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Abstract

Optimal Transport (OT) provides a useful geometric framework to estimate the permutation
matrix under unsupervised cross-lingual word embedding (CLWE) models that pose the align-
ment task as a Wasserstein-Procrustes problem. However, linear programming algorithms
and approximate OT solvers via Sinkhorn for computing the permutation matrix come with
a significant computational burden since they scale cubically and quadratically, respectively,
in the input size. This makes it slow and infeasible to compute OT distances exactly for a
larger input size, resulting in a poor approximation quality of the permutation matrix and subse-
quently a less robust learned transfer function or mapper. This paper proposes an unsupervised
projection-based CLWE model called quantized Wasserstein Procrustes (QWP). qWP relies on a
quantization step of both the source and target monolingual embedding space to estimate the
permutation matrix given a cheap sampling procedure. This approach substantially improves the
approximation quality of empirical OT solvers given fixed computational cost. We demonstrate
that qWP achieves state-of-the-art results on the Bilingual lexicon Induction (BLI) task.

1 Introduction

In natural language processing (NLP), the problem of aligning monolingual embedding spaces
to induce a shared cross-lingual vector space has been shown not only to be useful in a variety of
tasks such as bilingual lexicon induction (BLI) (Mikolov et al., 2013; Barone, 2016; Artetxe et al.,
2017; Aboagye et al., 2022), machine translation (Artetxe et al., 2018b), cross-lingual information
retrieval (Vuli¢ & Moens, 2015), but it plays a crucial role in facilitating the cross-lingual transfer
of language technologies from high resource languages to low resource languages.
Cross-lingual word embeddings (CLWESs) represent words from two or more languages
in a shared cross-lingual vector space in which words with similar meanings obtain similar
vectors regardless of their language. There has been a flurry of work dominated by the so-called
projection-based CLWE models (Mikolov et al., 2013; Artetxe et al., 2016, 2017, 2018a; Smith

et al., 2017; Ruder et al., 2019), which aim to improve CLWE model performance significantly.

Projection-based CLWE models learn a transfer function or mapper between two independently
trained monolingual word vector spaces with limited or no cross-lingual supervision.

Famous among projection-based CLWE models are the unsupervised projection-based
CLWE models (Artetxe et al., 2017; Lample et al., 2018; Alvarez-Melis & Jaakkola, 2018;
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Grave et al., 2019): they eliminate the initial seed bilingual lexicon and rely on the topological
similarities between monolingual spaces, known as the isometry assumption, to extract seed
bilingual lexicons. This makes them attractive since they require no cross-lingual supervision.
One of the ways of framing unsupervised CLWE models is to pose the alignment task as a
Wasserstein-Procrustes problem aiming to jointly estimate a permutation matrix and an orthogo-
nal matrix (Grave et al., 2019; Ramirez et al., 2020). Most existing unsupervised CLWE models
that solve the Wasserstein-Procrustes problem resort to Optimal Transport (OT) based methods
to estimate the permutation matrix.

Optimal Transport (OT) (Monge, 1781; Kantorovich, 1942) provides a natural geometric
and probabilistic toolbox to compare probability distributions or measures. OT is concerned
about determining an optimal transport plan for moving probability mass between two probability
distributions with the cheapest cost. In theory, optimal transport is beautiful and well defined
and has been well studied under continuous distribution. However, in practice or specifically in
machine learning, we only have access to samples given an underlying distribution, so we turn to
observe discrete distributions. This resonates with how empirical OT solvers have been built;
they accept samples as inputs from input probability distributions or measures.

When the discrete distributions are composed of a large number of point cloud in higher
dimensions, it becomes slow, impractical, and infeasible to compute OT distances exactly given
the empirical OT solvers. A common scalable approach adopted by Grave et al. (2019) in their
stochastic optimization framework to approximate the exact OT distance in order to extract the
permutation matrix was to randomly draw k& monolingual embeddings from the source and target
spaces, respectively. However, this approximation approach poses two main challenges:

1) Sampling Efficiency Does the OT distance computed between the k sampled embeddings
provide a useful or quality OT distance approximation of the true underlying distributions of
the source and target spaces? Theoritical bounds and results have shown that the quality of this
approximation has a convergence rate of k~ to the true OT distance, where d is the ambient
dimension (Dudley, 1969; Weed & Bach, 2019). Therefore, an effective approximation of the
true OT distance requires large k samples since we are constrained by the curse of dimensionality
from the power —é. Thus, we need more samples to approximate the true OT distance in higher
dimensions.

2) Computational Efficiency Empirical OT solvers such as linear programming algorithms
(Burkard et al., 2012) and approximate solvers via Sinkhorn (Cuturi, 2013) for computing the
permutation matrix have a computational cost of O (k3 log k:) and O (kzefz) , respectively, in
the input size, k, and regularization term e defined later in Equation 7. It becomes slow and
infeasible in higher dimensions to compute OT distances exactly for a larger input size. We are
therefore restricted by the maximum £ samples to draw for an effective approximation of the
true OT distance. The constraint here is not the availability of data but computational cost.

Given these two challenges, Beugnot et al. (2021) proposed two efficient OT estimators.
The empirical OT solvers remain the same, either the linear programming solver or the entropic-
regularized OT via Sinkhorn. However, instead of drawing only %k samples as input to the OT
solver, they rely on a cheap quantization step like k-means ++ (Arthur & Vassilvitskii, 2007)
that is consistent with the computational complexity of the OT solver. Since sampling is cheap,
they draw more than k£ samples and then use k-means++ to quantize the oversampled points
from the source and target spaces, respectively, by partitioning them into & clusters and then
select the k weighted anchor points as input to the OT solver. This quantization step improves
the approximation quality to the true OT distance. Aside from the theoretical guarantees of
the benefits of this quantization step, they showed that the new variant of the unregularized OT
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estimator yield an improvement in the convergence rate by k£~2¢ in the best case or k= in the
worst case, which is on par with the computational complexity existing empirical OT estimators,
where v = 2.

Inspired by the work of Beugnot et al. (2021), our paper proposes a new unsupervised
CLWE model called quantized Wasserstein Procrustes (QWP). We follow the stochastic algorithm

framework by Grave et al. (2019) and the refinement procedure from Lample et al. (2018).

Our contribution. This work proposes a new unsupervised CLWE model: quantized Wasser-
stein Procrustes (qWP) that relies on a quantization step of the source and target distributions
to estimate the alignment and linear transformation jointly. Firstly, we use the stochastic opti-
mization framework in Grave et al. (2019). However, instead of randomly drawing k samples
at each iteration, we use a quantization step to preprocess the source and target distributions to
find the optimal k point compression or summary needed to estimate the permutation matrix. It
leads to a much-refined sample as opposed to a random sampling of the &k points. This approach
substantially improves the approximation quality of the true OT distance and bias of empirical
OT solvers given fixed computational cost (Beugnot et al., 2021). The main idea behind qWP is
to oversample the k£ samples and then reduce them to k-weighted samples through quantization
such as k-means++. After this, a linear program solver or regularized Sinkhorn algorithm can be
used on the resulting quantized distribution. The translation pairs obtained from the permutation
matrix are then used to learn the linear transformation. Finally, we use the refinement approach
from Lample et al. (2018) to improve the orthogonal mapping. We demonstrate that qgWP
achieves state-of-the-art results on the BLI task.

2 Related Work

At the heart of Cross-lingual NLP are CLWE models. It has quickly evolved into a large subarea
with a wide variety of approaches and perspectives, so we provide context by overviewing this
work first.

Projection-based CLWE models can be categorized into (Ruder et al., 2019): 1) fully
supervised projection-based CLWE models, 2) weakly supervised projection-based CLWE
models, and 3) fully unsupervised projection-based CLWE models. The main idea governing all
CLWE models is to independently train monolingual embeddings on large monolingual corpora
in different languages or use pre-trained monolingual embeddings and then learn a transfer
function to map them into a shared cross-lingual word vector space.

The first fully supervised projection-based CLWE model to learn a shared cross-lingual
word vector space from monolingually-trained word embedding was proposed by Mikolov
et al. (2013). They learned a linear transform from the source embedding space to the target
language by minimizing the sum of squared Euclidean distance between the translation pairs of
a seed dictionary based on the assumption that two embedding spaces exhibit similar geometric
structures (i.e., approximately isomorphic). Their model requires word-level supervision from
several thousand seed translation dictionaries (Dict). Subsequent works by Xing et al. (2015);
Artetxe et al. (2016); Smith et al. (2017) argued and proved that the quality of the learned CLWEs
could be improved by modifying the objective function in Mikolov et al. (2013).

A more recent line of research has shown that the shared cross-lingual word vector space can
be induced with weaker supervision from a small initial seed dictionary (Vulic & Korhonen, 2016;
Glavas et al., 2019; Vulic et al., 2019). Weakly supervised projection-based CLWE models start
with a small initial seed dictionary; however, the initial seed dictionary is iteratively expanded
through a self-learning procedure. For example, Bootstrap Procrustes (PROC-B) (Glavas et al.,
2019) is semi-supervised in that it starts with a small pairwise correspondence (of 500-1000
words), aligns those to infer a larger correspondence, and repeats applying Procrustes alignment.
The quest to eliminate cross-lingual supervision has led to the development of fully unsupervised
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projection-based CLWE models.

Fully unsupervised projection-based CLWE models use the topological similarities between
monolingual embedding spaces to induce the shared cross-lingual vector space (Lample et al.,
2018; Artetxe et al., 2018a; Mohiuddin & Joty, 2019). The translation dictionaries are produced
from scratch based on monolingual data only.

3 Background

In this section, we describe the mathematical formulation of supervised projection-based
CLWE models and unsupervised projection-based CLWE models. We also defined what the
2-Wasserstein distance is and looked in detail at how the Wasserstein-Procrustes problem under
the unsupervised CLWE model is solved in practice.

We define two monolingual embedding spaces as X,Y € R"*¢, where n is the number of
words, and d is the dimension of the monolingual word embeddings.

Supervised Projection-Based CLWE Models require word-level supervision from seed trans-
lation dictionaries such that word z; in X is the translation of word y; in Y. The linear
transformation, W*, from the source monolingual embedding space to the target monolingual
embedding space is learned by solving the least square problem (Mikolov et al., 2013):

w :argminHXW—YH% (1)
wW ERd xd
Xing et al. (2015), modified the objective function in Eq. (1) to improve the quality of the
learned CLWE:s by unit length normalizing the word embeddings and imposing an orthogonality
constraint on the linear transformation (W) during training:

w :argminHXW—YH?,, (2)
WeOq

where O, is the set of orthogonal matrices. The orthogonality constraint preserves the
original monolingual embedding space’s similarities and geometric structure. These assumptions
and constraints imposed on the linear transform make the problem of learning a transfer function
an orthogonal Procrustes problem (Eq. 2), which has a closed-form solution: W* = UV T,
where UX'V T is the singular value decomposition of X "Y (Schénemann, 1966).

2-Wasserstein distance is a distance function used to compute the OT-distance given two set
of points X and Y:

. 2
W3 (X,Y) = min >z —u;l; Py 3)
tig=1

where P, is the set of permutation matrices, P,, = {P c{0,1}"*", Pl, =1,, PT1, = 1n}.
Unsupervised Projection-Based CLWE Models Without any initial seed bilingual lexicon
some unsupervised CLWE models solves the Wasserstein-Procrustes problem (Eq. 4) to jointly

estimate the permutation matrix or alignment (P) and linear transformation (W) (Grave et al.,
2019; Ramirez et al., 2020):

W* P*= argmin |XW — PY|> (4)
We0Oq,PEP,

The permutation matrix P* provides a one-to-one mapping or correspondence between the
source and target samples.
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Under unsupervised CLWE models that solve the Wasserstein-Procrustes problem, we aim
to estimate the two unknown variables W and P. One way to solve Eq. (4) is by alternating the
minimization of W and P. Given P, we use the translation pairs obtained between the source
and target spaces to learn the linear transformation, W* from Eq. (2). Similarly, given the linear
transformation W*, Eq. (4) is equivalent to minimizing the 2-Wasserstein distance between
XW and Y to solve for the permutation matrix, P:

W3 (XW,Y) = min Py W = y;15 Py (5)

Equation (5) is the standard OT problem, and it can be solved using a linear programming

solver, which has a computational cost of O (n3 log n) For a large n, a linear programming

solver is impractical. Another variant and approximation of the optimal transport problem were

proposed by (Cuturi, 2013). This variant adds an entropic regularization term leading to the
Sinkhorn algorithm with a computational cost of O (n%e~2):

n

W2 (XW,Y) = Juin lz:W —y;ll3 Pij+e > log Py (6)
3,5=1 i,j=1

Grave et al. (2019) proposed a stochastic optimization scheme to jointly estimate W and
P by randomly sampling X, Y € R¥*¢ from X and Y, where k < n. Due to how slow and
infeasible a linear programming solver for a larger input size can be, Grave et al. (2019) used the
Sinkhorn algorithm to compute the permutation matrix, P by minimizing:

k
W2 (XW,Y) = min Z lzsW — g2 Py +¢ S log Py (7)
1,j=1 3,j=1

4 Proposed Method

This section introduces our new unsupervised CLWE model: quantized Wasserstein Procrustes
(qWP). We use the previous stochastic algorithm framework and refinement procedure from
Grave et al. (2019) and Lample et al. (2018) respectively in our model, but we rely on a
quantization step to estimate the permutation matrix.

4.1 quantized Wasserstein Procrustes (qWP)

We consider two languages with vocabularies V,, and V,,, represented by word embeddings
X = {z;}i .Y = {wi}l . respectively We assume two empirical distributions over the

embedding spaces, X and Y: p Z ;0 and v —Z qj0,, where p; and ¢; are the
1=1

probability weights associated with each word vector, d,, and d, is the Dirac function supported
on point x and y respectively.

The main crux of our proposed unsupervised CLWE model: quantized Wasserstein Pro-
crustes (QWP) is that we rely on a quantization step like k-means++ (Arthur & Vassilvitskii,
2007) instead of random sampling to estimate the permutation matrix and then use gradient
descent and Procrustes to extract the orthogonal matrix. We take Eq. (4) as our loss function.
However, Eq. (4) is not jointly convex in W and P, but as we saw in Section 3 we can fix one
variable and then solve for the other variable. Alternating the minimization in each variable W
and P is therefore employed to find a solution (Alaux et al., 2018; Grave et al., 2019).

First, we have to induce the translation dictionary by solving for the permutation matrix,
P* in Eq. (5) and then find the orthogonal projection matrix from Eq. (2). Naively doing an
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English Space Twi Space English Space Twi Space

Quantized Wasserstein Distance Wasserstein Distance

Figure 1: Illustration on toy 2d data showing the potential advantage of Quantized Wasserstein
Distance (qWD) over Wasserstein Distance (WD). We want to align or translate words in the
English Space to words in the Twi Space without knowing aforehand the translation pairs or the
linear transformation. Twi is a language spoken in Ghana, West Africa. First, we must induce
the translation pairs by estimating the permutation matrix, P, either through qWD or WD. Each

dot represents a word in that space; specifically, the red points are the k centers from k-means++.

The edge connecting two red points means the two words are accurate translation pairs, whereas
the edge between two black points is the wrong translation pair. Here we want to induce six
translation pairs through P.

alternating full minimization in each variable W and P of Eq. (4) does not scale, and even on
smaller problems, empirical results show that it quickly converges to a bad local minima (Zhang
etal., 2017). A scalable stochastic approach adopted by Grave et al. (2019) was to instead, at
each iteration, #, randomly sample a minibatch Xz = {z;}_,, and Y = {y;}"_, of size k

from X and Y. The optimal coupling or permutation matrix, P*, was then computed from Eq.

(7) using the Sinkhorn algorithm. The translation pairs obtained from P* between the source
and target spaces are then used to learn the orthogonal matrix, W*, that maps the source to the
target spaces from Eq. (2) by using Procrustes and gradient descent to update W. The procedure
for updating W is detailed in Grave et al. (2019).

The stochastic optimization scheme adopted by Grave et al. (2019) to make the alternating
minimization process scale and achieve a better convergence to a good local minimum when
computing the permutation matrix suffers from the sampling efficiency and computational
efficiency challenges discussed in Section 1.

To address these two challenges following Beugnot et al. (2021), we will quantize the
source and target word embedding space by finding the optimal &k point compression or summary
as input to the 2-Wasserstein distance (Pollard, 1982; Canas & Rosasco, 2012) through the use
of k-means++. The resulting convergence rate of k2% in the best case or K~ in the worst case
from using this quantization step makes the OT solver yields a better approximation quality of

the permutation matrix and subsequently a more robust learned transfer function, where o« = é.

4.1.1 New Alignment Algorithm

The goal of our proposed new CLWE algorithm is to quantize the source and target embedding
spaces X and Y to be aligned to obtain a much-refined coreset ! that is less noisy compared to
just randomly sampling from X and Y. Our proposed new method is summarized in Algorithms 1
and 2. For each iteration ¢ (Algorithm 1), we compute the permutation matrix P* from Algorithm
2. The main idea of Algorithm 2 is to draw more than k samples using the coreset size m > k
and then reduce them to k-weighted samples through quantization such as k-means++. Here the
computational cost of k-means++ is O (mk). To satisfy the computational complexity of the OT

! A coreset is a summary or an approximation of the shape of a larger point cloud with a smaller point cloud.
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Algorithm 1 Quantized Wasserstein Procrustes

Require:
Word embedding matrix, X, Y € R™*? of the source language and target language respec-
tively, entropy regularization coefficient €, number of anchor point k
Ensure:
Orthogonal matrix, W
1: fore=1,...,Edo

2 fort=1,...,T do

3 P+ gW (X,Y, ¢, k)

4: W <«Update W by gradient descent and Procrutes
5:  end for

6: end for

7: return W

solver, we must ensure that the quantization step used to preprocess the source and target space
takes O (k®log k) time. In view of this, we set m = k* log k so that we are consistent with the
computational complexity O (k3 log k) of the OT solver. We then sample X,;, = (21, ... %)
iidfrom X and Y., = (y1,-..Ym) i.i.d from Y. Using k-means++ we find the k weighted
centers. Following each Voronoi cell, we weight each center proportionally to the number of
samples to obtain the weights a and b. We then can use either the linear program solver or the
regularized Sinkhorn algorithm (Cuturi, 2013) to estimate the permutation matrix, P, between
the two quantized point clouds. In our case, we used the entropic-regularized OT solver via
Sinkhorn, which we call AprroxOT(C, a, b, €).

Algorithm 2 Quantized 2-Wasserstein Distance (¢WW (X,Y, ¢, k))
Require:
X ={z;};—;, Y = {y;},—, , entropy regularization coefficient ¢, number of anchor points
Ensure:
Permutation Matrix, P
1: Sample m points:
2. Setm = k?logk
3. Sample X,,, = (z1,...2Zm) i.id from X and Y, = (y1,. .. ym) i.i.d from Y
4: Subsample k anchor points:
5
6
7

Compute (cq, . . . i) with k—means++
Compute (dy, . .. dg) with k—means++
: Compute weights:

n
8: Set a; :Zl 1i:argmin”wj—cl|\§vli S {1,,]€}
J= l

9:  Setb;=>1, —q2Vie{l,... k}
=1

i=arg min||x;
= l
10: Cost matrix:

2 ..
11: SetC’ij = HCl'fdj”2 VZ,j G{l,...,n}
12: Regularized transport solver:
13: return P < ApproxOT(C, a, b, €)

See the example in Figure 1 where the translation pairs obtained under qWD yield perfect
matches compared to WD, which gave some wrong translation pairs. Under qWD we use
k-means++ to quantize the English and Twi Space to select the k£ weighted centers as input to
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the OT solver instead of randomly drawing & points under WD, which could be noisy.

As a quick review of k-means++ (Arthur & Vassilvitskii, 2007), it initializes a set of cluster
centers for the k-means objective. Each step iteratively increases the set of cluster centers by
choosing a new center from the dataset proportional to the squared distance to the closest already
chosen center. In one variant we explore, we run one step of the standard Lloyd’s algorithm after
initializing, moving each center found to the average of data points closest to it.

5 Experimental Analysis

We provide an evaluation of our proposed methods using English (EN) and five languages
embeddings pre-trained on Wikipedia (Bojanowski et al., 2017): Spanish (ES), French (FR),
German (DE), Russian (RU), and Italian (IT). We use the 300-dimensional fastText (Bojanowski
et al., 2017) embeddings, and all vocabularies are trimmed to the 200K most frequent words.

Alignment evaluation tasks: BLI We evaluate and compare our proposed CLWE method
mainly on the Bilingual Lexicon Induction (BLI) task, a word translation task. BLI is more
direct and has become the de facto evaluation task for CLWE models. For words in the source
language, this task retrieves the nearest neighbors in the target language after alignment to check
if it contains the translation. We report two different translation accuracies: precision at 1 (P@1)
and mean average precision (MAP) (Glavas et al., 2019) translation accuracy, which is equivalent
to the mean reciprocal rank (MRR) of the translation.

Implementation Details The monolingual word embeddings are unit length normalized and
centered before entering the model. The first 2.5k words are used to determine )y given P*
obtained from the Frank-Wolfe algorithm (Frank & Wolfe, 1956). We trained qWp on the first
20k most frequent words and evaluated them on separate 1.5k source test queries. We used the
MUSE publicly available translation dictionary (Lample et al., 2018). We used the regularized
Sinkhorn algorithm (Cuturi, 2013) and always set the entropy regularization term (e) to € = 0.05.

We use the Refinement approach from (Lample et al., 2018) and run it for five epochs.
This approach iteratively improves the orthogonal mapping Q. After learning Q* from Eq. (4),
we build another (slightly larger) dictionary of translation pairs by translating each word to its
nearest neighbor under the transformation ). The newly learned dictionary of translation pairs
is then used to learn a new mapping () from Eq. (2), and then we repeat the process, each time
building an incrementally larger dictionary.

We consider both balanced and unbalanced OT. The unbalanced OT does not require strict
mass preservation (Chizat et al., 2018), contrary to the standard or balanced OT problem, Eq. (5).
Under the unbalanced OT, Eq. (5) is relaxed by adding two KL-divergence terms to ensure a
more relaxed mass preservation. This helps to solve the polysemy problem.

Baselines: BLI We evaluated and compared the published result of WP to several super-
vised and unsupervised CLWE models on the BLI task. The baselines include Procrustes
(PROC) (Artetxe et al., 2016), Ranking-Based Optimization (RCSLS) (Joulin et al., 2018),
Gromov Wasserstein (GW) (Alvarez-Melis & Jaakkola, 2018), Adversarial Training (Adv +
Refine) (Lample et al., 2018) and the density matching method (Dema + Refine) (Wang et al.,
2019). We used the baseline results

Main Results Tables 1, 2 and 3 summarize the effect of the coreset size within the QWP
algorithm. We proceed with four experiments. In tables |1 and 3 we report the mean average
precision (MAP) (Glavas et al., 2019) translation accuracy, which is equivalent to the mean
reciprocal rank (MRR) of the translation, whereas, Tables 2 and 4, the translation accuracy
reported is the precision at 1 (P@1).
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Table 1: Bilingual lexicon Induction (BLI) task, (MAP) - Without Refinement

Coreset Size

Trans. Pairs ~ Sampling 200 500 1000 2000 3000
ENES Random 36.40 4722 4890 49.66 50.08
) KMeans ++ 4521 48.69 49.64 4971 50.09
ESEN Random 4374 5036 52.04 53.84 54.67
KMeans ++ 4724 5221 5255 5410 54.90

ENER Random 3722 4794 4931 5059 50.88
KMeans ++ 4654 4945 5012 5054 51.07

FRAEN Random 3887 5336 5491 5547 55.85
- KMeans ++ 52.67 5443 5554 56.11 56.70
EN.DE Random 2718 36.10 38.00 3849 39.29
KMeans++ 32.80 37.44 3858 3877 39.72

DEEN Random 3097 4126 4044 4187 41.78
- KMeans ++ 39.03 4190 4021 4393 4242
ENRU Random 18.68 2791 3091 3175 3243
KMeans ++ 2697 27.12 2990 3225 31.41

RUEN Random 2726 3993 4150 43.56 4381
i KMeans ++ 16.13  37.07 42.69 4282 4454
ENAIT Random 3404 4610 4799 4928 50.79
KMeans ++ 4483 4731 49.00 5029 51.12

ITEN Random 3850 5244 5292 5470 57.04
- KMeans ++ 47.80 5177 5460 57.03 57.49
N Random 3328 4426 4569 4692 47.66
Ve KMeans ++ 39.92 44.74 4628 4755 47.94

Table 2: Bilingual lexicon Induction (BLI) task, (P@ 1) Without Refinement

Coreset Size

Translation Pairs ~ Sampling 500 1000 2000 3000
EN-ES Random 73.53 7520 76.73 80.40
KMeans ++ 77.80 79.47 7820 81.53

EN-FR Random 77.07 79.40 80.00 81.00
KMeans ++ 78.27 79.60 80.20 81.13

EN-DE Random 62.73 67.60 70.40 70.60
KMeans++ 65.60 68.87 71.40 71.40

Random 33.13 35,53 3547 36.87

EN-RU KMeans ++ 34.53 36.07 36.53 36.60
EN-IT Random 70.67 7247 75.13 75.73
KMeans ++ 73.20 74.87 76.73 76.93

Av Random 63.43 66.04 67.55 68.92
g KMeans ++ 65.88 67.78 68.61 69.52
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The first experiments in Table 1 show the MRR scores without refinement, and the following
Table 3 shows the same MRR scores with refinement. In each table, we increase the coreset
size from 200 to 3000, and this is either chosen as in prior work as a random sample or in
our proposed approach via k-means++. As expected, on all language pairs, the performance
increases as the coreset size increases. Also, notice that the improvement by increasing the
coreset size plateaus and is not as significant from 2000 to 3000, indicating that probably 2000
coreset points are usually sufficient.

We also observe that in almost all cases, the performance is improved when using the
k-means++ coreset instead of the random sample coreset. The few exceptions are mostly in
the comparison with Russian (RU) with refinement, but this gap narrows as the coreset size
increases. Notably, by coreset size of 2000, the k-means++ coresets have a clear advantage with
an average improvement of from 46.92 to 47.55 without refinement and from 53.05 to 53.76 with
refinement. This follows the general trend of better scores when the refinement phase is used.

Table 2 shows a similar experiment on the BLI tasks but reports the precision at 1 (P@1)
score. The results show a strong average improvement while using k-means++, with the exception
being EN-RU with a small advantage of random sampling at 3000 coreset size; however, with
MAP, the results for k-means++ are already basically as good with 2000 points.

Table 3: Bilingual lexicon Induction (BLI) task, (MAP) With Refinement

Coreset Size

Trans. Pairs ~ Sampling 200 500 1000 2000 3000

Random 5445 5435 5454 5456 54.61

EN-ES KMeans ++ 5441 5448 5455 54.67 54.72
ES-EN Random 60.96 5824 5856 58.88 59.69
KMeans ++ 58.01 58.26 59.22 59.11 59.55
EN-FR Random 5493 5526 5531 5531 5524
KMeans ++ 55.05 5541 5544 5538 55.30
FR-EN Random 56.00 6136 6144 6146 6151
KMeans ++ 61.81 61.68 61.54 61.60 61.64
EN-DE Random 4342 4328 4342 4346 4337
i KMeans++  43.12 4332 4356 43.59 4352
DE-EN Random 4845 48770 4574 46.03 46.72
KMeans ++ 4591 49.05 46.69 48.78 4854
EN-RU Random 40.34 4156 4292 4250 4276
KMeans ++ 41.57 40.08 4141 43.07 41.39
RU-EN Random 48.01 49.28 48.64 50.09 5048
i KMeans ++ 38.69 46.24 50.16 49.05 50.43
EN-IT Random 5593 56.82 5736 5748 5754
KMeans ++ 5623 56.55 5732 5775 5741
[T-EN Random 59.71 6144 6022 60.70 65.10
i KMeans ++ 60.13  59.55 60.61 64.62 64.71
Random 5222 53.02 5282 53.05 53.70

Avg

KMeans ++ 5149 5246 53.05 53.76 53.72

The final experiment in Table 4 shows the results of our proposed methods against state-of-
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the-art techniques. We used a fixed coreset size of 2000. Each entry shows the P@1 scores on
the BLI task. The first two lines show PROC and RCSLS, which are supervised methods, so they
know the alignment between 5000 pairs of works across embeddings and use this knowledge
to determine the alignment. Notice our techniques (which are unsupervised) improve upon the
standard Procrustes alignment (PROC) and are almost competitive with the RCSLS method,
which optimizes for the BLI task specifically.

Our method also outperforms Gromov-Wasserstein (GW) alignment, as well as Adv +
Refine, Dema + Refine, and a random sample coreset when using refinement.

In this table, we also show experiments with two other enhancements. The first is to improve
the cluster centers and the quantization found with k-means++ with a run of Lloyd’s algorithm
(the standard k-means optimization procedure) for 1 step. This moves the quantization point to
the center of the points it represents, making it more representative on average. This provides
a small improvement. The second extension is to use unbalanced optimal transport instead of
balanced OT. Surprisingly, this offers no advantage on average.

Table 4: Bilingual lexicon Induction (BLI) task, Comparison with other Methods

Method EN-ES EN-FR EN-DE EN-RU EN-IT Avg
Dict — — — — —

PROC 5K 819 83.4 82.1 82.4 74.2 72.7 51.7 63.7 774 77.9 747

RCSLS 5K 84.1 86.3 83.3 84.1 79.1 76.3 57.9 67.2 773

GW None 81.7 80.4 81.3 78.9 719 78.2 45.1 43.7 789 75.2 71.5

Adv + Refine None 81.7 83.3 82.3 82.1 74.0 72.2 44.0 59.1 77.9 77.5 734

Dema + Refine None 82.8 84.9 82.6 82.4 75.3 74.9 46.9 62.4 74.0

Random

WP + Refine None 82.8 84.1 82.6 82.9 754 73.3 43.7 59.1 73.0

Unbalanced OT

(Ours) KMeans++

qWP + Refine None 83.9 84.5 &83.6 83.1 77.0 74.9 48.0 60.1 80.5 80.7 75.6

(Ours) LloydRefine

qWP + Refine None 83.8 84.9 84.3 83.4 77.0 75.2 48.2 61.3 80.5 80.9 75.9

Balanced OT

(Ours) KMeans++

qWP + Refine None 83.5 84.3 84.0 83.1 76.9 749 46.6 59.8 80.6 80.3 75.4

(Ours) LloydRefine

qWP + Refine None 83.6 84.4 84.0 83.1 77.1 74.8 47.3 60.4 80.1 80.4 75.5

6 Conclusion

This paper presents an approach to aligning embeddings in high-dimensional space. While the
overall problem is non-convex and computationally expensive, we present an efficient stochastic
algorithm to solve the problem based on a refined sample set. This paper focuses on the matching
procedure of the BLI task. Our key insight is that our quantization algorithm can outperform the
current state-of-art unsupervised algorithm on both balanced and unbalanced settings of the loss
function.
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