, early measures of eye movement include first fixation 
duration on the ST token (FFDur), first pass duration on the ST token (FPDurS), and first pass 
duration on the TT token (FPDurT). Late measures are total reading time on the ST (TrtS) as 
well as on the TT (TrtT). All these were regarded as response variables in the analysis and 
examined in relation to HTra and ITra. 

For each of these response variables, outliers were removed by 2.5 standard deviations 
per participant, and a sequential multiple regression analysis was conducted. In the regression 
analysis of each response variable, HTra was first entered as a predictor, then ITra is added. A 
comparison between the base model (with HTra only) and the full model (with both HTra and 
ITra) can show the contribution of ITra in explaining the variance in the response variables. 

A set of base models with ITra entered was also examined in relation to the full model, 
shedding light on the contribution of HTra in explaining the variance in production time and 
reading time. 

Through an examination of the full models in greater detail, the strength and 
significance of each predictor (HTra and ITra), when controlling for the other predictor, was 
also analysed.6 

 
 

 
5 This is a publicly available database. For details, see, e.g., Carl, Bangalore, et al. (2016). A description 
of the up-to-date public studies is also available on the CRITT@kent website: 
https://sites.google.com/site/centretranslationinnovation/tpr-db/public-studies?authuser=0 
6 VIF scores in the full models are all between 1.9 and 2.1. 
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6.1 Production time (Dur) 
 
For the prediction of word production time, results are shown in Tables 1 and 2. 

The two base models (Dur 1 and Dur 2), for HTra and ITra respectively, are both 
significant. For HTra, R2 = .03, F(1, 30104) = 957.42, p < .001, and the model explained 3% 
of the variance in production time. For ITra, R2 = .05, F(1, 30314) = 1453.19, p < .001. Here, 
the model with ITra explained a higher percentage (5%) of the variance than that with HTra. 

The full model where both predictor variables were entered (Dur 3) was also 
significant, R2 = .05, F(2, 30103) = 748.75, p < .001. With the two predictors combined, this 
model explained 5% of the variance in production time. 

Here, although the impact of both ITra and HTra was strong and significant in the full 
model, it is apparent that ITra (β = 689.58) was more than three times as a stronger predictor 
than HTra (β = 196.05). 

After controlling ITra, adding HTra to the base model did not lead to any R2 change 
(see Dur 2 and Dur 3). This means that with ITra controlled, no additional variance was 
explained by HTra. In contrast, when ITra was added after controlling HTra, the model 
significantly explained an additional 2% of the variance (see Dur 1 and Dur 3). In other 
words, while controlling for the other predictor variable, ITra made an additional contribution 
in explaining the variance in production time, whereas HTra did not. 

 
                    Dur 1                   Dur 2               Dur 3 

(Intercept) 2434.25 *** 2434.25 *** 2434.25 *** 

HTra 675.76 *** 
 

196.05 *** 

ITra         825.96 *** 689.58 *** 

N 30106 30106 30106 

R2 0.03 0.05 0.05 

All continuous predictors are mean-centered and scaled by 1 standard deviation.   
*** p < 0.001;  ** p < 0.01;  * p < 0.05. 

 

Table1. Prediction of production time (Dur) 
 

6.2 ST Reading time (FFDur, FPDurS, TrtS) 
 
Table 2 illustrates the results for the prediction of FFDur, FPDurS, and TrtS. Similar to the 
results for production time, all impacts in all models here were significant, for all measures of 
ST reading time. However, for both early and late measures of eye movement on the ST, 
HTra seemed to be a much stronger predictor than ITra, in contrast to the results for 
production time (see Section 6.1). 

This is notable for all response variables regarding ST reading, where, for FFDur, 
HTra (β = 45.75) was more than three times as a strong predictor as ITra (β = 13.03), and for 
FPDurS, HTra (β = 42.76) was more than four times as strong as ITra (β = 9.49). For the late 
measure of eye movement on the ST (TrtS), HTra (β = 222.22) was twice as strong as ITra (β 
= 103.51). 

For early measures (FFDur & FPDurS), HTra explained an additional 1% of the 
variance only in FPDurS. For late measures, no additional variance was explained by either 
variable. 
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 FFDur 
1 

FFDur 
2 

FFDur 
3 

FPDurS  
1 

FPDurS 
2 

FPDurS 
3 

TrtS  
1 

TrtS  
2 

TrtS  
3 

(Intercept) 188.54 
*** 

188.54 
*** 

188.54 
*** 

180.72 
*** 

180.72 
*** 

180.72 
*** 

960.87 
*** 

960.87 
*** 

960.87 
*** 

HTra 55.10 
*** 

  45.75 
*** 

49.57 
*** 

  42.76 
*** 

296.33 
*** 

  222.22 
*** 

ITra         45.84 
*** 

13.03 
*** 

        40.15 
*** 

9.49 
*** 

        262.61 
*** 

103.51 
*** 

N 69191 69191 69191 69364 69364 69364 69256 69256 69256 

R2 0.01 0.01 0.01 0.04 0.03 0.04 0.03 0.03 0.03 

All continuous predictors are mean-centered and scaled by 1 standard deviation.   
*** p < 0.001;  ** p < 0.01;  * p < 0.05. 

 
Table 2. Prediction of ST reading time 

 
6.3 TT Reading time (FPDurT, TrtT) 
 
For both early and late measures of eye movement on the TT, HTra and ITra did not show a 
large difference in their strength of prediction, at least not as large as the difference shown 
above regarding ST reading (see Section 6.2), although all predictions are significant. These 
results are shown in Table 3. 

 
  FPDurT 1 FPDurT 2 FPDurT 3 TrtT 1 TrtT 2 TrtT 3 

(Intercept) 468.76 
*** 

468.76  
*** 

468.76 
*** 

2317.80  
*** 

2317.80  
*** 

2317.80  
*** 

HTra 195.00 
*** 

  125.58 
*** 

706.94  
*** 

  490.14  
*** 

ITra         186.87  
*** 

96.94  
*** 

        653.80  
*** 

302.30  
*** 

N 68795 68795 68795 69025 69025 69025 
R2 0.07 0.07 0.08 0.03 0.03 0.04 

All continuous predictors are mean-centered and scaled by 1 standard deviation.   
*** p < 0.001;  ** p < 0.01;  * p < 0.05. 

 
Table 3. Prediction of TT reading time 

7. Concluding remarks 

The above sections have analysed, both theoretically and empirically, two ways of 
quantifying cognitive load in translation choice, namely, shift of resource allocation and 
reduction of entropy. Both can be approximated via corpus-based means. At a conceptual 
level, the paper argues that HTra approximates the reduction of entropy in the mental state 
and that ITra approximates the size of shift in cognitive resource allocation, providing 
theoretical justifications for both HTra and ITra as potential means of quantifying cognitive 
load. Empirical analyses on the CRITT TPR-DB showed that although both metrics had 
significant and strong impact on effort, ITra was a much stronger predictor for word 
production time while HTra was a stronger predictor for ST reading time. The difference 
between the two for prediction of TT reading was found to be relatively small. It is hoped that 
this would contribute to the search for a dependable means of predicting effort in translation.  
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