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Abstract
Increasing the number of tasks supported by a machine learning model without forgetting pre-
viously learned tasks is the goal of any lifelong learning system. In this work, we study how
to mitigate the effects of the catastrophic forgetting problem to sequentially train a multilin-
gual neural machine translation model using minimal past information. First, we describe the
catastrophic forgetting phenomenon as a function of the number of tasks learned (language
pairs) and the ratios of past data used during the learning of the new task. Next, we explore
the importance of applying oversampling strategies for scenarios where only minimal amounts
of past data are available. Finally, we derive a new loss function that minimizes the forgetting
of previously learned tasks by actively re-weighting past samples and penalizing weights that
deviate too much from the original model. Our work suggests that by using minimal amounts
of past data and a simple regularization function, we can significantly mitigate the effects of
the catastrophic forgetting phenomenon without increasing the computational costs.

1 Introduction

The catastrophic forgetting is the phenomenon whereby a neural network forgets previously
learned information after learning new one (McCloskey and Cohen, 1989).

Given the ubiquity nature of machine learning models in our lives, tackling the catastrophic
forgetting phenomenon is a problem of particular interest for the industry as machine learning
models tend to lose performance over time due to the changing nature of our world. To counter-
act this problem, researchers and engineers must periodically re-train these models. However,
despite the inefficiency of re-training a large model from scratch and the carbon footprint that
this practice entails in the long run, previous training data is not always available due to privacy
issues, licensing, data losses, or simply, because the training data is not available.

This problem is incredibly challenging since any learning system with a limited amount
of memory will, at some point, have to forget past information in order to keep learning new
information (Carpenter and Grossberg, 1987). Fortunately, we can develop mechanisms so
that our machine learning models can selectively forget as little information as possible by
penalizing changes in weights that deviate too much from a reference model (Li and Hoiem,
2016; Kirkpatrick et al., 2016), designing dynamic architectures that grow linearly with the
number of tasks (Rusu et al., 2016; Draelos et al., 2016), or using Complementary Learning
Systems (CLS) that, inspired by how the human brain work, generate synthetic data to control
the forgetting (Kemker and Kanan, 2017).

From a practical point of view, these approaches tend to be quite hard to implement and of-
ten are very computationally intensive. In addition, most of these strategies are not specifically
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designed for natural language tasks, making their implementation even more difficult. There-
fore, we decided to tackle the catastrophic forgetting problem in machine translation, framed
as a sequential learning problem for a multilingual machine translation system, where each
new task is a different language pair (English-Spanish, English-French, English-German, and
English-Czech).

The contributions of this work are the following:

• First, we describe the catastrophic forgetting phenomenon in machine translation as a func-
tion of the tasks learned (language pairs) and the ratios of past data used during the learning
of the new task, and show that even with minimal amounts of past data we can significantly
mitigate these effects.

• Next, we explore the effectiveness of oversampling strategies, where we show that they are
particularly useful for scenarios where only minimal amounts of past data are available.

• Finally, we derive a new loss function that minimizes the forgetting of past tasks using
a few-shot strategy based on actively re-weighting past tasks and penalizing weights that
deviate too much from the original model.

2 Related Work

The Catastrophic Forgetting (CF) phenomenon has been widely studied since it was introduced
for the first time by McCloskey and Cohen (1989). However, despite the numerous works that
have delved into the root causes that produce it (Carpenter and Grossberg, 1987), these findings
could be reduced to the stability-plasticity dilemma, whereby there is a trade-off between the
ability of a model to preserve past knowledge (stability) and the ability to learn new information
effectively (plasticity).

Given this dilemma, most approaches are based on adjusting the network weights during
training to control the forgetting of the model, expanding the model’s capacity to support new
tasks, or using some refreshing mechanism to remember past tasks.

For example, Li and Hoiem (2016) presented a model with shared parameters across tasks
and task-specific parameters; Kirkpatrick et al. (2016) identified which weights were important
for the past tasks so that they could penalize the updates on those weights; Jung et al. (2016)
penalized changes in the final hidden layer; Zenke et al. (2017) introduced the concept of in-
telligent synapses that accumulate task-relevant information; Hu et al. (2019) trained a model
with a set of parameters that was shared by all tasks and the second set of parameters that were
dynamically generated to adapt the model to each new task. However, despite the number of
works, these strategies are constrained by the model’s capacity (Kaplan et al., 2020).

To deal with this issue, many researchers decided to focus their efforts on linearly ex-
panding the model’s capacity as the number of tasks grows. Accordingly, (Rusu et al., 2016)
retained a pool of pre-trained models throughout training to learn lateral connections for the
new task; (Draelos et al., 2016), which was inspired by the neurogenesis in the hippocampus of
the brain decided to add new neurons to deep layers so that novel information could be acquired
more efficiently; and (Lee et al., 2017a) introduced an architecture that dynamically controls
the network capacity.

Similarly, other researchers have addressed this problem by using data from past tasks
during the training of new tasks, such as Lopez-Paz and Ranzato (2017), who proposed a
model that alleviates the catastrophic forgetting problem by storing a subset of the observed
examples from an old task (episodic memory), and Shin et al. (2017), who instead of storing
actual training data from past tasks, trained a deep generative model that replayed past data
(synthetically) during training to prevent forgetting.
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In addition to these works, there are others worth to mention due to their results and orig-
inal approaches, such as iCaRL (Rebuffi et al., 2016), PathNet (Fernando et al., 2017), Fear-
Net (Kemker and Kanan, 2017), IMM (Lee et al., 2017b) or MAS (Aljundi et al., 2017).

Nonetheless, despite the progress made on lifelong learning strategies and the recent break-
throughs in the natural language field (Sutskever et al., 2014; Sennrich et al., 2016; Vaswani
et al., 2017; Zhang et al., 2019), the catastrophic forgetting problem has not been so widely
studied in the field of machine translation. Along these lines, Xu et al. (2018) proposed a meta-
learning method that exploits knowledge from past domains to generate improved embeddings
for a new domain; Qi et al. (2018) showed that pre-trained embeddings could be effective in
low-resource scenarios; Liu et al. (2019) learned corpus-dependent features by sequentially up-
dating sentence encoders (previously initialized with the help of corpus-independent features)
using Boolean operations of conceptor matrices; Sato et al. (2020) presented a method to adapt
the embeddings between domains by projecting the target embeddings into the source space,
and then fine-tuning them on the target domain; Garcia et al. (2021) introduced a vocabu-
lary adaptation scheme to extend the language capacity of multilingual machine translation
models; and more recently, Thompson et al. (2019) adapted the Elastic Weight Consolidation
method (Kirkpatrick et al., 2016) to mitigate the drop in general-domain performance of NMT
models.

3 Models

3.1 Transformer architecture
Neural encoder-decoder architectures such as the Transformer (Vaswani et al., 2017) are the
current standard in Machine Translation (Barrault et al., 2020), and most Natural Language
Tasks (Devlin et al., 2018).

This state-of-the-art architecture is based entirely on the concept of attention (Bahdanau
et al., 2015; Luong et al., 2015) to draw global dependencies between the input and output.
Because of this, it can process all its sequences in parallel and achieve significant performance
improvements compared to previous architectures (Sutskever et al., 2014; Cho et al., 2014;
Wu et al., 2016). Furthermore, this architecture does not use any recurrent layer to deal with
temporal sequences. Instead, it uses a mask-based approach along with positional embeddings
to encode the temporal information of its sequences.

4 Experimental setup

4.1 Datasets
The data used for this work comes from the Europarl dataset (See Table 1), which contain
parallel sentences extracted from the European Parliament website1.

Dataset Languages Train size Val/Test size

Europarl en-es 100K 1000
Europarl en-fr 100K 1000
Europarl en-de 100K 1000
Europarl en-cz 100K 1000

Table 1: Datasets partitions. In order to avoid potential biases during the experimentation, each
dataset was forced to contain 100,000 sentences.

1Europarl dataset: https://www.statmt.org/europarl/
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4.2 Training details
First, all language pairs were concatenated to train a multilingual vocabulary based on Uni-
grams (Kudo, 2018), with a size of 16,000 tokens plus another 256 for byte-fallback, using
SentencePiece (Kudo and Richardson, 2018). Moreover, to avoid language biases, all language
pairs had the same number of sentences (and a similar amount of tokens).

To train our models, we used AutoNMT (Carrión and Casacuberta, 2022), a tool to stream-
line the research of seq2seq models, by automating the preprocessing, training, and evaluation
of NMT models. Specifically, we used a simplified version of the standard Transformer with
around 4.1M to 25M parameters depending on the vocabulary size. This small Transformer
consisted of 3 layers, 8 heads, 256 for the embedding dimension, and 512 for the feedforward
layer. Similarly, the training hyper-parameters were quite standard for all models: CrossEn-
tropy (without label smoothing), Adam as the optimizer, 4096 tokens/batch or a batch of 128
sentences, max token length of 150, clip-norm of 1.0, a maximum epoch of 50 epochs with
early stopping (patience=10).

The training order was always the same: 1) English-Spanish; 2) English-French; 3)
English-German; and 4) English-Czech. Similarly, all models were evaluated for each language
pair plus an additional one, where all pairs were merged.

All training was done using two NVIDIA GeForce RTX 2080, with 8GB each.

4.3 Evaluation metrics
Automatic metrics compute the quality of a model by comparing its output with a reference
translation written by a human.

Given that BLEU (Papineni et al., 2002) is the most popular metric for machine translation,
but it is pretty sensitive to chosen parameters and implementation, we used SacreBLEU (Post,
2018), the reference BLEU implementation for the WMT conference. Additionally, we con-
trasted our results using BERTScore (Zhang et al., 2019).

• BiLingual Evaluation Understudy (BLEU): Computes a similarity score between the
machine translation and one or several reference translations, based on the n-gram preci-
sion and a penalty for short translations.

5 Experimentation

5.1 Characterizing the catastrophic forgetting in Machine Translation
In this experiment, we trained a multilingual machine translation (MNMT) model sequentially
to study the effects of the catastrophic forgetting phenomenon, as a function of the number of
tasks learned (language pairs) and the ratios of past data used during the learning of the new
task.

To do so, we began by training a base model for the English-Spanish pair alone (Task
#1). Then, we re-trained it using the English-French pair (Task #2) and the English-German
pair (Task #3). Later, we added the English-Czech pair (Task #4) for completeness. For each
of these tasks, we trained several models for which we varied the ratio of past data that those
models could see during the learning of the new task (interleaved data). Finally, we trained an-
other multilingual model using all language pairs (en-es/fr/de) at once to serve as a comparison
against the multilingual NMT model trained sequentially.

In Figure 1 we have the results of this experiment. The rows indicate the task being learned,
and the columns show the performance of each model for each of the past tasks during the
learning of the new task. Moreover, the values annotated at the end of each line indicate the
ratio of past data used per batch during the learning of the new task. By looking at Figure 1,
we can see that after training for the English-Spanish task, the model achieved a performance
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Figure 1: Using past data to naı̈vely tackle the CF problem: When no past data (0%) is used
during the learning of a new task, the model forgets everything about the past tasks (flat red
lines). However, when a minimal amount of past data is added as a reminder (>1%) during the
learning of the new task, the forgetting of these past tasks is significantly reduced.

of 35pts of BLEU. However, when that same model was re-trained for the English-French task,
the performance for the past task (English-Spanish) was significantly affected depending on
the ratio of past data used during the re-training. For example, when no past data was used
during the learning of the new task (English-French), the model’s performance on the past task
(English-Spanish) dropped to zero (flat red lines). In contrast, as soon as we increased the
ratio of past data per batch from 0.0% to 1.0%, the model retained around 60% of its previous
performance for that task and 95% of it when 20% of past data was used per batch. Similarly,
this very same effect was observed after re-training that trained model (en-es → en-fr) for the
English-German task. When no past data was used, the model forgot both the English-Spanish
and the English-French tasks. However, as soon as the ratio of past data was slightly increased,
the model could retain most of its past knowledge for these tasks.

Interestingly, another thing to point out from these results is that, as the model learns the
new task, the performance on the previous tasks remained fairly stable overall. This was quite
unexpected for us since it is expected to observe a constant decline in the performance of all
tasks as the new task was being learned. However, we did not see this effect until at least two
tasks had been learned, and only when we used minimal ratios of past data (i.e., 1%).

Consequently, we explored this phenomenon more closely and added a fourth task to the
experiment, the English-Czech pair. As a result, we can see in Figure 3 that with the addition of
this new task (en-cz), the effects of the catastrophic forgetting problem became more significant
when compared to the previous experiment (see red lines for the en-es/fr/de tasks) since now, the
performance in past tasks was steadily declining while the new task was being learned. Hence,
this confirmed our previous assumption, given that as the model reaches its learning capacity,
that is, its saturation point, it has to forget more and more information despite the refreshments
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of past data to keep learning new information.
Next, we decided to compare these results with the very same model architecture but

trained from scratch, for which all language pairs were available at the training time. Interest-
ingly, no significant differences were found between this model and its sequential version (See
dashed (en-xx) and solid (en-es/fr/de) red lines in Figure 1). Therefore, this confirms that as
long as a model has sufficient capacity, its performance should not vary significantly regardless
of whether it has been trained for all tasks simultaneously or has been trained sequentially using
a continual learning approach, such as the one from this experiment using minimal amounts of
past data to retain past knowledge. Furthermore, training a model sequentially, using this ap-
proach or any other, has the advantage that the training is much more efficient since it only has
to re-train the model for the new task rather than for all tasks again.

Finally, these results appear to indicate that by following a strategy as simple as adding tiny
fractions of past data during the training of the new task, it is possible to significantly mitigate
the effects of catastrophic forgetting problem, enabling sequential training when training data
are very scarce. For example, a typical scenario for this could be to extend the number of tasks
or classes supported by a pre-trained model for which we do not have the original training data
but have access to other similar despite minimal datasets, or even when we do not have more
data, but we can afford to annotate a few extra samples semi-automatically.

Furthermore, with this experiment we demonstrate that contrary to popular belief, to main-
tain the performance of a model on past tasks, one does not need to use all the previous data,
but a minimal amount of past data during the learning of the new task.

5.2 Oversampling past data

Given that our base model had sufficient capacity to cope with these tasks, either sequentially
or jointly (obtaining very similar performances), we decided to focus our efforts on maximizing
the performance in past tasks but minimizing the amount of past data needed to control the
forgetting. The reason for adopting this approach was to improve the learning efficiency of new
tasks since it is not the same to learn a new single task using minimal past data refreshments
than to use large amounts of past data. Besides, in a data loss scenario, it will always be more
accessible to label a few past samples manually to control the catastrophic forgetting than to
label a whole new dataset from scratch.

Consequently, we first tried to control the catastrophic forgetting by oversampling these
sets of past data so that they would have the same weight as the new data. That is, if the new
task had 10,000 samples and the previous tasks had 1,000 and 2,000 samples, we would assign
a weighting coefficient of 1.0 for the first task, and 10.0 and 5.0 for the second and third tasks.
We then used these weighting coefficients to oversample these task samples.

This experiment can be seen in Figure 2, where the non-oversampled models are charac-
terized by dashed lines and the oversampled models by solid lines. This oversampling approach
proved to be quite beneficial when the ratios of oversampled data were minimal (around 1%),
achieving up to +4pts of BLEU with respect to the non-oversampled models. However, when
we increased the ratio of past data from 1% to 4.5% or more, this strategy did not provide sig-
nificant results and made the models more prone to overfitting on past tasks compared to the
non-oversampled models. In addition to this, the non-oversampled models performed slightly
better on the new task than the oversampled ones due to the use of higher ratios of new data per
batch (i.e., 1% English-Spanish + 99% English-French vs. 50% English-Spanish (oversampled)
+ 50% English-French).

This oversampling experiment was initially conducted physically, that is, by repeating sen-
tences, due to the simplicity of this approach. However, in order to reduce the performance gap
between the oversampled and non-oversampled models that was observed during the learning
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Figure 2: Oversampling of past data was effective, especially in scenarios where only minimal
amounts of past data were available (<1%). Furthermore, in the case where all tasks had the
same weighting (this figure), the oversampled models (solid lines) needed more time than the
non-oversampled models (dashed lines) to achieve similar performance levels. Hence, we later
reduced the weight of these past tasks.

of the new task, we decided to repeat the previous experiment but this time, performing a virtual
oversampling so that we could actively rescale the task-weights to perform minor adjustments
to better control for these convergence issues.

This idea is described in Equation 1, where x is the input, y is the target, t is the task and
wt is the weight of the task t.

Lw(x, y, t) = {l1, l2, ...ln} , li = −wt log
exp(xi)∑K

j=1 exp(xj))
· 1 {yi ̸= ignore index} (1)

These weights were determined both manually and automatically (learned). However, we
obtained better results by determining them manually than automatically, since the automatic
approach tended to overweight the easiest task in detriment of the others. Nevertheless, we
were able to compensate part of the performance mismatches mentioned before, although we
found that when weights were determined manually, it was much easier to overfit for a spe-
cific task. Besides, due to the pareto frontier, we could not improve performance on all tasks
simultaneously by simply performing an active task re-weighting because when we improved
performance on one or more tasks, we always ended up compromising performance improve-
ments on another task.

Even though this task re-weighting strategy was primarily beneficial for low-resource sce-
narios of past data, we found it to be quite helpful in finding better balance compromises be-
tween the performances of the different tasks, and avoiding greedy behaviors during learning of
the new task.

5.3 Few-Shot Regularization
As discussed in Section 5.1, if we increase the number of tasks learned and do not increase the
capacity of the model, sooner or later, the model will reach a saturation point. Therefore, the
performance on past tasks will start to worsen instead of remaining stable as before. Further-
more, we have shown that the presence of this phenomenon is accelerated in scenarios where
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the amount of past data is minimal (<1%), but at the same time, we know that not much past
data is needed to mitigate the effects of the catastrophic forgetting. Accordingly, we learned a
fourth task (English-Czech) where the model could only see a few samples (1% of past data per
batch) in order to make this forgetting phenomenon more noticeable during our experimentation
(See Figure 3, red lines). Therefore, our goal here was to show that with a minimal amount of
past samples and a simple regularization mechanism, we could be able to mitigate the effects
of the catastrophic forgetting phenomenon, and even, improve the performance on some past
tasks.

Figure 3: Few-shot regularization: The effects of the catastrophic forgetting problem become
more noticeable as the model reaches its saturation point after learning more tasks than it can
handle, so it starts to degrade its performance of past tasks (see red lines). In contrast, when us-
ing the loss function proposed in this section, we can appreciate how the effects of catastrophic
forgetting are significantly reduced (see blue lines), albeit at the cost of obtaining slower con-
vergence on the new task.

Consequently, we derived a loss function that minimizes the forgetting of previously
learned tasks by actively re-weighting past samples and penalizing weights that deviate too
much from the original model. That is, initially, all tasks should contribute equally to the loss
regardless of the amount of past data available (oversampling), but then, these weights were
slightly modified to ease the convergence of the new task (re-weighting). Additionally, errors
should be penalized more severely on past tasks than on the new ones so that we could have
more control over the forgetting effects. Furthermore, we wanted to penalize changes in weights
that are assumed to be relevant for the past tasks but are not for the new task. To do so, we added
a regularization term, based on the knowledge distillation loss derived by Hinton et al. (2015),
that allowed us to control for these deviations in past tasks with respect to the previous version
of the same model, which is presumed to be better in past tasks due to the effects of catastrophic
forgetting phenomenon. Finally, we added the well-known L2 regularization.

This loss function is described in Equation 2, where Lw is the weighted loss from Sec-
tion 5.2, Lm is the weight penalization function described above, t is the task from which the
pair (x, y) belongs, yref is the output of the reference model (i.e., epoch 0), α and β are hyper-
parameters to define the importance of the current loss, and the weight deviation w.r.t the past
model, and δ is a vector to control the importance of past tasks with an exponential penalization.
These (hyper-)parameters can be either set manually or learned during training (see below).

L(x, y, t) = (α · Lw(x, y, t) + β · L(t̸=T )
m (y, yref ))

δi + γ · ∥θ∥22 , δT = 1 (2)

This equation has four components. The first component is the weighted loss Lw, whose
purpose is to ensure that each task is equally important regardless of the number of samples.
The second term is the distillation loss, which acts as a regularizer to penalize the changes
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in the past task between the current model (output y) and the reference model (output yref ),
that is, the version that was used as a starting point for this new task. The third component is
the vector δ, which penalizes pasts tasks exponentially for a faster response to the effects of the
catastrophic forgetting problem (during our experimentation, we set δT = 1.0, although it could
have had other values). The fourth component is the L2 regularization to help with overfitting.
Finally, the hyperparameters α and β were determined both manually and (semi-)automatically.
First, we tried to learn these hyperparameters (along with δ) automatically during the training
of the new task. However, we obtained worse results than when we adjusted them manually due
to the problems mentioned in Section 5.2 related to the Pareto frontier and because we were
considering which tasks were more challenging to learn. Then, we tried to learn them semi-
automatically. That is, we learned them automatically while clamping them into a predefined
range.

As a result, in Figure 3 we find the comparison between a model trained previously on
the English-German task (red line), which only adds a minimal amount of past data (1%) to
alleviate the forgetting, and the very same model (blue lines), which in addition to using min-
imal past data during training (1%) to tackle the forgetting problem, it uses the loss function
proposed in this section. Also, we have included a few runs (not cherry-picked) of this pro-
posed model instead of just one to better represent its behavior and support our conclusions
more robustly. Accordingly, it can be seen in Figure 3 that the proposed model (blue lines)
significantly mitigates the effects of catastrophic forgetting with regard to the other model. For
example, on the first two tasks (en-es, en-fr), it even improves the base performance; and on the
third task, despite losing some performance concerning its initial result, the loss is significantly
smaller than the one from the reference model (red line). However, although our model tends
to converge a bit slower due to the additional control terms, both models end up converging to
similar performances 2.

Therefore, this loss function, in addition to a minimal amount of past data to exploit past
knowledge information, presents itself as an extremely simple mechanism to tackle the catas-
trophic problem with no additional computational costs.

6 Conclusions

This work has studied the catastrophic forgetting problem in machine translation framed as
a sequential learning problem for a multilingual machine translation system, where each new
language pair is considered a new task.

From studying the effects of the catastrophic forgetting problem as a function of the num-
ber of learned tasks and the ratios of past data used during the learning of the new task, we
discovered that even with minimal amounts of past data, we could retain up a 95% of the
performance in past tasks. Then, we tried to boost the performance in past tasks through an
oversampling strategy. However, this approach was primarily beneficial for scenarios where
only minimal amounts of past data were available (<1%).

Finally, we derived a new loss function based on actively re-weighting past tasks and pe-
nalizing weights that deviate too much from the original model to minimize forgetting past tasks
while learning the new one. This approach has practically no extra cost and shines by simplicity
when compared to other popular but more complex and resource-hungry approaches.

This work suggests that to easily mitigate the effects of the catastrophic forgetting in ma-
chine translation with no extra cost, we only need a minimal amount of past data and a simple
regularization function that exploits past knowledge information.

2With a smaller learning rate and bit more training both reached the same performance.
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