
 
 

Abstract 

This study is the first likelihood ratio (LR)-

based forensic text comparison study in 

which each text is mapped onto an 

embedding vector using RoBERTa as the 

pre-trained model. The scores obtained 

with Cosine distance and probabilistic 

linear discriminant analysis (PLDA) were 

calibrated to LRs with logistic regression; 

the quality of the LRs was assessed by log 

LR cost (𝐶𝑙𝑙𝑟). Although the documents in 
the experiments were very short (maximum 

100 words), the systems reached the 

𝐶𝑙𝑙𝑟values of 0.55595 and 0.71591 for the 
Cosine and PLDA systems, respectively. 

The effectiveness of deep-learning-based 

text representation is discussed by 

comparing the results of the current study 

to those of the previous studies of systems 

based on conventional feature engineering 

tested with longer documents. 

1 Introduction 

In forensic science, the likelihood ratio (LR) 

framework has long been considered the logically 

and legally correct approach to interpreting the 

analysis of forensic evidence (Aitken and Stoney, 

1991; Aitken and Taroni, 2004; Morrison, 2022; 

Robertson et al., 2016). The LR framework is 

standard in DNA typing. The community of 

forensic text comparison (FTC), commonly known 

as forensic authorship verification, recently 

recognised the importance of this framework 

(Grant, 2022). Despite the importance of the LR 

framework in forensic science, LR-based studies 

on textual evidence are still conspicuously rare 

(Ishihara, 2017, 2021; Ishihara and Carne, 2022). 

Many studies claim to be forensic but treat the 

problem as a usual authorship verification problem. 

However, there are important differences between 

conventional and forensic authorship verification. 

Conventional authorship verification aims to 

answer a verification problem. Forensic authorship 

verification aims to assist the fact finder in 

concluding the case, not answering the problem. 

Legally, giving an answer to a verification problem 

(even in a probabilistic term) equates to referring to 

the ultimate question of ‘guilty vs. not guilty’, 

which is only permitted for the fact finder. 

Logically, forensic scientists without all evidential 

information of the case cannot estimate the 

probability of a hypothesis from incomplete 

evidence. Thus, they cannot logically refer to the 

ultimate question. However, forensic scientists can 

logically and legally estimate the strength of 

evidence via LR (Aitken and Stoney, 1991; Aitken 

and Taroni, 2004; Robertson et al., 2016). 

LR is given in Equation (1). LR is the ratio of 

two conditional probabilities; one is the probability 

of evidence (𝐸) given the prosecution hypothesis 
(𝐻𝑝) and the other is the probability of the same 

evidence given the defence hypothesis (𝐻𝑑). 

𝐿𝑅 =
𝑃(𝐸|𝐻𝑝)

𝑃(𝐸|𝐻𝑑)
 (1) 

The relative strength of the given evidence with 

respect to the competing hypotheses is reflected in 

the magnitude of the LR. The greater the LR value 

is than 1, the stronger support the evidence is 

considered to provide for the prosecution; the 

smaller the LR value is than 1, mutatis mutandis, 

for the defence hypothesis. It is very important to 

note that the LR is not a binary expression of truth. 

With an LR estimated as the strength of 

evidence, the fact finder’s belief regarding the 

hypotheses (quantified as prior odds) is raised to 

the posterior odds through the Bayesian theorem, 

as shown in Equation (2).  
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The posterior odds are equivalent to the fact 

finder’s belief regarding the hypotheses given the 

evidence  

Despite the success of deep learning in many 

natural language processing tasks, a conventional 

machine learning approach with traditional feature 

engineering remains effective in authorship 

verification, particularly for small datasets 

(Kestemont et al., 2019; Kestemont et al., 2018). 

Nonetheless, deep-learning-based systems 

gradually started achieving better verification 

accuracy than conventional approaches, in 

particular with a large volume of data (Kestemont 

et al., 2021; Kestemont et al., 2020; Zhu and 

Jurgens, 2021). Despite of its clear presence, deep 

learning has no yet made inroads into the LR-based 

FTC. This preliminary study looks in the 

effectiveness of a deep-learning approach in LR-

based FTC. 

2 Methodology 

2.1 Datasets 

This study used the dataset of Amazon reviews 

prepared by Zhu and Jurgens (2021) with minor 

modifications. They filtered out reviews that are 

shorter than 50 tokens, and selected authors who 

contributed at least 5 reviews and at least in two 

product domains; there are 17 product domains. 

 
1 https://github.com/lingjzhu/idiolect 

The text length did not exceed 100 tokens; i.e. 

max_length = 102. 

Table 1 shows the numbers of authors, same 

author (SA) and different author (DA) comparisons 

in each dataset. The former is the simulation of the 

𝐻𝑝 and the latter is that of the 𝐻𝑑 . The training and 

development datasets were used as originally 

prepared by Zhu and Jurgens (2021). The original 

test dataset was evenly split into two: one half was 

used as the test, and the other was used as the 

calibration dataset.  

Dataset Author SA DA 

Test 32,124 96,253 96,491 

Training 51,398 148,845 149,389 

Development 12,849 36,429 36,317 

Calibration 32,124 96,253 96,491 

Table 1: Numbers of authors and 

SA/DA comparisons for each dataset. 

2.2 Embedding and Fine-Tuning 

Stylistic embedding of each text was performed as 

described by Zhu and Jurgens (2021) and using 

their tools.1  They demonstrated the superiority of 

their system to various deep-learning-based 

baseline systems. 

Each text was mapped into an embedding vector 

(𝑧)  by merging the last hidden states 

(=  {ℎ0,ℎ1,⋯ , ℎ𝑛}) into a single embedding vector 

                                                    Embedding                          Score calculation             Calibration 

 
 
 

 

 
 

 

Figure 1: Process of estimating LRs. D{t,c} = (t)est or (c)alibration document; V{t,c} = vectorised (t)est or 

(c)alibration document; PLDA = probabilistic linear discrimination analysis. 
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(=  ℎ𝑜) by attention pooling. The underlying pre-
trained model was RoBERTa (specifically 

roberta-base as the encoder) (Liu et al., 

2019). The training was done using the proxy-

anchor loss function (Kim et al., 2020) with 

𝛼 =  30; 𝑡𝑠 =  0.6;  𝑡𝑑  =  0.4; 𝑡𝑡  =  𝑡𝑠 +  𝑡𝑑  2.⁄  

It is a continuous approximation of the max-margin 

loss of which the additional parameter enables 

better control over the penalty magnitude for 

difficult comparisons. An embedding vector 

dimension is 768. The hyperparameter values for 

fine-tuning were set according to Zhu and Jurgens 

(2021). The batch size was set at 256. Adam 

optimiser was used with a learning rate of 1𝑒−5. 
The models were set to train for five epochs, after 

which no further improvement in performance was 

observed. 

2.3 Estimating Likelihood Ratios 

Estimating LRs for a pair of documents in the form 

of an embedding vector is illustrated in Figure 1. It 

is a two-stage process comprising score calculation 

and calibration. 

Two methods were tested for estimating a score 

for each comparison of documents. One method 

was based on Cosine distance and the other on 

probabilistic linear discriminant analysis (PLDA) 

(Prince and Elder, 2007). The PLDA model used in 

this study was a two-covariance model. Besides the 

information regarding the author’s unique writing 

style (𝑥) , each embedding vector (ℎ𝑜)  carries 
some residual noise (𝜀); for example, noise caused 
by thematic variations. Thus, ℎ𝑜can be represented 
as Equation (3): 

ℎ𝑜 = 𝑥 + 𝜀 (3) 

A Gaussian generative model was assumed for 

the probability density function for 𝑥 and 𝜀, which 
requires a within-author and between-author 

covariance matrix, respectively. Authors were 

randomly selected from the training dataset to train 

the matrices (N = 10,000). A PLDA score was 

calculated using Equation (4), where 𝑧𝑖 and 𝑧𝑗  are 

embedding vectors under comparison. 

𝑠𝑐𝑜𝑟𝑒 =
𝑃(𝑧𝑖 , 𝑧𝑗|𝐻𝑝)

𝑃(𝑧𝑖|𝐻𝑑)𝑃(𝑧𝑗|𝐻𝑑)
 (4) 

The scores of the test dataset calculated through 

the two methods were converted to LRs at the 

calibration stage using logistic regression, the most 

common calibration approach for LR-based 

systems (Morrison, 2013; Ramos and Gonzalez-

Rodriguez, 2013). The scores obtained from the 

calibration dataset were used to train the logistic 

regression. 

2.4 Evaluation 

Evaluation metrics based on classification or 

identification accuracy are not appropriate for 

assessing the performance of LR-based systems. 

Such metrics are inappropriate because (1) the 

category-based classification accuracy does not 

properly assess the magnitude of LRs (which is 

continuous), and (2) they implicitly refer to the 

accuracy of decision making, guilty vs. not guilty; 

only the fact finders (not forensic scientists or FTC 

experts) are legally permitted to refer to this 

ultimate question. The standard evaluation metric 

for LR-based systems is the log LR cost (𝐶𝑙𝑙𝑟) 
expressed in Equation (5): 

𝐶𝑙𝑙𝑟 =
1

2
(
1

𝑁𝑆𝐴
∑ log2 (1 +

1

𝐿𝑅𝑆𝐴𝑖
)

𝑁𝑆𝐴

𝑖
 

                      +
1

𝑁𝐷𝐴
∑ log2 (1 + 𝐿𝑅𝐷𝐴𝑗)

𝑁𝐷𝐴

𝑗
) 

(5) 

In Equation (5), 𝑁𝑆𝐴 and 𝑁𝐷𝐴 are the numbers 

of SA and DA comparisons, respectively. 𝐿𝑅𝑆𝐴𝑖 

and 𝐿𝑅𝐷𝐴𝑗  are the ith SA and jth DA linear LRs, 

respectively. The 𝐶𝑙𝑙𝑟  is the overall average of the 

costs, which were calculated for all LRs. The 

closer to 𝐶𝑙𝑙𝑟  = 0, the better the performance. If 

𝐶𝑙𝑙𝑟  ≥ 1, it denotes that the evidence is not 

informative for inference. With the pool-adjacent-

violators algorithm, 𝐶𝑙𝑙𝑟  can be decomposed into 

𝐶𝑙𝑙𝑟
𝑚𝑖𝑛  and 𝐶𝑙𝑙𝑟

𝑐𝑎𝑙 , which assess the discrimination 

and calibration performance of the system, 

respectively. Thus, 𝐶𝑙𝑙𝑟  =𝐶𝑙𝑙𝑟
𝑚𝑖𝑛  𝐶𝑙𝑙𝑟

𝑐𝑎𝑙 . EER  is also 

given for reference. A Tippett plot was used to 

visualise the magnitude of the derived LRs. 

3 Results 

The experimental results for the 𝐶𝑙𝑙𝑟-based metrics 
are shown in Table 2. 

 𝑪𝒍𝒍𝒓 𝑪𝒍𝒍𝒓
𝒎𝒊𝒏 𝑪𝒍𝒍𝒓

𝒄𝒂𝒍 EER 

Cosine 0.55595 0.55487 0.00108 0.17263 

PLDA 0.71591 0.67159 0.04432 0.21855 

Table 2: Experimental results. 

Table 2 shows that the Cosine system 

outperforms the PLDA system in all metrics. The 

𝐶𝑙𝑙𝑟
𝑐𝑎𝑙  values are close to zero, indicating that the 



 
 

derived LRs are well-calibrated for both systems. 

The PLDA model probabilistically considers the 

between- and within-author variabilities. 

Theoretically, the model is expected to suit the 

authorship verification task. Therefore, it was 

expected to outperform the Cosine system. The 

contrary result could be due to the amount of data 

available for each document—100 words 

maximum. This finding warrants further study. The 

Cosine system has been reported as robust against 

adverse conditions, including the scarcity of data 

(Ishihara, 2021; Ishihara and Carne, 2022). The 

derived LRs were plotted as Tippett plots to 

observe their magnitudes (see Figure 2). 

 

 

Figure 2: Tippett plots: Panel a) is for the Cosine 

system and Panel b) is for the PLDA system. The 

solid black curves = SA LRs and the solid grey 

curves = DA LRs. 

The derived LRs from the Cosine system were 

conservative in magnitude; most LRs were within 

the range of the log10LR of ±2.5. Conversely, 

Figure 2b shows some excessively strong LRs of 

the PLDA system (e.g., greater than a log10LR of 

±10). The strong contrary-to-fact LRs raise 

concerns. The excessively strong LR values both 

for the contrary-to-fact comparisons and the 

consistent-with-fact comparisons indicate the 

model’s instability. Since each document only 

contains a maximum of 100 words, it is sensible not 

to have overly strong LRs. 

Ishihara (2021) conducted LR-based FTC 

experiments by measuring the Cosine distance of 

documents modelled via word unigrams. The target 

documents were also product reviews for Amazon. 

Each document was approximately 4 kB in data 

(approximately 800 words in length)—

considerably longer than the current study’s 

(maximum 100 words). Ishihara reported a 𝐶𝑙𝑙𝑟  of 
0.70640 as the optimal result. Ishihara’s 

experiments were carried out with the test, 

reference and calibration datasets, each of which 

had 720 authors. 

Despite the very short documents, the systems 

tested in this study achieved nearly the same level 

of performance (Cosine: 𝐶𝑙𝑙𝑟  = 0.55595; PLDA: 

𝐶𝑙𝑙𝑟  = 0.71591) as Ishihara’s (2021) system based 

on documents of approximately 800 words 

(𝐶𝑙𝑙𝑟  = 0.70640). Although the experiments are not 

directly comparable, the effectiveness of the deep-

learning-based text representation for estimating 

LRs can be conjectured. 

4 Conclusions 

In this study, the LRs were estimated by logistic 

regression calibrating the scores obtained through 

two systems: one based on Cosine distance and the 

other on the PLDA model. The documents were 

mapped on embedding vectors using RoBERTa as 

the pre-trained model, and the derived LRs were 

assessed with 𝐶𝑙𝑙𝑟  . Albeit the documents being 
very short, the systems reached the 𝐶𝑙𝑙𝑟  values of 
0.55595 and 0.71591, respectively for the Cosine 

and PLDA systems. The effectiveness of the deep-

learning-based text representation was discussed in 

comparison to the results of a previous study which 

was based on the system with conventional feature 

engineering and longer documents. 
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