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Abstract

This paper describes an investigation of estab-
lishing communication between a quadrotor
and a human through qualitative spatial rela-
tions allied with an off-the-shelf speech recog-
nition software. The quadrotor used in this
research was equipped with GPS, IMU sen-
sors, and radio communication, which was
connected to a computer acting as a ground
station. The ground station was implemented
to interpret the received commands, correctly
providing answers to the user according to
an underlying qualitative reasoning formalism.
The results obtained during the tests show that
the error rate related to the answers given by
this system was less than five per cent for ver-
tical and radial dimensions. In contrast, com-
mands related to the horizontal extent had an
error rate of almost ten per cent.

1 Introduction

Unmanned aerial vehicles (UAV) have been gain-
ing popularity in recent years due to their potential
for novel applications (Shakhatreh et al., 2019).
One of the most well-known types of UAVs is the
quadrotor, owing to their fair cost-benefit and a
large number of off-the-shelf programming tools
available for application development. Some po-
tential current and future activities involving UAVs
include, for instance, mapping large areas (Achte-
lik et al., 2009), recording movie scenes (Fleureau
et al., 2016), and search and rescue missions (Mal-
faz and Salichs, 2004).

One of the challenges for achieving a large-scale
use of UAV applications, however, comes from
the need to make more natural the way humans
interact with such vehicles, especially for the non-
specialised public (Franchi et al., 2012). This issue
justified the development of an area of research
known as human-robot interaction (HRI). HRI aims
to develop strategies for facilitating the interaction

with robotic agents in various situations, such as
teaching children, rehabilitation, housework and
many others. However, HRI is still to be considered
in the context of UAV applications. Nevertheless,
the most direct way to achieve a high level of com-
munication and understanding between robots and
humans is the vocal commands usage to transmit
and answer the commands between these agents.

When two people want to talk to each other in
everyday situations, they rarely use quantitative in-
formation, especially when talking about space and
its relations (Aoyama and Shimomura, 2005). For
example, when we say to a child to catch something
at a table we do not tell the distance in meters or the
relative altitude, we just give the basic qualitative
information, like if it’s close or far, under the table
or on it. This observation motivated the present in-
vestigation, which aim is to develop new methods
of human-robot communication using qualitative
information. In general terms, this work aims to
bridge the gap in the communication between a
human and a quadrotor using speech recognition
and a qualitative way of interpreting commands.
Ideas from qualitative spatial reasoning (Cohn and
Renz, 2008) will be used to provide the basis for
this communication.

2 Related Work

The research reported in this paper is related to
Qualitative Spatial Reasoning (QSR) (Cohn and
Renz, 2008), which is a subfield of Knowledge Rep-
resentation in AI that aims at the formalisation of
spatial knowledge and the development of reason-
ing methods about this knowledge. In HRI, QSR
ideas used a probabilistic model of interactions
(Dondrup et al., 2015) based on the Qualitative
Trajectory Calculus (QTC) (Van de Weghe et al.,
2005). In that work, the robotic agent had to inter-
pret the space around it while making decisions to



avoid collisions and interacting with a human oper-
ator using qualitative information. More recently,
(Perico et al., 2021) presents a multi-robot localisa-
tion system based on qualitative spatial information
where a sensory-deprived robot was guided to a
goal location by other robots by passing high-level
spatial commands. Although no human interaction
was considered in (Perico et al., 2021), the system
presented would be suitable for achieving a human
level of representing spatial concepts, as it has the
right combination of qualitative representation with
probabilistic localisation.

Another relevant work where QTC relations
were used to enable autonomous agents to make
decisions and predict actions from other agents by
using just qualitative information, was presented in
(Moratz and Ragni, 2008). Communication using
spatial expressions was also considered with the in-
troduction of a new formalism about qualitative lo-
cation, named Qualitative Ego-Sphere (Rodrigues
et al., 2016). The parameters of this formalism
were obtained from human trials, and the resulting
model was applied to two distinct situations: the
first involved the information exchange between
two robotic agents, and the second involved the
interaction between a robotic agent and a human.
As we shall see further in this paper, the Qualita-
tive Ego-Sphere model was used as the basis for
the research reported here; however, this idea was
extended in the present work by assuming a flying
robot as the robotic agent interacting with a human.

Much work has been done recently on deep
learning for speech recognition using large lan-
guage models, such as BERT (Devlin et al., 2019),
GPT (Brown et al., 2020) among others (Sun et al.,
2022). Although these models show great accu-
racy in actual language interactions, the semantics
of their language constructs is unclear. In contrast,
there is a growing interest in the development of for-
mal semantics for spatial expressions, providing a
rigorous account for verbal communication (Kelle-
her and Dobnik, 2022; Richard-Bollans et al., 2020;
Rodrigues et al., 2020). This work presents a pre-
liminary application of these ideas in the context
of human-robot interaction.

3 Background

This work considers a discretisation of the space
around an agent defining the Qualitative Ego-
Sphere formalism to obtain successful communi-
cation using qualitative information, as presented

below.

3.1 Qualitative Ego-Sphere

The qualitative Ego-Sphere (Rodrigues et al., 2016)
is a qualitative spatial formalism based on a spheri-
cal shape to define the relative position of several
points concerning the centre of a virtual sphere
around an object, which could be an observer. This
defines a qualitative egocentric reference system
that can be considered a tridimensional generali-
sation of the Ternary Point Calculus (Moratz and
Ragni, 2008).

To define the Ego-Sphere, the space around the
agent (point of view v) is considered a discretised
sphere. The first point of analysis is the discreti-
sation of the radial distance relative to the point
of reference v, which can be understood as defin-
ing regions of space that are referred to as at, near
or far (cf. Figure 1). The category at is defined
as the closest distance to the point of reference,
considered as the minimum distance to avoid col-
lisions; near is considered as the distance that can
be reached by the agent in a short time if the speed
is maintained constant, that is, it is a region that is
close enough to the agent to be considered its close
vicinity; far is defined as everything that is at a dis-
tance where the agent takes a longer time to reach.
These three relations are similar to the human way
of conceptualising space and can be understood as
part of our commonsense knowledge.

Figure 1: Ego-Sphere related at the point of view v

The second analysis area is divided into four dif-
ferent components called upper, lower, below and
under, as shown in Figure 1. These components
represent the altitude on the vertical level, and they
depend directly on the dimensions of the agent: the



greater the dimensions of the agent, the greater the
distance between the division ranges.

Figure 2: Relative positions regarded to a point of view
v

The final subdivision considered in this work
is a horizontal representation of directions, which
has at its basis the 8-Star Calculus (Renz et al.,
2004). This discretisation contains eight distinct re-
gions, that are called front, left-front, left, left-back,
back, right-back, right and right-front, respectively
abbreviated as f, lf, l, lb, b, rb, r and rf. These rela-
tions are depicted in Figure 2. Figure 3 shows the
resulting model combining all of these relations.

Figure 3: Horizontal relations with Ego-Sphere

An example of the use of the Ego-Sphere resides
in the normal actions of daily life, such as the act
of a child searching for some object in a dark room.
The coordinates to find the object could be given as:
“The object is near, at your left side and above you”.

A child can easily find that object if she follows the
commands correctly; the same is expected from a
robotic agent when high-level locations, such as
“Near. Left. Upper”, are given.

4 Experimental Setup

The quadrotor used in this research was an Ar-
ducopter with an APM 1-2560 board, an IMU
board, a radio receiver, two XBee’s for the teleme-
try, and a GPS. The dimension of the vehicle is
64x64x18 cm.

To use the concept of Ego-Sphere applied to this
quadrotor, we have to consider that the UAV was
the point of view v. The dimensions of the quadro-
tor were very important for this development, as
well as its actuation area, in order to define the
qualitative model. In this context, the region at was
considered as a 1m radius centred at v, because it is
the shortest distance to avoid a collision that can be
perceived by the UAV GPS system. Similarly, near
and far were considered as 5m and 10m respec-
tively. The vertical discretisations of the sphere,
upper, lower, below and under, received the values
5m, 2m, -2m, -5m, respectively. A new parameter
was added to the latter category, the same com-
mand, as it was necessary to command the robot
to stay at its current location. The final category,
the horizontal location, was divided equally on the
trigonometric circle so that each command would
have 45 between adjacent regions in the circle.

The first step of this research was to control the
UAV, and for that we used a range of existing soft-
ware, such as the Ground Control Station (GCS),
Radio transmitters, mobile apps, and others. We
chose a GCS to control our system, as it can be
installed on any computer and can have a wide
range of peripherals attached to the system. The
software used was the Ardupilot Mission Planner1,
and it has all the functions and tools needed for
controlling this kind of drone. This software has
a very large range of applications, such as support
for the autonomous mission, control of all the op-
tional hardware for this model and visual control
of the basic functionality needed to fly. Using this
software it was not difficult to find the appropriate
function to have direct control from the computer.

All the commands sent to the quadrotor were in a
specific message type using MAVLink (Meier et al.,
2011). The meaning of the prefix MAV is Micro
Air Vehicle, which is a common element of a large

1https://ardupilot.org/planner/



variety of UAV applications. MAVLink protocol is
a library used in several programming languages
that contain functions to translate and send mes-
sages between the vehicle and the control station,
in this case, a computer. Thus, this library was a
tool needed for the GCS, bringing standard proto-
col and portability to our code, making it possible
to use the same code on other GCS or other soft-
ware that used the same protocol. The idea of code
portability was the main reason to use this proto-
col. This usage also made it possible to send flying
commands using XBee, a radio transmitter/receiver
module integrated into the quadrotor attached to
the base system.

The first attempt at developing the interface be-
tween the control station and the quadrotor was to
emulate radio signals from the computer and send
them as normal commands by the radio transmit-
ter. However, that was not a good approach, as
those radio commands were very specific and did
not have any type of support for autonomous flight.
An alternative was to control the drone from the
specific autonomous commands available in the
Mission Planner, and using these commands im-
plies using the full platform of the ground station
and all the functionalities present in this software
also. To accomplish this task, the Flight Plan tab
of the Mission Planner was modified to work with
direct commands and not a specific mission, as
originally designed. For that, it was necessary to
include equations and functions about latitude and
longitude coordinates. Equations 1 and 2 describe
how this information was used to determine the
future trajectory points.

Latend = sin�1(sin(Latstart)⇥ cos �+ (1)
cos(Latstart)⇥ sin � ⇥ cos ✓)

Longend = atan2(sin ✓ ⇥ sin �⇥ (2)
cos(Latstart), cos ��
sin(Latstart ⇥ sin(Latend)) + Longstart

In the equations above:

• Latstart is the initial latitude of the drone;

• Latend is the destination point latitude;

• Longstart is the initial longitude of the drone;

• Longend is the destination longitude of the
drone;

• � is the angular distance d/R;

• R is the Radius of the earth;

• ✓ is the bearing (clockwise from north).

Altitude commands were sent directly by the
MAVLink protocol, using the data from the IMU
board, which contains a barometer, an accelerom-
eter and a gyroscope; however, distance and di-
rection were sent by latitude and longitude. After
receiving GPS signals and calculating the future
point, we created the functions to control the Ego-
Sphere commands, such as left, upper and near.

Being able to control the drone directly over
the control station, without the radio controller, al-
lowed the implementation of the voice recognition
system. We adopted the Microsoft Speech library
from Visual Studio (Johnson, 2012) as the basis
for the voice recognition system, as this library al-
lowed the processing of voice commands directly
from the control station and sending commands to
the drone without using the onboard computer in
the drone.

The speech recognition module worked well
with our functions, serving as the interface be-
tween human users and the ground station. The
commands listed in the Table 1 were all the ba-
sic commands used to control the drone. Besides
the basic commands, we have developed the Ego-
Sphere commands, as explained above.

Table 1: The basic commands of the voice recognition

Command Description

OK plane Start the Ego-Sphere
commands

Start the engines Turn on the motors
Stop Turn off the motors
Take off Soars to a height of five

meters
Down Land at the same posi-

tion
Stabilize Starts the stabilize

mode and change the
control to the radio
controller

Return to Launch Returns to the initial po-
sition and land

All the voice commands used in this work have
been adapted to reduce the error rate of recognition.



The voice recognition had great precision without
background noise, especially because every word
processed by the system was approximated by a
previously defined word in the user-defined vocabu-
lary. However, if a spurious sound is similar to one
of these words, it can be misclassified as a valid
command. To avoid such recognition problems, we
configured the library with a confidence precision
of 85%, which reduced ambiguity drastically.

A grammar class was used as a reference to the
voice recognition module so that the application
could use the language constraints in the recogni-
tion, which increased the hit rate of recognising
commands. Four grammatical rules were defined
containing different commands categories: the first
contained all the basic commands (Ok plane, start
the engines, stop etc); the second had the horizontal
dimension of Ego-Sphere (left, front, right etc); the
third was defined with vertical dimensions of Ego-
Sphere (upper, lower, under and below) and; the
last had the radial distance defined by Ego-Sphere
(at, near and far). For our system to change the
grammar at the appropriate time, we needed to es-
tablish an order of commands. The order was to
call the horizontal references first, then the verti-
cal and finally the distance, all according to the
Ego-Sphere definitions. This order is described at
Figure 4.

5 Results

A flying test was necessary to check if the recogni-
tion accuracy would satisfy the project goals and
if the tests were consistent when flying with the
radio by using direct commands. We found that
the autonomous flight had certain issues, such as
the stabilisation that was not precise and problems
with the altitude holding. So, although the code
was entirely developed for the physical platform,
the evaluation of the system developed was con-
ducted in a simulated engine, called Flight Gear
(Perry, 2004). The usage of Flight Gear gave us a
virtual ambient that emulates real flight, so every
sensor data was received with precision and every
command was sent with minimum delay compared
with a real, non-simulated, flight.

The first test was conducted considering the ba-
sic commands, whereby we observed that com-
mands with similar sounds, such as arm and disarm
were not possible to be used on this application,
because the similarity between these two words
generated ambiguity in their recognition. So the

Figure 4: Flowchart of grammar interpretation

major portion of the commands had to be changed
to other words, which did not generate any kind
of ambiguity. The final version of the basic com-
mands was listed on Table 1.

Testing Ego-Sphere commands took longer than
testing the basic commands, due to the complexity
of the theory and the number of different words
to be recognised. Subsequently, we divided the
Ego-Sphere into two identical parts considering its
symmetry, passing by the centre in a vertical cut,
thus dividing the left side from the right side. For
ease, just the left side was used in the experimental
evaluation.

After dividing the sphere, four test sessions were
executed with thirty complete commands in each
one of them, approximately. One complete com-
mand was composed of three Ego-Sphere com-
mands, one of each dimension. Every command
given to the system was analysed according to the
theory described before. Thus, to consider the com-
mand successful, we needed to analyse each one
of the categories separately. To neutralise the in-
fluence of the different combinations of words, ev-



ery session had the same list of commands exe-
cuted in a different order, embracing a large range
of possibilities. The tests were made on different
days with different noise rates, with about 75dB of
noise, composed of background voices and ambi-
ent sounds. That was made to maintain a realistic
noise rate, representing the behaviour that could
exist in real situations.

In total, 131 complete commands were tested. A
compilation of the results obtained for each cate-
gory is shown in Table 2. We listed the command’s
occurrence, evaluating if the voice command was
received and interpreted by the ground station with
a margin of error lower than five per cent relating to
the voice recognition. If the result was outside this
margin, the command was ignored and considered
wrong.

Command Occurrence Right Wrong

Left 27 25 2
Left front 25 20 5
Front 28 24 4
Left back 29 25 4
Back 22 19 3
TOTAL 131 113 18

Upper 23 23 0
Lower 22 22 0
Same 40 38 2
Below 27 24 3
Under 19 17 2
TOTAL 131 124 7

Far 42 41 1
Near 40 39 1
At 49 45 4
TOTAL 131 125 6

Table 2: Results of the tests

Analysing each one of the lines presented on
Table 2 we can see that the at command had 4
wrong interpretations of 49 occurrences. There-
fore the error rate of at command was greater than
the other rates in the same category, such as far
or near, which had just one wrong interpretation
in each case. On the horizontal dimension, com-
mands consisting of two words had the highest
error rate, such as left-front and left-back, which
had five and four wrong interpretations respectively
of 25 and 29 occurrences. This was probably due
to the existence of two other commands with the
same words ending: (front and back), generating

ambiguity. The analysis of the vertical dimension
showed that the commands upper and lower had
zero misinterpreted occurrences. That information
was relevant when we take into account that the
command upper and lower did not have other simi-
lar commands when looking at the phonetic point
of view. It shows that the misinterpretation was
probably due to noise present in voice recognition,
not to the theory involved in the approach. These
results showed that the error rate as less than five
per cent on the vertical and radial dimensions. In
the horizontal dimension, we obtained an error rate
of more than ten per cent.

6 Conclusion

In this research, we bridged the gap between quali-
tative communication in an HRI setting using voice
commands and the Qualitative Ego Sphere model
as a basis of space qualitative information. The
results showed the necessity of increasing the pre-
cision of our system, but also that our objective of
simplifying the interaction between humans and
robots has been achieved.

One of the contributions that can be related to
this study is the accessibility improvement of non-
specialist users to complex systems, like UAVs -
Unmanned Aerial Vehicles. Using the approach pre-
sented in this paper, everyone able to pronounce the
correct sequence of commands is capable of con-
trolling the system successfully, and all the work
with stabilisation will be the responsibility of the
autonomous system itself. Another important con-
tribution was facilitating the location requests to
the quadrotor using quantitative information. In
this case, for instance, the vehicle can be requested
to go near or far the objective, using qualitative
expressions, without the need of receiving the pre-
cise distance and coordinates of the goal location.
This can be an advantage in emergency situations,
where the answer time may be critical.

The lower error ratio obtained in the tests sug-
gests the efficacy of the method investigated in this
paper, but also brings atop the discussion about the
equipment used on the system. With more precise
instruments, such as using infrared sensors to filter
the overall results, and some improvements on the
code we can develop a system more consistent and
achieve a higher level of communication between
humans and a robot.
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