
Can Language Models Help in System Security?
Investigating Log Anomaly Detection using BERT

Crispin Almodovar1 Fariza Sabrina1 Sarvnaz Karimi2 Salahuddin Azad1

1Central Queensland University, Australia
2CSIRO Data61, Sydney, Australia

crispin.almodovar@cqumail.com
{f.sabrina,s.azad}@cqu.edu.au
{sarvnaz.karimi}@csiro.au

Abstract

The log files generated by networked computer
systems contain valuable information that can
be used to monitor system security and stabil-
ity. Transformer-based natural language pro-
cessing methods have proven effective in de-
tecting anomalous activities from system logs.
The current approaches, however, have limited
practical application because they rely on log
templates which cannot handle variability in
log content, or they require supervised train-
ing to be effective. We propose a novel log
anomaly detection approach named LogFiT.
It utilises a pretrained BERT-based language
model and fine-tunes it towards learning the
linguistic structure of system logs. The LogFiT
model is trained in a self-supervised manner us-
ing normal log data only. Using masked token
prediction and centroid distance minimisation
as training objectives, the LogFiT model learns
to recognise the linguistic patterns associated
with the normal log data. During inference, a
discriminator function uses the LogFiT model’s
top-k token prediction accuracy and computed
centroid distance to determine if the input is
normal or anomaly. Our experiments on three
different datasets show that LogFiT is effective.

1 Introduction

Cybercrime costs businesses billions of dollars an-
nually (RiskIQ, 2019; Australia Department of
Home Affairs, 2020; International Business Ma-
chines, 2022). Log anomaly detection helps to pro-
tect businesses’ digital infrastructure from cyber-
attacks by providing the ability to detect abnormal
activities, such as network intrusions, from large
volumes of event logs generated by networked com-
puter systems.

Recently, approaches based on Deep Learning
and Natural Language Processing (NLP) have been
applied to address the log anomaly detection prob-
lem. A review of the literature indicates that Long
Short-Term Memory (LSTM), represented by the

DeepLog model (Du et al., 2017), and Transform-
ers, represented by the LogBERT model (Guo
et al., 2021), are the deep learning architectures
used in the state of the art research in this do-
main. A practical consideration in log anomaly
detection using deep learning is the availability
of labeled data to be used in training predictive
models. Because of the high cost of preparing la-
beled data, classification-based approaches such
as LogSy (Nedelkoski et al., 2020) are of limited
value in production settings. Thus, a majority of
log anomaly detection approaches focus on the
zero-positive training scenario, in which predic-
tive models are trained in a self-supervised man-
ner using normal log data only (Le and Zhang).
Further, Yuan et al. (2021) identifies two general
categories of self-supervised models for anomaly
detection: (1) forecasting-based, which attempts
to predict the next log entry given previous log
entries; and (2) reconstruction-based, which re-
composes log sequences that have been intention-
ally corrupted. The DeepLog model adopts the
forecasting-based approach, while the LogBERT
model uses the reconstruction-based approach.

We focus on log data that consists of sequences
of log sentences. A key factor affecting the effec-
tiveness of log anomaly detection models is how
well it encodes representations of sequences of log
sentences, especially as the content of the log sen-
tences changes over time (Hendrycks et al., 2020;
Ott et al., 2021). A common approach is to encode
log sentences by first converting them to log tem-
plates (Du et al., 2017; Guo et al., 2021). However,
this method is shown to negatively affect model
effectiveness due to sub-optimal vector representa-
tion of the log sequences, and its inability to handle
unexpected variability in the content of log sen-
tences over time (Nedelkoski et al., 2020; Le and
Zhang, 2021; Wittkopp et al., 2021).

To address the limitations of current approaches,
we make the following contributions:



• An anomaly detection model named LogFiT,
which uses a fine-tuned pre-trained Bidirec-
tional Encoder Representations from Trans-
formers (BERT)-based Language Model (LM)
to learn the linguistic structure and sequential
patterns of normal log data. The fine-tuning is
done through transfer learning, where a base
LM, pre-trained on a large collection of text
corpora, is retrained on the normal log data.
The use of a pre-trained LM allows LogFiT
to generate representations for any sequence
of log sentences. Therefore, LogFiT is robust
to future changes in the syntactic structure of
log sentences.

• A framework and workflow for implement-
ing domain specific LogFiT anomaly detec-
tion models. The framework adopts a self-
supervised, transfer learning approach based
on the Masked Language Modeling (MLM)
objective. The model is trained to minimise
the cross-entropy loss combined with centroid
distance loss. During inference, the model’s
top-k accuracy and centroid distance are com-
pared against some threshold values to deter-
mine whether a log sequence is normal or
anomalous. Furthermore, the framework in-
corporates techniques that are known to speed
up model training: discriminative fine-tuning,
slanted triangular learning rates, and gradual
unfreezing.

2 Related Work

System log data consists of log sentences repre-
senting events that occur within computer systems.
Several log anomaly detection methods use log
parsing as its initial step, in which the log data is
converted into a standardised format called “log
templates” (Chen et al., 2021; Zhao et al., 2021; He
et al., 2021), such that every log sentence can be
mapped to a specific log template. The list of log
templates thus forms the vocabulary of the model,
instead of words or tokens as is typical in NLP. An
example of system log data as it is converted to log
templates is shown in Figure 1.

The DeepLog and LogBERT approaches are il-
lustrated in Figure 2. In both of these approaches,
the input log data is pre-processed to convert them
into log sentence templates, which form the vocab-
ulary of these models. The input to the model is
a sequence of log keys, which are indexes used to
look up the corresponding log sentence template

from the vocabulary. In the case of DeepLog, the
last log key is removed from the input, and the
model is trained to predict the missing log key
given the previous log keys. In the case of Log-
BERT, some percentage of log keys are masked in
the input, and the model is trained to predict what
the masked log keys are.

Some studies (Nedelkoski et al., 2020; Le and
Zhang, 2021; Wittkopp et al., 2021) suggest that
log templates often result in significant loss of con-
textual information that is beneficial to a predictive
model’s performance. The problem with log tem-
plates is that it assumes the list of log templates
invariant. However, changes in the content of log
sentences will naturally happen over time. Thus
models that rely on log templates will not be able to
map new log sentences to an entry in the list of log
templates. Consequently, LogSy (Nedelkoski et al.,
2020), Neuralog (Le and Zhang, 2021) and A2Log
(Wittkopp et al., 2021) do not use log templates;
instead the log data is pre-processed using simple
cleanup scripts to remove unnecessary details such
as specific IP addresses, file paths, port numbers,
and URLs.

Recently, the linguistic capabilities of pretrained
LMs such as BERT (Devlin et al., 2019) has been a
subject of increasing interest. Several studies have
concluded that BERT-based language models learn
syntactic and semantic information that can be used
to increase the effectiveness of downstream NLP
tasks (Jawahar et al., 2020; Lin et al., 2019; Gold-
berg, 2019; Yenicelik et al., 2020). The LogFiT
model therefore leverages a pre-trained BERT LM
to accurately "understand" the linguistic structure
and sequential properties of normal system logs.

3 Method

LogFiT is trained on normal log data which is
first transformed into semantic vectors before be-
ing passed to the anomaly detection model. In
contrast to DeepLog and LogBERT, the LogFiT
model does not require the extraction of log tem-
plates during the pre-processing step. By inherit-
ing from a BERT-based language model, LogFiT
has the capabilities of an auto-encoder that can
reconstruct log data that have been intentionally
corrupted via masking. Specifically, LogFiT uses
the Longformer (Beltagy et al., 2020) variant of the
BERT family of models. The Longformer model
allows LogFiT to handle log paragraphs that con-
tain up to 4096 tokens, much higher than BERT’s



Figure 1: Sample system log data converted to log templates, from the HDFS dataset.

Figure 2: The DeepLog and LogBERT log anomaly
detection approaches.

Figure 3: LogFiT Transformer layers.

limit of 512 tokens.
The input to the LogFiT model is a log para-

graph consisting of individual log sentences joined
together with a line separator character. LogFiT
supports up to 4096 tokens, which follows from
the limit of the Longformer model. It is noted that
the "tokens" in LogFiT differs from the "tokens"
in DeepLog and LogBERT - in LogFiT the tokens
are words or sub-words, while in DeepLog and
LogBERT the tokens are log sentence templates.
The output of the final layer of LogFiT are 768-

dimension vectors that are the learned contextual
representations of the input tokens. Of interest are
the [CLS] token vector CV and the masked token
prediction vector MV. By convention, in BERT-
based models, the [CLS] token is the first token in
the input sequence, and is typically used for clas-
sification tasks. The CV vector corresponds to the
representation of the entire log paragraph, while the
masked token prediction vectors MV correspond
to the model’s predictions for the masked tokens.
At the beginning of each training epoch, the CV
vector is used to compute the centroid of all nor-
mal training data. During training proper, the CV
vector of each log paragraph is used to compute its
distance from the current centroid. In contrast, the
MV vector is used to compute the masked token
prediction loss (cross-entropy loss) following the
BERT masked language modeling algorithm. An
important detail related to LogFiT’s use of Long-
former is the use of global attention for the [CLS]
token and all line separator characters only, while
all other tokens are limited to local attention with
a window size of 16 to 32 - this value is based on
findings discussed in Dai et al. (2022).

3.1 Training Objectives

The LogFiT model is trained in a self-supervised
manner using two training objectives:

Objective 1: Masked Language Modeling.
This training objective is a variation of the training
objective used to pre-train BERT-based language
models (Devlin et al., 2019). In this training ob-
jective, the model randomly masks up to 75% of
the sentences that comprise the log paragraph. The
tokens of the log sentences are then masked accord-
ing to the BERT masking algorithm (80% masked,
10% replaced with a random token, 10% left un-
changed). Subsequently the model predicts what



the masked tokens are. The intuition behind this
training objective is that, for the model to accu-
rately predict the masked tokens, it must learn the
contextual relationships of the tokens and the sen-
tences that make up the training data. Thus, the
model is thought to gain an understanding of the
syntax and semantics of the language domain of
normal system logs. Further, because the model
is trained on the normal log data, it is expected
that the model will be able to learn patterns asso-
ciated with the normal data and thus distinguish
it when the normal data is presented with anoma-
lous data. The masked language modeling training
objective is implemented by minimising the cross-
entropy loss between the model’s predictions of the
masked tokens and the correct tokens. Aggregating
the cross-entropy loss across all samples in a mini-
batch produces the MLM loss and is described by
equation 1.

Lossmlm = −1

b

b∑
j=1

m∑
i=1

yjmaski
log(pjmaski

) (1)

where b is the mini-batch size, m is the count of
masked tokens, y is the true value, and p is the
probability of the predicted value.

Objective 2: Centroid Distance Minimisation.
This training objective is motivated by the obser-
vation that normal log data samples tend to cluster
close to each other (Ruff et al., 2019; Nedelkoski
et al., 2020; Guo et al., 2021). Therefore, as an
additional training objective, the distance of each
vectorised log paragraph from the computed cen-
troid of all normal log paragraphs is minimised.
The centroid is computed at the start of each epoch
to leverage improvements to the model weights
from the previous epoch. It has been demonstrated
in the works of (Ruff et al., 2019), (Nedelkoski
et al., 2020) and (Guo et al., 2021) that the per-
formance of self-supervised log anomaly detection
models improves with the addition of this training
objective. The centroid distance loss is the mean
squared error between the CV vector (vectorised
log paragraph) and the best centroid computed from
the previous training epochs. The centroid is the
average of all CV vectors of all normal training
samples. Additionally during the centroid distance
minimisation objective, the q-quantile centroid dis-
tance (where q is set to between 0.65 to 0.9 in the
experiments) is determined - this distance is then

considered as the radius or the hypersphere that
encloses all normal samples and is used as thresh-
old value during inference. Equation 2 shows the
formula for computing the centroid distance loss
for a mini-batch of log data.

Losscdist =
1

b

b∑
j=1

(CVj − centroid)2. (2)

LogFiT’s loss function, shown in Equation 3
is a combination of the cross-entropy loss com-
puted from the masked language modeling objec-
tive and the centroid distance loss computed from
the centroid distance minimisation objective. The
contribution of the centroid distance loss to the
final loss value is weighed via hyper parameter
cw, which is set to 0.25 in the experiments. The
resulting composite loss is then minimised using
the Adam optimiser, using hyper parameters rec-
ommended by the FastAI framework: momentum
= 0.9, sqr_momentum = 0.99, ϵ = 1e− 5, weight
decay = 0.01.

Loss = Lossmlm + cw ∗ Losscdist. (3)

3.2 Anomaly Detection
The trained LogFiT model can be used to detect
anomalous log data because it is trained to recog-
nise normal data. During inference, the input data
(in the form of log paragraphs) goes through the
same tokenisation, vectorisation, masking, and pre-
diction steps as at training time. Taking inspira-
tion from both DeepLog and LogBERT approaches,
LogFiT’s anomaly score is composed of two sep-
arate scores: the top-k accuracy (with k=5..12)
which represents how well LogFiT reconstructs
the masked sentences in the input data; and the cen-
troid distance of the CV vector computed by Log-
FiT for the input data (the centroid is determined
during training, based on the average of all CV vec-
tors of all normal log samples). If either of these
two scores passes some threshold value then the
input data is considered an anomaly. Specifically,
if the top k accuracy falls below some threshold
(set to between 0.65 and 0.99 in the experiments)
or the centroid distance of the CV vector exceeds
some multiple of the normal centroid distance (set
to between 1.2 to 1.9) computed during training,
the input log paragraph is considered an anomaly,
otherwise it is considered normal.



Dataset Avg #W Avg # S Unique W

HDFS 176.04 18.63 146
BGL 128.66 15.73 6,046
Thunderbird 1445.70 126.63 15,557

Table 1: Average counts of words (W) and sentences (S)
per log paragraph for different datasets.

4 Datasets and Experimental Setup

We use three public datasets: HDFS (Xu et al.,
2010), BGL (Oliner and Stearley, 2007) and Thun-
derbird (Oliner and Stearley, 2007). These datasets
are selected because they are used by the base-
line models. Some statistics on these datasets are
shown in Table 1. There is a noticeable difference
in terms of diversity of vocabulary used in these
datasets, with HDFS having a very limited vocab-
ulary of only 146 unique words, as opposed to
Thunderbird which is more diverse with its vocab-
ulary close to the size of what an adult native En-
glish speaker would have, which is approximately
15,000 to 30,000 (Brysbaert et al., 2016).

The HDFS dataset consists of log entries (sen-
tences) that are grouped into sessions, identified by
the block ID field. In contrast the BGL and Thun-
derbird datasets do not have session identifiers, so
a time-based grouping of log sentences is used.
During deployment LogFiT is intended to be used
in an online mode (as opposed to batch) therefore
for datasets where the grouping of log sentences
is based on time window, the chosen interval is
30 seconds so that a system utilising LogFiT can
provide timely feedback to system operators. Each
group of log sentences (i.e., a log paragraph) be-
comes a single sample that is then fed in batches to
the models during training, tuning and evaluation.

The datasets are split into training/validation,
tuning, and evaluation sets. The training/validation
set is created from 6,000 normal samples for train-
ing, and 5,000 normal plus 1,000 anomaly samples
for parameter tuning. The evaluation set is created
from 5,000 normal plus 1,000 anomaly samples.
No random shuffling is performed on the datasets -
the chronological order of the logs is used; this is
to prevent models from "peeking into the future"
during training. The evaluation set consists of log
data that appear after (in chronological order) the
train/validation set.

Implementation Details. LogFiT is imple-
mented using Pytorch (Paszke et al., 2019), Fas-

tAI (Howard and Gugger, 2020), and Hugging-
Face (Wolf et al., 2020).

Evaluation Metrics. To measure the effective-
ness of the models, the following metrics are used:

• Precision (P ) is percentage of correctly detected
anomaly samples (TP ), among all the anomalies
detected by the model as P = TP / (TP+FP).

• Recall (R) is percentage of log samples that the
model correctly identified as anomaly, over all
real anomalies, as R = TP / (TP+FN).

• F1 Score (F1) is the harmonic mean of the Pre-
cision and Recall, as F1 = 2 * (P*R)/(P+R).

• Specificity (S) is the percentage of log samples
that the model correctly detected as normal, over
all real normal samples, as S = TN/(TN+FP).

In practical deployment scenarios a model with
high specificity is more valuable, in that it min-
imises occurrences of false positives or false alarms.
A model with high Specificity will accurately iden-
tify normal samples, thus if a sample is detected
as an anomaly it is highly likely that the sample
is really an anomaly. Furthermore, Le and Zhang
found that Specificity helps mitigating the effect of
imbalanced class distribution.

5 Results and Discussion

Log Anomaly Detection Performance. Table 2
shows the result of running anomaly detection in-
ference using LogFiT, as compared to the metrics
obtained when running the publicly available im-
plementations of DeepLog and LogBERT on the
same data. The LogFiT model is used to detect
anomalous log paragraphs from the HDFS, BGL
and Thunderbird datasets. The results show that
LogFiT’s F1-scores outperform DeepLog and Log-
BERT on the HDFS and BGL datasets, and compa-
rable to LogBERT on the Thunderbird dataset.

Effect of delaying centroid distance computa-
tion. Table 3 shows the effect of a warm-up pe-
riod of 5 epochs before computing the centroid
and the centroid distance loss. LogFiT is trained
using three stages of gradual unfreezing (Howard
and Ruder, 2018), with five epochs for each stage.
The result indicates that a warm-up period neg-
atively affects the model’s effectiveness on the
HDFS dataset. This could be because LogFiT re-
lies on a pre-trained Longformer which is already



HDFS BGL Thunderbird

Method P R F1 S P R F1 S P R F1 S

DeepLog 100.0 60.90 75.70 100.0 90.2 70.68 79.25 98.32 65.05 99.4 78.64 89.30
LogBERT 24.02 82.80 37.24 47.62 88.92 88.35 88.63 97.59 91.75 95.7 93.69 98.28
LogFiT (ours) 99.78 90.60 94.97 99.96 98.83 84.70 91.22 99.00 89.90 98.80 94.14 97.78

Table 2: Comparison of anomaly detection effectiveness of different methods in terms of Precision (P), Recall (R),
F1 score (F) and Specificity (S) on three log datasets (HDFS, BGL, Thunderbird).

Warm-up F1 Specificity

No warm-up 94.97 99.96
5-epoch warm-up 87.70 100.0

Table 3: Effect of delaying centroid distance computa-
tion on LogFiT/HDFS F1 and specificity.

capable of producing good vector representations
of log paragraphs.

Figure 4 shows how the two threshold parame-
ters, top-k token prediction accuracy and centroid
distance, contributes to the anomaly decision for
the HDFS evaluation set (which consists of 5,000
normal samples and 1,000 anomaly samples). The
figure indicates that centroid distance is not an im-
portant decision factor for discriminating normal
and anomaly HDFS log paragraphs.

Transfer learning. Due to transfer learning, the
LogFiT model starts training with an inherited
knowledge of the linguistic characteristics of the
English language, while neither DeepLog or Log-
BERT have this benefit. This allows LogFiT train-
ing to converge in fewer number of epochs com-
pared to the two baseline models. Furthermore,
because LogFiT uses a large pre-trained language
model to vectorise log paragraphs, it is more ro-
bust to changes in the content of the log data
(Nedelkoski et al., 2020; Ott et al., 2021).

Log parsing. Unlike DeepLog, LogBERT and
other approaches that depend on a log parsing step,
LogFiT works directly with the text data. Figure 5
shows an example of LogFiT’s input log paragraph
which have been masked according to the BERT
masking algorithm, and shows the two criteria (top-
k accuracy and centroid distance) used by Log-
FiT to decide whether the input is normal or an
anomaly.

Note that in our initial experiments on the Thun-
derbird dataset, LogFiT’s effectiveness was below
that of baselines. This was attributed to the length
of the log paragraphs being input to the LogFiT

model. After reducing the time window from 60
seconds to 30 seconds, LogFiT’s F1 score and
specificity were comparable to that of LogBERT.
The same reduction in time window was applied to
the baselines as well.

Statistical significance. Figure 6 shows the pre-
dictions of the LogFiT model compared against the
predictions of the LogBERT model on the HDFS
dataset, presented in a McNemar contingency table.
Applying McNemar’s test with continuity correc-
tion and a significance level of α = 0.05 produces
χ2 = 2553.83 and P = 0.0 which confirms that
LogFiT performs better than LogBERT.

6 Limitations

Due to the size and computational requirements of
the Longformer model, training on log data where
the length of a paragraph is longer than 2048 tokens
takes a long time to complete. Further, it can be
prone to out-of-memory errors even when training
on an NVIDIA RTX A6000 with 48 GB of GPU
memory. Addressing this limitation will be the
subject of a follow up study.

7 Conclusions

Detecting abnormal computer system behavior
from the log files that the system generates is an
important capability in today’s hyper-connected
world. Natural language processing techniques and
in particular transformer-based models using BERT
are investigated for anomaly detection in system
logs. We presented a novel log anomaly detection
model named LogFiT. The LogFiT model lever-
ages the general knowledge embodied in the pre-
trained weights of a BERT-based language model
and fine-tuned it to learn the specific linguistic pat-
terns of system logs. LogFiT is trained in a self-
supervised manner using only the normal logs and
combining two training objectives: Masked token
prediction and centroid distance minimisation. It
learns to recognise only the linguistic structure of
normal system logs and can reconstruct normal log



Figure 4: Contribution of each threshold criteria (token prediction accuracy and centroid distance) to the anomaly
decision.

Figure 5: An example of LogFiT’s input, output prediction, and decision criteria.



Figure 6: McNemar table comparing LogFiT and Log-
BERT predictions on the HDFS dataset.

data that have been intentionally corrupted. Log-
FiT flags as anomalies any log sample that it fails
to reconstruct. We showed that our method out-
perform baseline models on the HDFS and BGL
datasets, and produces comparable performance on
the Thunderbird dataset. Finally, LogFiT is robust
to future changes in the syntactic structure of log
paragraphs because of its built-in ability to handle
out-of-vocabulary tokens.

8 Future Work

The LogFiT model at its core is a BERT-based
language model trained to reconstruct normal log
data. As such, it can be adapted for use in any
log analysis task where the log samples consist of
textual description of system events. While the
domain and task tackled in this study is system log
anomaly detection, LogFiT is intended to be used
in the cyber-security domain. In future we focus on
applying the LogFiT anomaly detection approach
on cyber-security datasets.

References
Australia Department of Home Affairs. 2020. Aus-

tralia’s cyber security strategy 2020.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The Long-Document Transformer.

Marc Brysbaert, Michaël Stevens, Paweł Mandera, and
Emmanuel Keuleers. 2016. How many words do we
know? practical estimates of vocabulary size depen-
dent on word definition, the degree of language input
and the participant’s age. Frontiers in psychology,
7:1116.

Zhuangbin Chen, Jinyang Liu, Wenwei Gu, Yuxin Su,
and Michael R. Lyu. 2021. Experience Report: Deep
Learning-based System Log Analysis for Anomaly
Detection.

Xiang Dai, Ilias Chalkidis, Sune Darkner, and Desmond
Elliott. 2022. Revisiting Transformer-based Models
for Long Document Classification. In The 2022 Con-
ference on Empirical Methods in Natural Language
Processing.

Jacob Devlin, Ming Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In The 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies - Pro-
ceedings of the Conference, pages 4171–4186.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
2017. DeepLog: Anomaly detection and diagnosis
from system logs through deep learning. In Pro-
ceedings of the ACM Conference on Computer and
Communications Security, pages 1285–1298.

Yoav Goldberg. 2019. Assessing BERT’s Syntactic
Abilities.

Haixuan Guo, Shuhan Yuan, and Xintao Wu. 2021. Log-
BERT: Log Anomaly Detection via BERT. Proceed-
ings of the International Joint Conference on Neural
Networks, 2021-July.

Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang,
Yuxin Su, and Michael R. Lyu. 2021. A Survey on
Automated Log Analysis for Reliability Engineering.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained Transformers Improve Out-of-Distribution
Robustness. In The 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2744–
2751.

Jeremy Howard and Sylvain Gugger. 2020. Fastai: A
layered api for deep learning. Information, 11(2):1–
26.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 328–339.

International Business Machines. 2022. Cost of a data
breach report 2022.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2020. What does BERT learn about the structure
of language? In ACL 2019 - 57th Annu. Meet. As-
soc. Comput. Linguist. Proc. Conf., pages 3651–3657.
Association for Computational Linguistics (ACL).

Van-Hoang Le and Hongyu Zhang. Log-based anomaly
detection with deep learning: How far are we? In
Proceedings of the 44th International Conference on
Software Engineering, page 1356–1367.

Van-Hoang Le and Hongyu Zhang. 2021. Log-based
anomaly detection without log parsing. In The 36th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 492–504.

https://www.homeaffairs.gov.au/cyber-security-subsite/files/cyber-security-strategy-2020.pdf
https://www.homeaffairs.gov.au/cyber-security-subsite/files/cyber-security-strategy-2020.pdf
http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2107.05908
http://arxiv.org/abs/2107.05908
http://arxiv.org/abs/2107.05908
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/1901.05287
https://doi.org/10.1109/IJCNN52387.2021.9534113
https://doi.org/10.1109/IJCNN52387.2021.9534113
https://doi.org/10.1145/3460345
https://doi.org/10.1145/3460345
https://doi.org/10.18653/v1/2020.acl-main.244
https://doi.org/10.18653/v1/2020.acl-main.244
https://doi.org/10.3390/info11020108
https://doi.org/10.3390/info11020108
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://www.ibm.com/security/data-breach
https://www.ibm.com/security/data-breach
https://doi.org/10.18653/v1/p19-1356
https://doi.org/10.18653/v1/p19-1356
https://doi.org/10.1145/3510003.3510155
https://doi.org/10.1145/3510003.3510155
https://doi.org/10.1109/ASE51524.2021.9678773
https://doi.org/10.1109/ASE51524.2021.9678773


Yongjie Lin, Yi Chern Tan, and Robert Frank. 2019.
Open Sesame: Getting inside BERT’s Linguistic
Knowledge. pages 241–253.

Sasho Nedelkoski, Jasmin Bogatinovski, Alexander
Acker, Jorge Cardoso, and Odej Kao. 2020. Self-
attentive classification-based anomaly detection in
unstructured logs. In Proceedings - IEEE Interna-
tional Conference on Data Mining, ICDM, volume
2020-Novem, pages 1196–1201. Institute of Electri-
cal and Electronics Engineers Inc.

Adam Oliner and Jon Stearley. 2007. What supercom-
puters say: A study of five system logs. In Proceed-
ings of the International Conference on Dependable
Systems and Networks, pages 575–584.

Harold Ott, Jasmin Bogatinovski, Alexander Acker,
Sasho Nedelkoski, and Odej Kao. 2021. Robust
and Transferable Anomaly Detection in Log Data
using Pre-Trained Language Models. Proceedings -
2021 IEEE/ACM International Workshop on Cloud
Intelligence, CloudIntelligence 2021, pages 19–24.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. PyTorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Neural information processing
systems foundation.

RiskIQ. 2019. The evil internet minute 2019.

Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz,
Alexander Binder, Emmanuel Müller, Klaus-Robert
Müller, and Marius Kloft. 2019. Deep Semi-
Supervised Anomaly Detection.

Thorsten Wittkopp, Alexander Acker, Sasho
Nedelkoski, Jasmin Bogatinovski, Dominik
Scheinert, Wu Fan, and Odej Kao. 2021. A2Log:
Attentive Augmented Log Anomaly Detection.
HICSS 2022 : Hawaii International Conference on
System Sciences.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
arXiv preprint arXiv:1910.03771, pages 38–45.

Wei Xu, Ling Huang, Armando Fox, David Patterson,
and Michael I Jordan. 2010. Detecting large-scale
system problems by mining console logs. In ICML
2010 - Proceedings, 27th International Conference
on Machine Learning, pages 37–44.

David Yenicelik, Florian Schmidt, and Yannic Kilcher.
2020. How does BERT capture semantics? A closer
look at polysemous words. In The Third Black-
boxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP, pages 156–162. Associa-
tion for Computational Linguistics (ACL).

Lun Pin Yuan, Peng Liu, and Sencun Zhu. 2021. Re-
compose Event Sequences vs. Predict Next Events:
A Novel Anomaly Detection Approach for Discrete
Event Logs. In ASIA CCS 2021 - Proc. 2021 ACM
Asia Conf. Comput. Commun. Secur., volume 1, pages
336–348. Association for Computing Machinery.

Nengwen Zhao, Honglin Wang, Zeyan Li, Xiao Peng,
Gang Wang, Zhu Pan, Yong Wu, Zhen Feng, Xidao
Wen, Wenchi Zhang, Kaixin Sui, and Dan Pei. 2021.
An empirical investigation of practical log anomaly
detection for online service systems. In ESEC/FSE
2021 - Proceedings of the 29th ACM Joint Meeting
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
volume 21, pages 1404–1415.

https://doi.org/10.18653/v1/w19-4825
https://doi.org/10.18653/v1/w19-4825
https://doi.org/10.1109/ICDM50108.2020.00148
https://doi.org/10.1109/ICDM50108.2020.00148
https://doi.org/10.1109/ICDM50108.2020.00148
https://doi.org/10.1109/DSN.2007.103
https://doi.org/10.1109/DSN.2007.103
https://doi.org/10.1109/CloudIntelligence52565.2021.00013
https://doi.org/10.1109/CloudIntelligence52565.2021.00013
https://doi.org/10.1109/CloudIntelligence52565.2021.00013
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://www.riskiq.com/resources/infographic/evil-internet-minute-2019
http://arxiv.org/abs/1906.02694
http://arxiv.org/abs/1906.02694
http://arxiv.org/abs/2109.09537
http://arxiv.org/abs/2109.09537
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.blackboxnlp-1.15
https://doi.org/10.18653/v1/2020.blackboxnlp-1.15
https://doi.org/10.1145/3433210.3453098
https://doi.org/10.1145/3433210.3453098
https://doi.org/10.1145/3433210.3453098
https://doi.org/10.1145/3433210.3453098
https://doi.org/10.1145/3468264.3473933
https://doi.org/10.1145/3468264.3473933

