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Abstract

This paper proposes an efficient and semi-automated method for human-in-the-loop post-
editing for machine translation (MT) corpus generation. The method is based on online training
of a custom MT quality estimation metric on-the-fly as linguists perform post-edits. The online
estimator is used to prioritize worse hypotheses for post-editing, and auto-close best hypothe-
ses without post-editing. This way, significant improvements can be achieved in the resulting
quality of post-edits at a lower cost due to reduced human involvement. The trained estimator
can also provide an online sanity check mechanism for post-edits and remove the need for ad-
ditional linguists to review them or work on the same hypotheses. In this paper, the effect of
prioritizing with the proposed method on the resulting MT corpus quality is presented versus
scheduling hypotheses randomly. As demonstrated by experiments, the proposed method im-
proves the lifecycle of MT models by focusing the linguist effort on production samples and
hypotheses, which matter most for expanding MT corpora to be used for re-training them.

1 Introduction

Improving MT models requires continuously expanding their MT corpora for re-training cycles
by post-editing their outputs on samples received from the production environment. Hence, the
MT model lifecycle requires continuous human effort, which could scale and be more efficient
by semi-automating it via machine-learning models trained by linguists. Those models can
be used to select the maximally useful set of translations to store and post-edit by looking
at what is challenging for an MT. They can upsample and prioritize translation outputs from
where MTs are not performing well, and reduce costs by post-editing production translations
intelligently. The continuous and interactive nature of the MT lifecycle provides the perfect
ground for applying active-learning techniques in training those machine-learning models for
semi-automation. Custom translation quality or post-editing effort estimation models trained
on-the-fly as linguists post-edit translations can be used to prioritize samples accumulating from
the model inferences in the production environment. The trained estimators enable to focus the
linguist effort on the most challenging samples for the MT model requiring the most post-edits,
which are also the most valuable to check for evaluating the MT model quality by humans.

In the WMT?20 Metrics Shared Task (Mathur et al., 2020), participants were asked to score
MT outputs in the WMT20 News Translation Task with automatic metrics, and four refer-
enceless metrics were submitted. Those metrics (OpenKiwi-BERT, OpenKiwi-XLMR, YISI-2,
COMET-QE) use bilingual mappings of the contextual embeddings extracted from pre-trained
or fine-tuned language models (like XLM-RoBERTa) to evaluate the cross-lingual lexical se-
mantic similarity between the input and MT output. However, it has been seen that those metrics



generally struggle to score human translations against machine translations reliably except for
COMET-QE (Rei et al., 2020), which was the only reference-free metric that was able to differ-
entiate human translations from MT. Freitag et al. (2021a) carried out an MQM research study
by scoring the outputs of top systems from the WMT20 Metrics Shared Task in two language
pairs using annotations provided by professional translators with access to the entire document
context. Their study shows that crowd-worker human evaluations (as conducted by WMT)
have a low correlation with MQM, and the resulting system-level rankings are quite different;
and questioned previous conclusions based on crowd-worker human evaluation, especially for
high-quality MT. Most importantly, they also found that automatic metrics based on pre-trained
embeddings can outperform human crowd workers. This was a clear indication that machine
learning models trained over crowd-sourced human-evaluations can reach a higher generaliza-
tion performance than individual evaluators; thus, they can be used for sanity-checking.

In the WMT?21 Metrics Shared Task (Freitag et al., 2021b), contrary to the previous year,
they have also acquired their human ratings based on expert-based human evaluation, which has
shown to be more reliable, via MQM; and were able to evaluate all metrics on two different do-
mains (news and TED talks) using translations of the same MT systems. It has been found that
reference-free metrics (in particular COMET-QE and OpenKiwi) perform very well in scoring
human translations but not as well with MT outputs. They are also relatively good at rating
human translations at the segment-level while being competitive against their reference-based
counterparts in system-level evaluation. REGEMT (Stefanik et al., 2021) was a new reference-
free metric of WMT?21, which was created as an ensemble of other selected metrics of surface,
syntactic and semantic-level similarity as input features to a regression model that estimates a
quality assessment. It used the following input features: Source length, Target length, Con-
textual SCM, Contextual WMD, BERTScore, Prism, and Compositionality. The ensembling
can allow customization and continual learning of their quality estimation metrics. cushLE-
POR (Han et al., 2021) customized hLEPOR metric by hyper-tuning its weighting-parameters
to better agree with professional human evaluations, including on MQM and pSQM scores;
and achieved competitive results against quality estimation metrics based on pre-trained neural
models measuring cross-lingual lexical semantic similarity, at a much higher cost.

The primary contributions of this paper are three-fold: (1) proposing a new architecture
for managing MT model production lifecycle in a cost-efficient and scalable semi-automated
way (2) demonstrating the effective use of referenceless metrics for training dataset building
(via post-editing), and human evaluation processes of this lifecycle (3) active-learning of cus-
tom referenceless metrics as machine learning targets are collected from the human-annotators.
To the best of our knowledge, there is no previous work that studies how to employ quality
estimation metrics to improve the production lifecycle of MT systems by prioritizing the in-
coming translations to be evaluated or post-edited. Furthermore, none of the previous work
in the literature also studied how custom quality metrics can be trained on-the-fly in an active-
learning fashion. Finally, none of them also reported how that would affect the quality of human
post-edits by semi-automation at different human-involvement levels. The comparison between
random prioritization and the personalized metric is provided in the experiments section, not
only by scoring accuracy but also by their effect on reference building by post-editing.

2 Related Work

There have been previous attempts to use active-learning for more efficient corpus extension for
MT, but those were using model-free (based on diversity) and (neural MT) model-based uncer-
tainty sampling methods. Peris and Casacuberta (2018) used active-learning for interactive MT
where they have selected hypotheses that are worth being supervised by human agents by ex-
ploiting the attention mechanism of a neural MT as a measure of uncertainty. Zeng et al. (2019)



used paraphrastic embeddings from unsupervised pre-training to sample diverse sentences for
active-learning in MT. They have also proposed an alternative using information-loss during bi-
directional translation. Hu and Neubig (2021) also performed uncertainty-based active-learning
for fine-tuning MTs by selecting phrases for translation rather than translating entire sentences.
In this work, instead of using uncertainty-based proxy-measures for the difficulty of samples for
the MT, a reference-free quality-estimator is trained online with MT errors measured by each
post-edit. This allows the proposed method not just to select the most challenging sample for
post-editing but also to select which hypothesis should be used for post-editing when multiple of
them are present. Furthermore, the trained quality estimation model provides a mechanism for
sanity-checking or gamifying the post-editing activity of linguists; and also enables augmenting
the training corpus by using high-quality hypotheses as pseudo-references for self-training.

3 Methodology

Post-editing should be performed continuously on the translations of MT models in-production
for: (1) deciding when an MT model is good enough for deployment, (2) deciding if a new MT
is better than its version in-deployment, (3) deciding when a deployed MT model needs to be re-
trained, (4) obtaining references to use for re-training MT models with extended corpora. This
work aimed to improve and scale all those manual processes for managing the lifecycle of MT
models in-production for their continual improvement, evaluation, and debugging. Estimating
the difficulty of translations for an MT can be helpful in deciding which of them to post-edit.
This way, the manual labor in post-editing can be reduced; while increasing its effectiveness by
upsampling challenging translations where the MT is estimated not to perform well.

In this work, MT corpus generation is conducted more effectively by training a machine-
learning (ML) model iteratively with each post-edit from the linguists. This ML model is used
to efficiently generate MT corpora by prioritizing post-edit efforts of human translators and pro-
viding them real-time feedback through model predictions of the post-edits. The ML model can
simultaneously be used for performing sanity checks on linguists by checking the discrepancies
between each and its own decisions. MT hypotheses that are efficiently and semi-automatically
post-edited, can be used as training corpora to re-train or fine-tune MTs, or as validation cor-
pora to benchmark them. Many MT vendors allow their customers to customize their MTs to
their application for better performance when a custom corpus is available with references. As
a result of selecting and post-editing translations from production systems, one also obtains
references necessary to automatically score them with industry-standard MT scoring metrics.
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Figure 1: The architecture of the proposed method for efficient MT corpus generation.



smt.de-en smt.en-cs
= 100 1 — Random

—— Comet-DA
Proposed

1001 — Random
— CometDA
Proposed

Mean COMET-DA of Post-Edited Corpus
Mean COMET-DA of Post-Edited Corpus

[} B 0 60 ) 100 0 ] 0 60 &0 100
Percentage of Corpus Post-Edited Percentage of Corpus Post-Edited

smt.en-delv nmt.en-delv
1000 1 — Random

—— Comet-DA
Proposed

1000 | — Random
—— Comet-DA
Proposed

0975

0950

0925

0900

0875

0850

Mean COMET-DA of Post-Edited Corpus
&
g
Mean COMET-DA of Post-Edited Corpus

0.800

0825
100 0 20

100

0 0 0 60 a0 0
Percentage of Corpus Post-Edited Percentage of Corpus Post-Edited

Figure 2: The corpus quality (measured by COMET-DA) achieved when hypotheses are ranked
by COMET-DA estimator (yellow), randomly (green), and COMET-DA ground-truth (red).

The architecture of the proposed method is illustrated in Figure 1 where a reference-free
custom MT quality estimator, which is trained online by obtained post-edits iteratively, is the
central component that drives the continuous post-editing process in MT model production
lifecycle efficiently by prioritizing it. The obtained post-edits can be treated as ground-truth
references for benchmarking with reference-based scores on translations coming from the de-
ployment, and later for re-training a new version of the MT model that will be shadow-tested
against the previous version in-production environment. External MTs can optionally be used
in the process not just for comparing against but also for providing alternative translations se-
lected for post-editing when less linguist effort is estimated. They can also enable round-trip
translations of source texts for the data-augmentation of training samples for the estimator.

The estimator trained with online AutoML functionalities in FLAML framework (Wang
et al., 2021), uses fine-tuned cross-lingual embeddings of COMET-QE score as features, along-
side many other linguistic ones extracted with Stanza (Qi et al., 2020) from source texts and their
translations: the number of tokens, characters, and the average word length of sentences; the fre-
quency of Part-of-Speech and Named Entity Recognition labels, and the frequency of morpho-
logical features. The differences in values of linguistic features and COMET-QE embeddings
between source texts and translations, cosine distance of their COMET-QE embeddings, and
the pointwise product of COMET-QE embeddings of source texts and their translations are also
included as features. When the source or target language is English, an additional 250 linguistic
(syntax, semantics, discourse, and readability) features are extracted with LingFeat library (Lee
et al., 2021) in SpaCy. COMET-DA (the reference-based version of COMET metric trained on
Direct Assessments) and Translation-Error-Rate (TER) metrics in-between MT hypotheses and
their respective post-edits are attempted as regression targets, with mean-squared error as the
training objective. After the model update on each post-edit, the next sample with the lowest
estimated COMET-DA or highest estimated TER is prioritized for the linguist post-editing.

4 Experiments

The QT21 corpus (Specia, 2017), a publicly available dataset containing industry-generated
sentences from information technology and life sciences domains, has been used in the experi-



ments. The corpus contained 179K tuples of source and their respective reference sentences for
which an MT hypothesis, either from a statistical or a neural MT model, and its post-edit is also
provided. Some (43K) of the tuples in the dataset were for German-English (de-en) language-
pair; whereas the remaining 136K was translations from English into one of the target languages
(Czech, German, Latvian) available. The experiments were conducted for the hypotheses of sta-
tistical and neural MTs (SMT and NMT, respectively) individually on four sub-corpora. Table
1 shows the size of each sub-corpus and the performance of the COMET-DA estimator regard-
ing blind predictions collected during online training (before training with each sample). It can
be seen that the estimator achieves a high ranking-correlation with the regression target, which
demonstrates its capability in prioritizing post-edits regarding how critical they are.

The experimental results are presented for MT quality estimators trained with COMET-DA
and TER targets. The estimators trained online with each post-edit are used to re-prioritize the
post-editing queue after each learning step. The mean quality or translation error of the corpus
is calculated with ground-truth references available and logged after each post-edit. The MT
models are not re-trained with generated corpora during the course of post-editing. It has been
observed that the proposed method reaches a better corpus quality with fewer post-edits in all
of the datasets as shown in the following results. Table 2 and 3 shows the percentage gain of the
proposed method on each dataset against ranking randomly in terms of COMET-DA and TER
respectively. It can be observed that the mean corpus quality obtains the highest gain (6-8% in
inverse-TER) versus ranking randomly when around half of the corpus is post-edited, where the
mean TER of the corpus would be lower up to 20% than ranking-randomly for post-editing.

It can be assumed that due to limited resources, only a portion of the whole dataset would
be post-edited by linguists in many real-world cases. Based on the demonstrated experimental
results, one can conclude that active-learning to schedule post-edits leads to more efficient use
of linguists than ranking hypotheses randomly for post-editing. As shown also in Figure 2, the
Pareto-optimal corpus quality is achieved when 40-50% of those hypotheses are post-edited by
de-prioritizing ones where post-editing would not lead to a significant improvement. The mean
corpus quality indicated by COMET-DA already reaches up to 95% when half of the hypotheses
are post-edited with up to half error (inverse COMET-DA) than ranking randomly. As the
reduction of error is more significant in COMET-DA than in TER, it can be said that humans
are less sensitive in their Direct Assessments to MT errors than automatic metrics when the
hypothesis quality is already reasonably high. It has also been observed the proposed method
contributes more to the corpus quality when prioritizing SMT hypotheses where it achieves
higher ranking-correlation despite reaching better regression performance for NMT. This is
probably because the qualities of SMT hypotheses are more heterogeneous than NMT.

5 Discussion

Since the proposed method depends on the embeddings from XLM-RoBERTa model, it is lim-
ited to 100 languages that the model was pre-trained with. However, the experimental results
indicate that the proposed method is able to generalize to the languages (like Czech and Lat-

Sub-corpus Samples | MAE | MSE | Spearman p | Pearson r | Kendall 7
SMT de-en 43000 | 0.13 | 0.03 0.53 0.46 0.38
SMT en-cs 43000 | 0.12 | 0.02 0.52 0.46 0.36
SMT en-de,lv 46738 | 0.10 | 0.02 0.65 0.55 0.46
NMT en-de,lv 46738 | 0.08 | 0.01 0.48 0.44 0.34

Table 1: The regression and ranking performance of the online estimator on four sub-corpora.



SMT de-en 20% A | 30% A | 40% A | 50% A | 60% A | 70% A | 80% A
Random 0.80  0.00% | 0.82  0.00% | 0.85 0.00% | 0.87 0.00% | 0.90  0.00% | 0.92  0.00% | 0.95  0.00%
Proposed 0.83 +3.85% | 0.87 +527% | 0.90 +6.00% | 0.92 +5.92% | 0.94 +5.23% | 0.96 +4.20% | 0.98 +3.09%
SMT en-cs 20% A | 30% A | 40% A | 50% A | 60% A | 70% A | 80% A
Random 0.82  0.00% | 0.84  0.00% | 0.86 0.00% | 0.88 0.00% | 091  0.00% | 0.93  0.00% | 0.95  0.00%
Proposed 0.84 +2.78% | 0.87 +3.78% | 0.90 +4.50% | 0.93 +4.83% | 0.95 +4.79% | 097 +4.12% | 0.98 +3.11%
SMT en-de)lv | 20% A | 30% 30% | 40% A | 50% A | 60% A | 70% A | 80% A
Random 0.84  0.00% | 0.86  0.00% | 0.88 0.00% | 0.90 0.00% | 092  0.00% | 0.94  0.00% | 0.96  0.00%
Proposed 0.87 +3.44% | 090 +4.90% | 0.93 +547% | 0.95 +543% | 0.97 +5.19% | 098 +4.61% | 0.99 +3.45%
NMT en-de,lv | 20% A | 30% A | 40% A | 50% A | 60% A | 70% A | 80% A
Random 0.87  0.00% | 0.88  0.00% | 0.90 0.00% | 0.92 0.00% | 093  0.00% | 0.95 0.00% | 097  0.00%
Proposed 0.88 +2.12% | 091 +2.81% | 0.93 +3.14% | 0.95 +3.24% | 0.96 +3.16% | 098 +2.98% | 0.99 +2.47%

Table 2: The mean corpus quality (in COMET-DA) when prioritized by the proposed COMET-
DA estimator versus random-prioritization baseline on different percentages of post-editing.

SMT de-en 20% A | 30% A | 40% A | 50% A | 60% A 70% A | 80% A
Random 60.13  0.00% | 64.76 0.00% | 69.72 0.00% | 74.72 0.00% | 79.42 0.00% | 85.71 0.00% | 89.84 0.00%
Proposed 6298 4.74% | 69.05 6.62% | 7492 7.45% | 80.19 7.32% | 8572 7.94% | 90.43 6.76% | 9421 4.86%
SMT en-cs 20% A | 30% A | 40% A 50% A | 60% A | 70% A | 80% A
Random 57.03 0.00% | 62.36 0.00% | 67.70 0.00% | 73.05 0.00% | 78.38 0.00% | 83.72 0.00% | 89.11 0.00%
Proposed 59.26  3.90% | 65.81 5.53% | 71710 5.90% | 71.46 6.03% | 82.87 5.74% | 87.90 4.99% | 92.46 3.77%
SMT en-de)lv | 20% A 30% 30% | 40% A 50% A | 60% A 70% A 80% A
Random 60.18 0.00% | 65.08 0.00% | 70.02 0.00% | 74.89  0.00% | 79.74 0.00% | 84.69 0.00% | 89.73 0.00%
Proposed 63.50 5.53% | 69.66 7.03% | 7541 7.71% | 80.92 8.05% | 85.61 7.35% | 90.10 6.39% | 9424 5.03%
NMT en-de,lv | 20% A | 30% A | 40% A 50% A | 60% A 70% A | 80% A
Random 61.78 0.00% | 60.50 0.00% | 71.24 0.00% | 75.93 0.00% | 80.66 0.00% | 86.37 0.00% | 90.25 0.00%
Proposed 64.08 3.73% | 70.09 5.40% | 75.52 6.00% | 80.56 6.09% | 8520 5.62% | 89.51 4.85% | 93.54 3.65%

Table 3: The mean corpus quality (measured by 100-TER) when prioritized by the proposed
TER estimator versus random-prioritization baseline on various percentages of post-editing.

vian), which have not been employed in the fine-tuning of that encoder for COMET-QE model.
The online training with those language-agnostic embeddings helps the estimator in quickly
adapting to the unseen languages or training multi-language estimators as it has been done in
this work for German and Latvian by providing the target language as an input feature.
Despite the effect of the proposed method on the corpus quality studied in this work, the
resulting effect on the MT model performance after re-training is not measured quantitatively
and that is planned to be part of future-work; but it can be assumed to also improve with the
better corpus quality where the difficult samples for the MT are prioritized to extend its training
corpus. Moreover, the effect of augmenting the MT corpus, by using high-quality MT hypothe-
ses for production samples as pseudo-references, on the resulting MT performance should also
be studied. In addition, the contribution of MT re-training iterations on further improving the
overall MT corpus quality by updating these pseudo-references can also be measured in future-
work. Finally, the combination of the proposed method with diversity-based active-learning
techniques (especially using extracted embeddings) will also be studied in future-work, and the
experiments will also be extended to compare with those uncertainty-based techniques.

6 Conclusion

Efficiently obtaining references for MT corpora continuously accumulated from production is
crucial for improving MT models. MT corpus generation is a costly manual process, and its
efficiency and scalability can be significantly improved by training an online ML model that
prioritizes the post-editing workload of linguists with high accuracy. In this work, it has been
shown that the post-editing process can be improved by prioritizing the samples that need it the
most - the ones from which MTs would learn most when re-trained with obtained references. It
can be expected that prioritizing the most challenging production samples for corpus generation
would also lead to better hypotheses on the remaining samples when MTs are re-trained. The



trained estimator can also be helpful in sanity-checking the post-editing performance of each
linguist online without the need of a reviewer or a duplicated effort of post-editing to create
references. It can also be used to give them feedback to gamify their post-editing process. When
hypotheses from multiple MTs are present for each source-text, the estimator can also be used
to pre-select the best hypothesis to post-edit, and further increase the linguist efficiency. Finally,
it can also be used to prioritize the post-edits of linguists for a manual reviewing process.
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