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Abstract

Studies show machine translation systems are vulnerable to adversarial attacks, where a small
change to the input produces an undesirable change in system behavior. This work consid-
ers whether this vulnerability exists for attacks crafted with limited information about the tar-
get: without access to ground truth references or the particular MT system under attack. It
also applies a higher threshold of success, taking into account both source language meaning
preservation and target language meaning degradation. We propose an attack that generates
edits to an input using a finite state transducer over lexical and phrasal paraphrases and se-
lects one perturbation for meaning preservation and expected degradation of a target system.
Attacks against eight state-of-the-art translation systems covering English-German, English-
Czech and English-Chinese are evaluated under black-box and transfer scenarios, including
cross-language and cross-system transfer. Results suggest that successful single-system attacks
seldom transfer across models, especially when crafted without ground truth, but ensembles
show promise for generalizing attacks.

1 Introduction

Recent studies show that natural language processing (NLP) applications are vulnerable to ad-
versarial perturbations, where a small change to the input produces an undesirable change
in system behavior, such as a lower-quality translation in a machine translation (MT) system
(Ebrahimi et al., 2018; Cheng et al., 2019; Wallace et al., 2019; Cheng et al., 2020; Zhao et al.,
2018; Zhang et al., 2021). These adversarial inputs offer insight into model robustness. They
also can constitute vulnerabilities that expose everyday technology to malicious actors who
would seek to deny and deceive artificial intelligence systems.

Practical concerns must be addressed to determine if these vulnerabilities persist outside
of simplified scenarios. Most previous work uses the same ground truth to craft and evaluate an
attack and relies on access to the model being attacked, such as model gradients (white-box) or
the output of the model (black-box). We ask whether this vulnerability extends to attacks crafted
with limited information about the target: without access to ground truth references, model
weights or even the outputs of the particular MT system they are attacking. We examine transfer
of adversarial examples among eight different MT systems with three target languages. For
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evaluation, we use a high threshold of success that takes into account both effect on translation
quality and loss of meaning in the original text.

We introduce a novel text editing system (perturber) that rapidly generates hundreds or
thousands of candidate edits using a compendium of vetted paraphrases scored to match hu-
man quality judgments. Adversarial edits are selected according to a configurable optimization
trading off preservation of source-side meaning and degradation of target output. To simulate a
scenario where a human reference is not available, the selector estimates degradation in transla-
tion quality using the change in translation output from a proxy MT system. These attacks meet
the threshold for success when the MT system used for selection is matched to the victim model
or when an ensemble of MT systems is used to do the targeting. However, we find that examples
selected using a single translation model as proxy and ensembles crafted without sensitivity to
source-side meaning changes do not often transfer to another victim model above the success
threshold.

2 Practical Considerations

Overwhelmingly, previous work assumes high-information scenarios, using the same ground
truth and model to craft and evaluate the attacks, and evaluates adversarial effect separately
from the effect on the semantics of the input (Ebrahimi et al., 2018; Cheng et al., 2019; Wallace
et al., 2019; Cheng et al., 2020; Zhao et al., 2018; Zhang et al., 2021). We address four consid-
erations in evaluation of machine translation attacks with the purpose of understanding whether
these attacks can be crafted in lower-information scenarios and whether the effect on system
performance outweighs the degradation of the input text. First, we define our success criterion
in a metric-independent way, drawing from Michel et al. (2019), to combine adversarial effect
and degradation of the source in a single metric. Second, we calibrate similarity metrics so that
one unit of meaning preservation in the source language side is as close as possible to one unit
of translation quality in the target language side. Third, we consider whether attacks require ac-
cess to ground truth to successfully degrade performance. Finally, we address whether attacks
crafted using one system can be deployed against another to which it does not have access.

2.1 Successful MT Attacks

Effective adversaries do not simply change a system’s behavior; they reliably degrade its perfor-
mance. To attack MT, perturbations aim to maximally decrease translation quality with respect
to the ground truth reference. The translations of a set of perturbed source segments should
score lower than the originals under some MT metric, such as BLEU or CHRF. However, to en-
sure that the perturbations haven’t trivially reduced translation quality by changing the meaning
on the source side, we must also account for the effect of the perturbations on the meaning of
the source.

We directly adopt several terms and metrics from Michel et al. (2019). We follow the
convention that x and y refer to source and target language sentences, y,; is the translation
produced by model M, and & and g, are the perturbed version of the source sentence and its
translation. We measure the translation quality of an attack by the target similarity, ¢+ (y, Jar),
where y is a gold source reference translation and ¢,; is the MT system output on the per-
turbed input. The effect of a perturbation on the input text is measured by the source similarity,
Ssre(T, &),

An attack degrades the target similarity by d;y; in Equation 1. This is also referred to as
target relative score decrease. It is similar to the version found in Michel et al. (2019) except
we allow negative values of dg4; if an attack inadvertently makes the translation berter. We
do this because we do not presume oracular access to a reference translation y at targeting
time to decide when to avoid using a particular £ for attack. A higher value of d;,; means the

2

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas

Orlando, USA, September 12-16, 2022. Volume 1: Research Track

228



output of the MT was more degraded. A value of zero means no degradation. Similarly, an
attack degrades the source similarity by ds;-. in Equation 2. Using relative rather than absolute
score decreases makes it possible to compare attack effectiveness across models with different
original performance.

N Stgt(Ys Ynr) — Stgt (Y, Uns
dtgt (y7 Ywm, yM) = ! s t)(y ykg[t)( ) (])
g ’ /

dsre(z, &) = (1 — Sspe(m, &))/1 2)

A successful attack reduces the target side translation similarity more than it reduces the
similarity of the perturbed & to z. This is reflected in Equation 3, also following Michel et al.
(2019) aside from the difference in dig¢. When success, S, is greater than one, the attack
achieved that goal. S values below 1 indicate the source side texts were degraded more than the
effect on the translation.

S=1 + dtgt(y; y]\h@]ﬂ) - dsr(:(xwr)

_ Stgt(y ym) = segt(y, Gnr) ¥ Sore(, ) (3)
Stgt(yayM)

We estimate both source- and target-side similarity using CHRF (Popovi¢, 2015). This met-
ric has been found to be well-correlated to human perception of meaning preservation for varied
machine edits (Michel et al., 2019; Merkhofer et al., 2021), and it best matches human percep-
tion of machine translation quality at a segment level for the language pairs studied (Mathur
et al., 2020).

2.2 Calibrating Meaning Preservation Metrics in Multiple Languages

Most semantic similarity metrics are designed and tested to match human judgments in one
language, but they generally aren’t calibrated to line up with each other across languages. The
success criterion in Equation 3 directly compares similarity in source and target languages, but
a similarity reduction in the source language needs to be commensurate with the similarity re-
duction in the target language. Otherwise, perturbations may game the difference between the
two scales rather than truly exploiting an MT weakness. A set of examples motivating the dif-
ferences in CHRF values in different languages can be see in Table 1. This can be replicated for
other languages and other metrics, as MT metrics are typically not calibrated across languages,
especially not at sentence-level granularity.

Calibration of metrics in different languages relies on common sources of strings with the
same distribution of meanings in the two languages. We collect a distribution of s(z;, z;) values
from random strings following the same sampling pattern in each of the languages. We convert
those empirical distributions into complementary cumulative distribution functions (CCDF) to
work well with log scale. Figure 1 shows the empirical distribution of CHRF scores accumulated
using random strings sourced form WMT?20 parallel data (Barrault et al., 2020). The samples
were synchronized across the languages so the same underlying distributions were reflected in
each curve. Using sampled 7,5 € 1...N from the N sentences available, strings used are
Z.|_avlen(i)J:Lylen (%) ] andj\_zlen (j) ]:lwlen(y)]> where z < Y,z <wE [0’ 1)

Conversion of the calibrated scores from the CCDFs to a common language and range is
done by linear interpolation. Each curve is approximated with 1000 points as shown in Figure
1. To calculate an associated English CHRF gy for an input Chinese CHRF value, x, we find the
closest two surrounding x-axis pairs of the z& CCDF curve and interpolate between them to get
y’, the estimated CCDF value for that input . Then the process is performed again using the en
curve. We find the two closest y-values on the en curve and interpolate using ¢’ to find an =’ on
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the x-axis of the en curve. The resulting converted metrics, all calibrated to English, are shown
in Figure 2.

o | CHRF | segment pair

0.21 0.61 | Afghanistan boosts security for presidential election

A massive security operation is in place across Afghanistan for the country’s presidential elec-
tion on Saturday.

0.65 | Afghanistan verstirkt die Sicherheit fiir die Présidentschaftswahlen

Fiir die Présidentschaftswahlen am Samstag ist in ganz Afghanistan eine umfangreiche Sicher-
heitsoperati on im Gange.

0.58 | Afghénistdn zvySuje bezpecnostni opatieni provazejici prezidentské volby

V Afghdnistdnu probihaji masivni bezpec¢nostni opatieni pro zajisténi bezpecnosti pfi sobotnich

prezide ntskych volbach.
0.13 | FTEITFINSRZ RN E Sk
BB T AE A EVB R A T B T AR R 2 /173, T B SEIE RS G0 M 1 4

0.29 0.89 | Men undergoing surgery for prostate cancer fare as well without radiotherapy

Men undergoing surgery for prostate cancer fare just as well without radiotherapy, a major study
has found.

0.48 | Minnern geht es nach einer Operation wegen Prostatakrebs mit und ohne Strahlentherapie gle-
ich gut

Laut einer Studie gibt es keinen Unterschied, ob sich Ménner, die wegen Prostatakrebs operiert
wurden, einer Strahlentherapie unterziehen oder nicht.

0.96 | Muzi, kteff trpi rakovinou prostaty a jdou na operaci, nemuseji podstoupit radioterapii

MuZzi, ktefi trpi rakovinou prostaty a jdou na operaci, nemuseji podstoupit radioterapii, zjistila
studie.

0.24 | HIFIIMEFAREBEHIT, SRR

—EADITAI, EXEPIIET AR B AN BONAT B PIRE R

Table 1: Examples of high CHRF variance from the WMT20 dataset. o is the standard deviation
of the set of four CHRF scores. Each pair in a set would ideally exhibit the same meaning
preservation score.

2.3 Crafting Attacks without Reference Translations

Black-box adversarial examples are crafted by probing the victim system for translations, with
the goal of finding a perturbed input that minimizes similarity between the system translation
and the reference. In the literature, this is typically the same ground truth reference used for
evaluation, but in a practical attack, acquiring a human translation for each segment would be
prohibitively slow and expensive. We craft perturbations using the system translation of the
original source segment in place of a targeted reference translation to simulate a more realistic,
low-information scenario where an adversary doesn’t have access to a ground truth. In this case,
the probes reveal how system behavior changes but not how translation quality with respect to a
human reference translation is affected. This allows us to examine whether simply probing the
system can effectively predict perturbations to reduce system performance.

2.4 Transfer: Using one MT System as Proxy Target for Another

We examine transfer attacks by measuring the effect of each set of black-box perturbations on
the other MT systems. Without direct white-box access to the model gradient or black-box
access to repeated probes, transfer attacks rely on the nature of language or implicit similarity
between systems. When perturbations succeed against another model, the first system can serve
as a proxy to craft attacks on the victim system. Intuitions suggest that transfer attacks are less
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Figure 1: Complementary cumulative dis- Figure 2: English-equivalent CHRF calibra-
tribution functions for CHRF in different tions.
languages.

likely to be effective than black-box attacks, but we want to measure that effect. We also inves-
tigate ensemble perturbers, which select edits based on expected performance against multiple
MT systems, as an instance of transfer.

3 Experiments

We present a novel attack mechanism that uses a finite state transducer-based paraphraser to
generate paraphrases and then selects the best candidate as the attack. We test two target-
ing conditions, reference, where the attack is crafted using ground truth translations from the
dataset, and MT, where only the system translation of the original source is used. Each set of
perturbations is evaluated against the MT system used to craft it (black box) and each of the
other MT systems (transfer). Much of the prior work uses reference translations for attack
crafting and presents primarily black-box evaluations, but crafting perturbations using only MT
outputs and testing transfer to inaccessible systems is a more realistic, low-information sce-
nario. We compare our adversarial FST to the black-box SEQ2SICK approach from (Cheng
et al., 2020) under the same conditions. The evaluation metrics are calibrated CHRF, converted
into English-equivalent CHRF gy, and Success using calibrated CHRF.

3.1 Data

Our experiments use the WMT 2020 test sets for EN-DE, EN-CS and EN-ZH (Barrault et al.,
2020). The source for each target language test set consists of the same 1418 English-language
segments from the news domain.

3.2 MT Systems

Our experiments probe eight trained machine translation systems acquired from the Transform-
ers model zoo (HuggingFace, 2020). mBART English-to-Many is a transformer with multilin-
gual pretraining that is fine tuned to translate from English into many other languages including
DE, CS and ZH (Tang et al., 2020). We use separate bilingual EN-DE, EN-CS and EN-ZH
models from OPUS-MT (Tiedemann and Thottingal, 2020). We use EN-DE bilingual models
from Kasai et al. (2020) (Allen) and Ng et al. (2019) (Facebook). For every system, we use a
beam size of five.
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3.3 Attack: Finite State Transducer-based Paraphraser With Rescoring

We produce adversarial examples by first generating a large portfolio of paraphrases X =
{&1..,} for the input z, then selecting the best candidate under a configurable mix of source
similarity and attack effectiveness. For these experiments, we weight these two factors equally.

To preserve the semantics of an input, our method begins with high-quality paraphrases.
We compile 2.3 million equivalence paraphrases from the Penn Paraphrase Database (PPDB)
(Ganitkevitch et al., 2013) into a finite state transducer (FST) rewriting input strings. We use a
log transform of the PPDB2 score, the estimate of human acceptance included with each PPDB
entry, as the weight for the transduction and follow the methods of Stahlberg et al. (2019) to
generate a lattice of alternatives for input strings. We minimize the lattice FST resulting from
the composition of the input string with the transducer, remove epsilons and determinize, then
use the shortest path search. We keep the n-best list of alternatives to use as our candidate
edit pool, with n = 1000. It takes an average of 0.085 seconds on one CPU to obtain 1000
alternatives for the input sentences studied in this paper using the pynini toolkit (Gorman,
2016) built on top of OpenFST (Allauzen et al., 2007).

We select one perturbation 2 per segment per system that balances attack effectiveness and
meaning preservation. We estimate both in terms of similarities as measured by CHRF. Mean-
ing preservation is measured by comparing the original source and the candidate paraphrase,
Ssre(, &). For every translation system M, we obtain translations y,, for , the original source,
and ¢, for each Z. Attack effectiveness is estimated by measuring how much the system output
differs from the output on the original text, that is stgt(yM, 9 ), for the MT condition, or by
measuring degradation in translation quality s;4,(y, §ar) for the reference condition. For MT
system M, we select the candidate & that maximizes f(&, M) = sgre(x, &) — Stge(Ynr, Unr),
equally weighting source attack effectiveness and meaning preservation.

Meaning preservation s,,.(z, &) and attack scores s;4¢(yar, §ar) are scaled prior to selec-
tion with a simple Gaussian transform to get them into a comparable range. Without the score
transform, the source language similarity scores would tend to be very high compared to the
MT similarity scores. This rescaling makes the aggregate optimization more well-balanced.

3.4 Ensemble attacks

Ensemble attacks were crafted by evaluating attack candidates using multiple MT systems
and averaging the resulting target similarity values, s;4;(yar, Jas), When performing the at-
tack selection. Mean refers to attacks using all eight systems, fpean(Z) = >, f(Z, M;).
Leave-one-out (denoted loo) refers to averaging all but the victim system’s similarity estimate,
Jioo(#, M) = >, ; [(&, M;) where the victim system is M. The leave-one-out condition
simulates attacking an otherwise unknown, inaccessible MT system. Both ensemble techniques
realized gains in transfer success count as more systems were included in the ensemble.

3.5 Baseline Attack: SEQ2SICK

We use the black-box implementation of SEQ2SICK (Cheng et al., 2020) in the TextAttack
python library (Morris et al., 2020b) as a baseline attack on machine translation. This targeted
attack generates candidate edits by swapping words for other words that are close in word
embedding space. It obtains translations for each candidate from the model and greedily applies
one-word changes that minimize the number of words that are present in both the reference and
the translation. For the MT condition, we treat the translation of the original source as the
reference.

Using a GPU, one attack takes an average of 32 seconds and 285 probes when targeting
the reference or 35 seconds and 313 probes when targeting the system translation of the original
source.
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Uncal. | Calibrated Ref S MT S

N | Ref | MT | Ref | MT >l =1|<l||>1]|=1]|<l
A4 i
g black box | 8| 8 8 8 8 g black box | 65|35| 0|/ 66| 1|33
&~ transfer | 56 | 31 9| 16 2| |2 transfer | 26 [ 35|39 ([ 35| 1|64
£ [mean ensemble | 8| 8| 8| 8 7| | & | mean ensemble | 21 | 68 | 11 || 51| 1|48
2] oo ensemble | 8 6] 7| 4| || looensemble|16|66 |18/ 42| 1]67
n black box | 8| 2| 2 1 1| |y black box | 30| 0|70 34| 0|66
a transfer | 56| 16| 20 3 8 % transfer | 28| 0|72 ([ 31| 0| 69

Table 2: Effects of calibration and refer- Table 3: Percent of sentences for which S
ence access at crafting time on black box was > 1 (successful), =1 (no viable attack
and transfer success counts. Uncalibrated found), <1 (unsuccessful). Crafted with ac-
and reference-crafted configurations over- cess to reference (Ref) and without (MT),
estimate success. calibrated conditions only.

4 Results

Success Every set of perturbations degrades the translation quality of every model. All sets
of black-box perturbations using the FST-based perturber meet the criterion of success under
both targeting conditions. However, many transferred FST-based attacks and many SEQ2SICK
attacks under both conditions do not achieve success. Table 2 counts the number of successes
over both perturbers under different conditions. Table 4 presents more details for attacks using
the FST-based perturber, which is more often successful. Each system’s performance on the
unperturbed WMT?20 dataset, as measured for this study, is reported as original CHRF.

Effects of Calibration Table 2 shows the effect calibration has on success rates. Tuning and
measuring performance with calibrated metrics reveals that uncalibrated metrics overestimate
success. The systems in the uncalibrated conditions exploited mismatches in the CHRF scales
for different languages rather than vulnerabilities of the MT systems.

Referenceless attacks Attacks crafted against the reference achieve a higher margin of suc-
cess under black-box scenarios and are much more likely to transfer than attacks crafted against
the original system output. This suggests that the changes made under the MT condition are
more tailored to the errors in the system with which they were crafted, perhaps by further chang-
ing parts of the system translation that already do not match the ground truth. Since transfer
tends to reduce adversarial effect, the effect of these weaker attacks less frequently outweighs
the degradation of the source.

Attack transfer These results don’t suggest trends in transfer that correspond to sys-
tem/language similarity or relative performance. While Allen and Opus-DE were relatively
vulnerable to reference-targeted attacks from other systems, this vulnerability doesn’t extend to
MT-targeted attacks. Adversaries crafted using the multilingual model, mBART, do not transfer
better between its different target languages, even though they share model weights.

Ensemble attacks often transfer: The mean ensembles are successful against nearly all
individual models and the leave-one-out ensemble attacks successfully transfer in eleven of the
sixteen settings. Continuing to add more MT systems to a leave-one-out targeting system would
likely increase its effectiveness. Favoring attacks that succeed against more targeting systems
leads to better transfer to previously unseen systems.
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original
attack
reference

original output

attack output

Example 1: Changing translated day of week
(mBART MT, ssrc = 0.94,d¢g: = 0.32)

Sacramento police also announced their internal investigation did not
find any policy or training violations.
Sacramento police also announced their internal investigation
did not find any policy or training violations.
Die Polizei von Sacramento gab am Donnerstag ebenfalls bekannt, dass ihre in-
nere Ermittlung keine Verletzung der Regeln oder des Trainings erkennen lief3.
Sacramento Polizei gab auch am Donnerstag [Thursday] bekannt, dass ihre in-
terne Untersuchung keine Verstofe gegen die Richtlinien oder Ausbildung ge-
funden hat.
Sacramento Polizei auch angekiindigt Heute (Samstag) [Saturday] ihre interne

Untersuchung fand keine Politik oder Ausbildung Verletzungen.

original

attack
reference
original output
attack output

Example 2: Omitting the object in perturbed translation
(Facebook MT, ssrc = 0.91,dtg¢ = 0.32)
Prince Harry detonated a recently detected mine in Angola.
Prince Harry detonated recently detected mine in Angola.
Prinz Harry detonierte eine kiirzlich entdeckte Mine in Angola.
Prinz Harry hat eine kiirzlich entdeckte Mine in Angola gesprengt.
Prinz Harry detonierte zuletzt in Angola. [Prince Harry last detonated in An-

gola.]

original

attack

reference

original output

attack output

Example 3: Unrelated translation

(Allen MT, s = 0.99, d¢ge = 0.89)
Many readers, including some who work in national security and intelligence,
have criticized The Times’s decision to publish the details, saying it poten-
tially put the person’s life in danger and may have a chilling effect on would-be
whistle-blowers.
Many readers, including some who work in national security and intelligence,
have criticized The Times’s decision to publish the details, 's saying it poten-
tially put the person’s life in danger and may have a chilling effect on would-be
whistle-blowers.
Vieler Leser, darunter auch einige, die fiir die nationalen Sicherheits- und
Nachrichtendienste arbeiten, haben die Entscheidung von The Times, Details zu
verdffentlichen, kritisiert und geduBert, dass dadurch wahrscheinlich das Leben
der Person in Gefahr gebracht wurde und es einen abschreckenden Effekt auf
potenzielle Whistleblower haben konnte.
Viele Leser, darunter einige, die in national Sicherheit und Intelligenz arbeiten,
haben die Entscheidung der Times kritisiert, die Details zu verdffentlichen,
sagte, dass sie potenziell das Leben der Person in danger und konnte eine ab-
schreckende Wirkung auf wiirde - @ be whistle -@ be whistle -@ blowers.
Die Times ist eine US-amerikanische Schauspielerin. [The Times is an Ameri-
can actress. |

Figure 3: Examples with perturbations in orange and back translations in blue.
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English-Czech English-German English-Chinese
mbart| opus|allen| fb|mbart|opus|mbart opus

original s¢g;, CHRF| 53.9| 54.8]|46.7(63.9| 58.2|60.0| 27.9 26.1
calibrated s¢g¢, CHRFep | 54.5| 55.3|45.7163.3| 57.5|59.3| 42.6 41.1

selector | Lgsre| Ssre? Success, S T
mbart| 1.23| 97.1| 1.12 1.02| 1.00(0.99| 1.00|1.00| 0.98 0.99

CS opus|1.33| 96.8| 1.01 1.14| 1.01{0.99| 1.00|1.00| 0.98 0.99
allen| 1.53| 96.1| 0.99 0.99| 1.27(0.99| 1.00|1.01| 0.97 0.98

fb| 1.44| 96.3| 1.00 1.00{1.02|1.13| 1.01|1.02| 098 0.99

mbart| 1.29 96.9| 1.00 1.00{1.02{1.00| 1.12{1.02| 098 0.99
DE opus| 1.36| 96.6| 1.00 1.00| 1.02(1.00| 1.02|1.13| 0.98 0.99
mbart| 0.84| 98.3| 1.00 1.00{ 1.00{1.00| 1.00|1.00| 1.10 1.00
ZH opus| 1.01 97.7| 0.99 1.00{ 1.00{1.00| 1.00|1.00| 1.00 1.14
mean| 0.51| 99.2| 1.02 1.02] 1.07|1.02| 1.02|1.02| 1.01 1.02

loo| 0.47|~99.1| 1.01 1.01| 1.01(1.01| 1.01|1.01| 1.00 1.00

mbart| 2.61| 92.8| 1.06 1.00{ 0.99]0.98| 0.99]0.99| 0.96 0.97
CS opus|261| 92.7| 0.99 1.08| 0.990.97| 0.98|0.99| 0.95 0.97
allen| 2.66| 92.2| 0.97 0.98|1.20|0.97| 0.98]0.99| 0.95 0.96
fb|2.61| 92.6] 0.98 0.99] 1.00|1.07| 0.99|1.00| 0.96 0.97

mbart| 2.52| 93.0| 0.99| 0.99]|1.00(0.98| 1.07|1.00| 0.96 0.97
DE opus|2.56| 93.0| 0.98 0.99]1.00|10.97| 0.99|1.08 0.96 0.97
mbart| 2.49| 93.1| 0.98 0.98/0.99|0.97| 0.98]0.99| 1.04 0.98
ZH opus|2.52| 93.2| 098 0.99]0.98|0.97| 0.98]0.99| 0.97 1.08
mean| 2.67| 93.7| 1.01 1.03| 1.08(1.01| 1.02|1.03| 0.99 1.02
loo| 2.67|~93.6| 1.00 1.01| 1.02{/0.99| 1.00|1.01| 0.97 0.99

Crafted with Reference

Crafted with MT

Table 4: Full FST+Rerank targeted attack results using calibrated metrics. Successful attacks
in bold. mean and loo represent targeting with the mean and leave-one-out ensembles. Sg..
measures meaning preservation on the source side using CHRF. s;4; is the MT score of the
output sentence, measured with CHRF calibrated to English. L, is the mean edit distance
between attacks and originals. Note reference-informed attacks exhibit more conservative edits.

Examples The examples in Figure 3 illustrate some of the range of translation errors given
perturbed inputs. They are drawn from black-box FST-based perturbations against the four
EN-DE translation systems.

5 Related Work

The performance of machine translation systems is vulnerable to adversarial examples of sev-
eral types. Naturalistic and untargeted changes degrade system performance, while remaining
largely intelligible to humans (Belinkov and Bisk, 2018). Using word- or character-level permu-
tations, untargeted attacks simply degrade translation quality, while targeted attacks introduce
particular errors such as removing or inserting selected words. White-box attacks perturb an
input with access to the model’s gradients (Ebrahimi et al., 2018; Cheng et al., 2019; Wallace
et al., 2019; Cheng et al., 2020) while a black-box paradigm only probes the model’s output,
typically for salience of portions of the input and scoring of substitutions proposed via heuristics
(Zhao et al., 2018; Zhang et al., 2021). Other work crafts attacks based on generally exploitable
features of language that are discoverable in training data, such as polysemous words, without
probing expected attack success (Emelin et al., 2020).

Adversarial examples are crafted with respect to particular models and challenge datasets
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and they achieve limited success when applied (transferred) to others. A range of text classifi-
cation adversaries have been shown to reduce the accuracy of models that have different archi-
tectures or were trained on different datasets (Song et al., 2021; Ren et al., 2019; Song et al.,
2020; Emmery et al., 2021). While transfer effectiveness varies by attack method, it does not
reach the level of the matched condition. Several authors show that their adversarial examples,
created using white-box attacks on known systems, transfer to some extent to publicly avail-
able APIs hosted by Google, Baidu and Bing (Zhao et al., 2018; Zhang et al., 2021; Gil et al.,
2019). Emelin et al. (2020) find that their attacks based on dataset co-occurrence reduce the
accuracy of several models, but there’s little overlap in which examples succeed, with slightly
more similarity in sets of examples that are successful on models with the same architecture.
White-box, gradient-based attacks can be crafted on models “stolen” via knowledge distillation,
despite mismatches in data domain and model architecture (Wallace et al., 2020).

Adversarial perturbations typically must conform to perceptual features of an original text.
Most NLP attack methods apply one-off perceptual constraints or preferences (e.g. lower num-
ber of swaps or similarity among vector representations) but the tradeoff between attack effec-
tiveness and human perception is often unaccounted for, making it difficult to discern when
an adversarial effect is the result of perturbations that are easily detected by a human observer
(Morris et al., 2020a). Michel et al. (2019) propose a metric for success that balances adversarial
effect with the level of meaning preservation of the original.

Paraphrases have recently been used for improving evaluation of MT (Bawden et al., 2020;
Thompson and Post, 2020a), for improving MT training (Khayrallah et al., 2020) and multitask
MT models have been run in a clever way to generate paraphrases (Thompson and Post, 2020b).
The adversarial inputs of Iyyer et al. (2018) are generated using a neural end-to-end paraphrase
system.

6 Conclusion

In this paper, we considered the practicality of adversarial examples for NLP by crafting MT
attacks without access to the victim system or ground truth and by measuring those attacks in
a way that accounts for both attack effectiveness and source meaning preservation. We find
that many attacks that reduce translation quality still fall short of a strict threshold of success.
We investigated the ability to transfer attacks across systems and across MT target languages.
Attacks that do not have access to ground truth rarely transfer between systems. When they
are crafted using ground truth, they transfer more often but we did not observe patterns, like
language or system similarity, that allow us to predict when transfer will occur.

Our FST perturbation process is able to select edits under configurable constraints that
preserve source-side meaning while causing large changes in system output. This is due in part
to a high-quality paraphrase generation process relying on millions of paraphrases with scores
calibrated to human quality judgments. This selection process is sufficient to degrade transla-
tion quality with respect to ground truth. The construction of candidates and attack selection
processes do not require a GPU. Ensembles performed the highest rate of successful attacks.

One direction for future work could investigate methods for improving system robustness
to attacks of this type. The leave-one-out ensemble was the most reliable attack method we
found with at least 50% success rate in all conditions, including transferring attacks to systems
it had no previous access to. Building on that success, cultivating it to a robust attack mechanism
spanning languages and systems could be another valuable contribution in the future.

Ethical Considerations

There is a risk that adversarial techniques will be used by malicious actors to attack real world
NLP systems. We believe that sharing this knowledge allows people who deploy models to
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account for risk and create safer systems; in particular, we examine how effectiveness measures
and techniques reported in recent literature might look under more practical, low-information
scenarios outside of academic test harnesses.

Our work is part of a thread in Al assurance that uncovers vulnerabilities and feeds research
into mitigation methods, such as model robustness and detection of deceptive inputs.
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