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Abstract

While recent studies have been dedicated to cleaning very noisy parallel corpora to improve
Machine Translation training, in this work we focus on filtering a large and mostly clean Trans-
lation Memory. This problem of practical interest has not received much consideration from
the community, in contrast with, for example, filtering large web-mined parallel corpora. We
experiment with an extensive, multi-domain proprietary Translation Memory and compare five
approaches involving deep-, feature-, and heuristic-based solutions. We propose two ways of
evaluating this task, manual annotation and resulting Machine Translation quality. We report
significant gains over a state-of-the-art, off-the-shelf cleaning system, using two MT engines.

1 Introduction

Major language service providers that handle huge numbers of translation requests in various
domains typically call upon a large pool of translators (internal and freelance) whose transla-
tions are fed into one or several internal Translation Memories (TM). Translators access these
TMs through a dedicated interface to match requested translations with previously completed
ones, speeding up the translation process. Given their provenance and purpose, it is normally
assumed that TMs are mostly exempt of incorrect translations (henceforth “noise”). Unfortu-
nately, because of the high number of translators involved, with varying levels of expertise, tight
deadlines, and other technological issues, noise inevitably accumulates over the years.

TM noise falls under two broad categories. First, mechanical noise, which occurs be-
cause of the pipeline used to populate the TM, whereby text is extracted from source and target
documents, segmented into sentences and then aligned — all three processes producing occa-
sional errors. Second, human-induced noise, which can arise for a variety of reasons, including
spelling or morphosyntax that do not meet established norms, missing translation units on the
target side, as well as typical translation errors such as calques, the use of false friends, etc.
These errors reduce the usefulness of a TM, and motivate our investigation into whether Paral-
lel Corpus Filtering methods may be useful to increase the quality of a large TM. This contrasts
with the typical use of these methods, which are more commonly applied to large, very noisy
bilingual corpora automatically extracted from the Web (or other uncontrolled sources).

In the following section (Sec. 2), we discuss related work in more details. We then describe
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the large TM on which our experiments are based in Section 3, and the corpus filtering methods
we implemented in Section 4. We evaluate the performance of these methods by measuring
their impact on Neural Machine Translation (NMT) in Section 5, and report our results and
analysis in Section 6. We show that, surprisingly, significant translation quality gains can be
obtained by cleaning an “already clean” Translation Memory.

2 Related Work
2.1 Identifying Translation

Munteanu and Marcu (2005) presented an early successful method to identify translated sen-
tence pairs (SPs) in a comparable corpus, using a feature-based classifier trained in a supervised
way. Features included source-to-target length ratio, bilingual lexicon matches, and a set of fea-
tures based on IBM word translation models (Brown et al., 1993). The authors showed that the
parallel material mined from news extracted over the web improved a downstream statistical
translation engine. Progress in deep learning methods recently led to a number of classifiers
trained without feature engineering. Notably, Grégoire and Langlais (2018) describe a siamese
recurrent neural network that encodes source and target sentences into vectors that are then
fed through a non-linear transformation in order to classify a sentence pair as parallel or not.
The authors show that training such a model yields better performance than the aforementioned
approach, and that adding parallel material extracted from Wikipedia using this model leads
to systematic (although modest) gains in both statistical and neural machine translation per-
formance. While these studies convincingly show that parallel sentences can be mined from
comparable corpora, it remains unclear whether these methods are also useful for filtering out
noise from a relatively clean translation memory.

2.2 Filtering Out Noise

In an early attempt to tackle this issue, Macklovitch (1994) used simple heuristics to detect
specific problems observed in real (professional) translations, such as errors in numerical enti-
ties, calques, or abnormal translation sizes. Barbu (2015) extended this line of work, proposing
17 features, some based on formal clues (e.g., presence/absence of XML tags, emails, URLSs,
numbers, capital letters or punctuation), or using external resources (Bing translation API and
the language detector Cybozu). Using these features, classifiers were trained to recognize bad
translations, using a very small training set (1243 sentence pairs). The best model achieved
81% F-score on 309 test sentence pairs. The author concluded that applying it on MyMem-
ory (Trombetti, 2009) would filter out too many good sentence pairs.

Jalili Sabet et al. (2016) introduced a fully unsupervised Translation Memory cleaning tool
called TMOP. It uses 25 different features, some adapted from Barbu (2015), others based on
the work of de Souza et al. (2014) and focus on estimating the quality of the translation. They
also use multilingual word embeddings, following Sggaard et al. (2015). Each feature acts as
a filter for which a score is returned, then TMOP transforms these scores into a final decision
(Section 4.3 provides more details). Tested on a subset of the English-Italian MyMemory, their
system produced results comparable to Barbu (2015) while being unsupervised.

Recently, there has been increased interest in filtering very noisy, usually web-mined par-
allel corpora using unsupervised deep learning. Chaudhary et al. (2019) trained multilingual
sentence embeddings using LASER (Artetxe and Schwenk, 2018), scoring sentence pairs using
an ensemble of evaluation methods like Zipporah (Xu and Koehn, 2017), Bicleaner (Sanchez-
Cartagena et al., 2018), and dual conditional cross-entropy filtering (Junczys-Dowmunt, 2018).
We tried this approach in our work, but found LASER alone to be significantly more efficient:
In the evaluation reported in Table 2 (Section 6), the ensemble approach reached an accuracy of
0.54 vs. 0.84 for LASER alone. Wang et al. (2018) proposed another state-of-the-art online data
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Corpus \TM-XL META-H BALANCED MT-TRAIN MT-TEST TEST2021

#SPs 139.5M | 18.9M ™ 14M 10k 2021
#Types (fr) 1.IM 571k 463k 388k 10.7k 3.48k
#Types (en) 1.4M 681k 444k 466k 12.9k 4.30k

Table 1: Corpora statistics. “#SPs” is the number of sentence pairs. “#Types” are the number
of space-separated strings of 15 characters or less containing only alphabetical symbols.

ori Ifyou feel like sleeping , stand up and move to back .
cor If you feels just napping, Stand up and moves to abck .

ori The government of Canada will match your contribution dollar for dollar .
cor The governnment of Quebec will match your Contribution dolllar for dollar.

Figure 1: Examples of original (ori) and corrupted (cor) sentences.

selection method for de-noising training material and adapting to a specific domain, but this is
less suited for large TMs with many domains (200 in our corpus, see below).

3 Datasets

For our experiments, we obtained access to a large English-French corporate TM from a major
language service provider (LSP). From this, we extracted various datasets (see also Tab. 1):

TM-XL: From over 1.8M TMX files across more than 200 broad domains (e.g. health, envi-
ronment), we extracted a total 139454 913 sentence pairs (SPs). In the TM system used by
the LSP, translators may flag a problem with a sentence pair, which marks the entire TMX
file containing it as problematic. Flagged material represents 7.7% of all SPs, but we don’t
know which SP from a flagged TMX was the cause of the problem.

MT-TRAIN: For training the translation engines used for evaluation (Sec. 5), we sampled 14M
sentence pairs from TM-XL using stratified sampling to get comparable amounts of SPs
in each domain. Of these, 4.3M sentence pairs were sampled from the flagged part of the
corpus, so that we could monitor if this material impacts translation.

MT-TEST: We also sampled a test set of 10000 sentence pairs from TM-XL. To minimize
the noise in the test set, our sampling excluded sentences from flagged files as well as SPs
labeled as noise by heuristics (see Section 4.1).

META-H: To obtain a training set for our supervised classifiers, we applied the two meta-
heuristics described in Sec. 4.1 on TM-XL and identified 17.7M sentence pairs labelled
as good and 1.2M labelled as bad, for a total corpus of 18.9M annotated SPs.

BALANCED: Due to the heuristics deployed, most bad SPs in META-H feature obvious errors
(gibberish, typos, non-translations, etc.), but lack simple misalignment or subtle translation
errors. We extend META-H automatically by: a) 1.15M English sentences paired with a
random French sentence (misalignments), and b) 1.15M SPs where each token of 4 or more
characters is replaced with one of its top five nearest neighbours in a space of fastText
word embeddings (Bojanowski et al., 2016) (see corrupted SPs in Fig. 1). Joining those
2.3M artificially generated pairs, the 1.2M bad pairs from META-H, and 3.5M SPs sampled
from the 17.7M good pairs in META-H, yields a BALANCED corpus of 7M SPs.
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en Section 34 verification and certification

fr  Fiches de spécimen de signature.

en Native Women’s Association of Canada.

fr  Anaya, Doc. NU A/HRC/9/9, 11 aotit 2008. Native Women’s Association of Canada.
en Since 2005, we have received some $1.4 billion to purchase 17 vessels.

fr  Conflicting sovereignty claims to the Arctic are resulting in a race to the North.

en OPnj#®’L O- nSk

fr i@n [uO5ce \x9b}

Figure 2: Example noise in TM-XL. Top to bottom: poorly aligned section heads; segmentation
problem leading to partial alignment; complete misalignment; character encoding issue.

TEST2021: We conducted targeted manual evaluations on a reduced but representative sample
of 2021 SPs, used for evaluation purposes (cf. Sec. 4.1). TEST2021 contains 1182 (58.5%)
good and 839 (41.5%) bad SPs.

4 Noisy Sentence Pair Detection

We compare five approaches to identify and filter out noisy sentence pairs.

4.1 Heuristics

A visual inspection! of TM-XL led us to identify specific problems that could be detected by
rules (see Fig. 2 for examples). We developed 13 heuristics, most of which similar to those
implemented in other systems described in Section 2. All heuristics take as input a sentence
pair (SP) and produce a score between O (noisy SP) and 1 (good SP).

Some heuristics reward matching numerical expressions (NUM), cognates (COG), punctu-
ation (PUNC), or URLSs (URL) across pairs of sentences. Two heuristics exploit lists of match-
ing tokens between French and English: one for stop words, based on a lexicon of 93 entries
(e.g. the / la, le, les) (STOP), one for general vocabulary (LEX) based on a 60k-word bilingual
lexicon. One heuristic (ION) matches words ending with suffix -ion in French with an iden-
tical suffix in English (e.g., félicitations / congratulations). Other heuristics aim at detecting
common problems: LEN checks the source-to-target length ratio (in words); GIBB detects char-
acter encoding problems (last example in Fig. 2); MONO flags pairs where the target segment
contains source-language words, suggesting untranslated material; FRIEND penalizes SPs con-
taining false friends, based on a lexicon of 175 entries (e.g. fabric/fabrique). We also noticed
that segmentation issues within tables of contents led to alignment errors: heuristic TOC aims
at filtering these out. Finally, a rudimentary proxy to spell checking (SPELL) counts the number
of correctly spelled tokens, using a list of words seen at least 1000 times in Wikipedia.

We evaluate the performance of each heuristic using a set of 1721 sentences pairs: 1321
randomly sampled from TM-XL, plus 400 picked for specific problems. We annotated these
1721 sentence pairs and used them to adjust the thresholds of our heuristics and to select the
optimal combination of heuristics to discriminate good SPs from bad. For detecting good SPs,
the solution that worked best is a weighted combination of 4 heuristics: NUM, LEX, ION, and
PUNC, while the meta-heuristic that worked best to predict problematic SPs is a mix of 9 heuris-
tics. To further evaluate these two “meta-heuristics”, we manually inspected a random sample
of 150 SPs selected by each (i.e. identified as good or bad respectively) and found 115 good
SPs in the former sample (76.7%), and 121 bad SPs in the latter (80.7%).

!'Separate from the Manual evaluation.
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4.2 Feature-based Classifiers

We trained support vector machines (SVM) and random forest classifiers on the BALANCED cor-
pus to detect noisy pairs of segments. The features for each SP are the scores (between 0 and 1)
of each of the 13 heuristics in Sec. 4.1, plus some intermediate values produced while comput-
ing the heuristics, for a total of 60 features. We added two features: the percentage of heuristics
that label the pair as good (resp. bad). We trained the classifiers with scikit-learn® on

standard desktop CPUs, which took approximately 10 hours per classifier.

4.3 TMmopr

TMOP (Jalili Sabet et al., 2016) uses 25 binary functions meant to capture misalignments, poor
translation quality or large semantic distance between source and target. Three ready-made
configurations control how these functions combine into a final decision. The configuration we
use classifies an SP as noise if at least five functions signal a problem. In our experiments,
this configuration was by far the most useful: the “one reject” configuration produced far too
many false negatives, while the “majority vote” hardly detected any bad sentence pair. Simi-
larly to Munteanu and Marcu (2005), TMOP relies (among other things) on IBM Model features
computed with MGIZA .3 Running MGIZA on the 14M SPs in MT-TRAIN on a 16-core cluster
equipped with 70Gb of memory took 13 days. After alignment, TMOP ran on a dedicated cluster
of 32 CPUs with 300Gb of RAM, and took 5 more days, including 6 hours to compute embed-
dings. Therefore, applying TMOP on the full TM-XL corpus would be rather challenging.

4.4 Deep-Learning Classifier

We reimplemented the model of Grégoire and Langlais (2018) in Keras (Chollet et al., 2015),
introducing a few variants we found useful. The model architecture consists of two bidirectional
LSTMs (Hochreiter and Schmidhuber, 1997), each with 300 hidden units encoding sentences
into two continuous vector representations. In their original paper, Grégoire and Langlais (2018)
use 512-dimensional word embeddings and 512-dimensional recurrent states and learn the word
embeddings from scratch. For easier and faster training, we adapt pre-trained 300-dimensional
fastText embbedings. Also, we do not tie the parameters of the two encoders, contrary
to Grégoire and Langlais (2018). Source and target representations are then fed into a Feed-
Forward Neural Network with two hidden layers of 150 and 75 units (respectively), followed by
a sigmoid activation function, which outputs the probability that the input SP is well aligned. We
trained the model using the Adadelta optimizer (Zeiler, 2012) with gradient clipping (clipped
at 5) to avoid exploding gradient and a batch of size 300, which took about 2.5 hours using 4
Tesla V100-SXM2 for 10 epochs.

4.5 LASER

We also use the LASER toolkit* (Artetxe and Schwenk, 2018) to detect noisy pairs. LASER is
a bi-LSTM encoder trained on data from 93 different languages, written in 23 alphabets, such
that semantically similar sentences in different languages are close in the embedding space.
For each source-language sentence s; in MT-TRAIN, we use the multilingual-similarity search
(MSS) method from the toolkit to find the closest target-language sentence ¢; in the embedding
space. If i = j, the sentence pair is considered good, otherwise it is bad and filtered out.
Obviously, we could investigate a less stringent scenario, which we leave for future work. This
is entirely unsupervised, using the model as is, out of the box. Running this method on one

’https://scikit-learn.org/stable/.
3http://www.cs.cmu.edu/-qging/giza/.
4https://github.com/facebookresearch/LASER.
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Tesla V100-SXM2 took approximately 14 hours, despite the quadratic number of comparisons
involved.

5 Neural Machine Translation Models

We evaluate the quality of a TM using the performance of a translation engine trained on it
as a task-based proxy. To reach conclusions that are independent of a specific system, we
experiment with two very different neural translation models: XLM, a deep transformer model,
and ConvS2S, a convolutional seq2seq model. Typical training time on 4 Tesla V100-SXM2
was 22-30 hours for XLM and 72-96 hours for ConvS2S, depending on the dataset.

5.1 Cross-lingual Language Model

Lample and Conneau (2019) proposed a supervised model, the Translation Language Model-
ing (TLM), tackling cross-lingual pre-training in a way similar to BERT (Devlin et al., 2018),
with notable differences. First, XLLM is based on a shared source-target sub-word vocabulary,
computed using byte pair encoding (BPE) (Sennrich et al., 2016). We used the 60k BPE vo-
cabulary from the pre-trained language model.> Second, XLLM is trained to predict both source
and target masked words, leveraging surrounding words and context on both sides and encour-
aging the model to align source and target representations. Third, XLM embeds the tokens and
their position, building a relationship between the related tokens in both languages. XLM is
implemented in PyTorch and supports distributed training on multiple GPUs.® We modified
the original pre-processing code so that XLM accepts a parallel corpus for training TLM. The
translation is produced using a beam search of width 6 and unity length penalty.

5.2 Convolutional Sequence to Sequence

The predominant method for sequence to sequence (seq2seq) learning is to map an input se-
quence to an output sequence of variable length via a recurrent neural network such as an LSTM
(Hochreiter and Schmidhuber, 1997). Gehring et al. (2017) showed that convolutional neural
networks (CNN) could also be used for seq2seq. The ConvS2S model uses CNNs with Gated
Linear Units (Dauphin et al., 2016) for both the encoder and decoder, and includes a multi-step
attention layer. We used the fairseq toolkit (Ott et al., 2019), with a source and target vocabulary
of 60k BPE types. The translation is generated by a beam-search decoder with log-likelihood
scores normalized by sentence length.

6 Experimental Results

‘We now report results on noisy SP detection and its impact on machine translation.

6.1 Sentence Pair Detection

Table 2 reports the tested methods’ accuracy on the manually annotated TEST2021. The meta-
heuristics alone perform worst. Training RF and SVM classifiers on top of heuristics features
clearly helps, with the SVM showing a slight advantage. TMOP delivers comparable results,
suggesting that combining heuristics, word-based translation and embeddings makes a good
detector. The bi-LSTM model, without any feature engineering, yields much better results over-
all, confirming observations by Grégoire and Langlais (2018) on artificial data. Surprisingly,
the best results are obtained by the fully unsupervised LASER. Of course, TEST2021 is a rather
small test set, and results here should be taken with a grain of salt.

STraining TLM without pre-training proved unstable. Back translation gave better results, at a high training cost.
Shttps://github.com/facebookresearch/XLM.git.
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Method TMOP* | meta-h® RF SVM  bi-LSTM LASER*
Accuracy 0.60 0.42 0.60 0.63 0.79 0.84

Table 2: Accuracy on TEST2021. See text for method details (* are unsupervised). 95% error
bars on estimates are ~ +2%.

Trainset | MT-TRAIN —flagged | TMOP | meta-h  SVM  bi-LSTM LASER | NALL

#SP (M) 14 9.67 13.38 8.15 7.50 6.13 9.65 5.80

XLM 36.25 36.29 | 3649 | 36.80 36.53 $37.52  £37.23 | £37.57
ConvS2S 33.04 33.33 | 33,51 | ¥33.78 13391 £33.96 33.58 | t33.93

Table 3: BLEU scores of the XLM and ConvS2S translation engines. —flagged is MT-TRAIN
without the flagged documents (Sec. 3). i (resp. T) means improvement over MT-TRAIN is
significant at the 99% (resp. 95%) confidence level using multeval (Clark et al., 2011).

6.2 Machine Translation Evaluation

Machine translation is used as an extrinsic evaluation of our corpus cleaning methods. Note
that the goal is not to optimize the use of a TM on a single MT engine as in (Cao and Xiong,
2018, for example), but to evaluate systematic differences in MT performance before and after
cleaning, using two very different state-of-the-art neural translation engines. Similarly, we
acknowledge that neither of the MT systems used here is optimized to reach current state-of-
the-art (although in separate experiments, we observed that XLM came close). We are mainly
interested in observing relative performance differences for different filtering, and as we will
see below, these trends are consistent, despite significant differences in absolute performance.
Table 3 shows BLEU scores obtained by XLLM and ConvS2S on portions of MT-TRAIN
produced by different filtering approaches. ConvS2S is consistently about 3 BLEU points worse
than XLM, but reflects the same trends overall. Removing the flagged material (-flagged) from
MT-TRAIN hardly impacts BLEU, which supports our observations that the flagged material
was generally of good quality. Out of the box, TMOP filters out very few SPs (less than 5%),
without producing any significant gain in BLEU. Some adaptation to the Translation Memory
may be needed to deploy it efficiently. Table 3 also shows that all methods described in Sec-
tion 4 filter a significant portion of MT-TRAIN (31% to 56%), resulting in BLEU gains that
are sometimes highly significant. This is already a surprising outcome, for a corpus sampled
from a TM, which is supposed to be already clean. The largest gains come from the supervised
bi-LSTM approach, which also filters out more material, with the unsupervised LASER not far
behind. Using the intersection of all our filters (last column in Tab. 3) filters a few more SPs, and
further improves performance. The final BLEU gain is +1.22 for XLM (+0.89 for ConvS2S)
with only 42% of MT-TRAIN remaining. It is interesting to note that -flagged and LASER yield
very similar amounts of training material, but the latter results in significantly higher BLEU.
This suggests that 1) as mentioned previously, the flagged material contains clean material that
is useful to the MT engine, while 2) the non-flagged portion of the TM contains noisy material
that has not been flagged by translators, but can be filtered out to improve MT performance.
Fig. 3 plots the BLEU scores on the test set (versus epochs) for XLLM translation engines
trained on the different portions of MT-TRAIN. We observe similar training curves, including a
sharp increase in performance at epoch 10, for all systems, and systematic gains at each epoch.

6.3 Analysis

We now investigate various aspects of the cleaning process.

7
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BLEU Scores

= MT-TRAIN
meta-H
bi-LSTM

—— RF
SWVM

—— LASER
Intersection All

17.5 Random

0 10 20 30 40 50 G0
Epochs

Figure 3: BLEU scores of XLLM versus epochs for the different training sets we considered.

Domain Specificity. One possible concern is that the filtering is essentially performing some
kind of adaptation to the test set. We first note that MT-TRAIN and MT-TEST are both sampled
from TM-XL and are similarly balanced according to domain information recorded in the TM.
We also compare the domain distribution in the original TM to that in MT-TRAIN and its var-
ious filtered versions, using the Kullback-Leibler (KL) divergence: All filtered subsets yield a
divergence close to that computed between MT-TRAIN and the original TM (KL = 0.0110).
This suggest that the domain distribution is not affected by any filtering method.

Combining Methods. Different filtering methods remove different amounts and portions of
MT-TRAIN (Tab. 3). We checked agreement between the meta-H, bi-LSTM and LASER fil-
ters and observe that 93.4% of SPs identified as noise by LASER were also labeled as such by
bi-LSTM, while the agreement on noise between LASER and either meta-H or SVM is approx-
imately 65%. Removing SPs labeled as noise by any of meta-H, bi-LSTM or LASER (named
NALL in Tab. 3) results in a corpus of 5.8M sentence pairs, which yields BLEU scores similar to
bi-LSTM. This suggests that the deep learning methods do not benefit from the other techniques,
although they allow to further clean the corpus with no performance loss. As a sanity check,
we randomly select a subset of 5.8M SPs from MT-TRAIN, and observe a drop in translation
performance of —1.26 and —0.93 BLEU for XLLM and ConvS2S respectively (not shown in
Table 3). This further supports the claim that our methods do perform a useful cleaning of the
translation memory.

Unknown Words. Both translation engines use a fixed set of 60k BPE subword units. Some
target words in the training material can not be reproduced using that limited vocabulary. For
the XLLM translation engine on MT-TRAIN, we count 76k such token types. Manual inspection
shows that the vast majority are gibberish words, e.g. t0ODElmsioyCe, likely document con-
version problems. Filtering the training material with SVM, bi-LSTM and LASER, reduces the
number of unrepresentable token types to around 3k, 450 and 17k, respectively. This indicates
that our cleaning approaches (especially bi-LSTM) efficiently reduce the number of unknown,

8
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gibberish words.

G
—— MT-TRAIN
NOT-FLAGGED
- meta-H
5 — FF
SV
— hi-LSTM
4 LASER
Intersection
random
53
L
=
2
1
_—
r
0 »
0 20 40 G0 80 100 120 140
#5Ps

Figure 4: Average length-ratio of sentence pairs of the different sub-corpora of MT-TRAIN as a
function of the number of slices of 100k SPs considered.

Length-ratio. Figure 4 shows the length ratio (|en|/|fr|) of sentence pairs in portions of MT-
TRAIN filtered in different ways, in blocks of 100k SPs sorted by increasing length ratio. The
curve for MT-TRAIN starts near zero (much longer French sentence) flattens slightly below 1
as expected, and peeks around 4 (longer English sentences). Both extremes very likely indicate
alignment problems. Applying meta-heuristics or feature-based classifiers reduces near-zero
and high ratios to some extent. Noticeably, bi-LSTM and LASER remove most of the SPs with
extreme length ratios, leading to an average around 0.8 (French is about 20% longer than En-
glish, on average). This suggests that cleaning is indeed being performed, removing extreme
misalignments.

Other Evidence of Cleaning. MT-TRAIN contains 25 203 sentence pairs with a www token
in English, but not on the French side, versus 57925 with matching www token, a ratio of
43.5%. SVM, bi-LSTM and LASER lower that ratio to 10.5%, 3.1% and 4.9% respectively, after
filtering. We also manually annotated 100 sentence pairs from NALL, i.e. classified as good by
all approaches, and 100 sentence pairs classified as noise by bi-LSTM and LASER. We found
16 false positives in the former and 33 false negatives in the latter. This suggests that deep
learning methods are excessively strict noise detectors. This, however, does not seem to impact
MT performance adversely.

Reproducibility. While we had the opportunity to work on a large, high quality professional
TM, we realize that our results can not be replicated exactly. By nature, large professional TMs
are proprietary and not easily shared. We argue however that one can easily reproduce (Drum-
mond, 2009) our experiments on another corpus or TM, using the information from Sections
4 to 5. In addition, the main building blocks for the better-performing filtering and translation
pipelines are publicly available.
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Generalizability to other languages. For the same reason (access to a large professional
TM), we only performed experiments on a single language pair comprising similar languages
with, e.g., many cognates. We acknowledge that it is an interesting and important issue to estab-
lish whether a similar approach applies to languages with different characteristics, e.g. complex
morphology, or differing word order or sentence structure. The availability of deep learning
models such as LASER on a (relatively) large number of languages should make it straightfor-
ward to experiment on many other language pairs to check whether the results presented in this
paper generalize.

7 Conclusions

We explored several ways to filter a mostly clean Translation Memory, used daily by profes-
sional translators. We showed that (pre-trained) LASER and (trained in-house) bi-LSTM are
able to discriminate noisy sentence pairs from clean ones with high accuracy. The former is
unsupervised, delivering the best results on our small scale manual evaluation. Both methods
outperform heuristics devised specifically for this task, feature-based classifiers trained with
supervision, as well as the TMOP system which turned out to be very challenging to deploy.
We also showed that filtering the noisy SPs results in machine translation gains. Deep learning
methods allow significant gains in BLEU: the bi-LSTM classifier filters out over half the training
material, and yields a gain of over one BLEU point. Future work includes better characterizing,
modeling and generating subtle noise in misaligned segments, in order to build better detectors.
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