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Abstract

Deep neural networks show superior perfor-
mance in text classification tasks, but their poor
interpretability and explainability can cause
trust issues. For text classification problems,
the identification of textual sub-phrases or “ra-
tionales” is one strategy for attempting to find
the most influential portions of text, which can
be conveyed as critical in making classification
decisions. Selective models for rationale extrac-
tion faithfully explain a neural classifier’s pre-
dictions by training a rationale generator and a
text classifier jointly: the generator identifies
rationales and the classifier predicts a category
solely based on the rationales. The selected
rationales are then viewed as the explanations
for the classifier’s predictions. Through ex-
change of such explanations, humans interact to
achieve higher performance in problem solving.
To imitate the interactive process of humans,
we propose a simple interactive rationale extrac-
tion architecture that selects a pair of rationales
and then makes predictions from two indepen-
dently trained selective models. We show how
this architecture outperforms both base models
for text classification tasks on datasets IMDB
movie reviews and 20 Newsgroups in terms of
predictive performance.

1 Introduction

Selective (or select-predict) models for rationale ex-
traction in text classification (Lei et al., 2016; Bast-
ings et al., 2019), with the general structure shown
in Figure 1, are designed to extract a set of words,
namely a rationale (Zaidan et al., 2007), from an
original text where, for prediction purposes, the
rationale is expected to be sufficient as the input for
the classification model to obtain the same predic-
tion based on the whole text. For the purpose of
interpretability, the rationale should be concise and

The implementation is provided on https://github.
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contiguous. A rationale extraction model is faith-
ful (Lipton, 2018) if the extracted rationales are
truly the information used for classification (Jain
et al., 2020). The problem of extracting rationales
that satisfy the criteria above is complex from a
machine learning perspective and becomes more
difficult with only instance-level supervision (i.e.,
without token-level annotations) (Jain et al., 2020).
One model’s identification of rationales can suffer
from high variance because of the complex train-
ing process. An ensemble of more than one model
helps to reduce variance, which leads to the explo-
ration of how to take use of two rationale extraction
models and how to make a choice when the two
models make different predictions.

When two humans have different answers to a
problem, they tend to exchange their reasons or ex-
planations, after which there might be a change of
mind. To show why this interaction of humans is ef-
fective, we use the problem of proving a mathemat-
ical conjuncture as an instance: because searching
for a correct mathematical proof, which then leads
to a correct claim about the conjuncture, is usually
much more difficult than verifying a proof (e.g.,
P C NP in computation theory), often one who
is not capable of finding a good proof can tell if a
proof is good when the proof is given. Considering
the complexity for a generator to search among all
possible rationales with only remote instance-level
supervision, the work of rationale extraction can be
much more difficult than classification.

We may then consider selective models for ra-
tionale extraction to be naturally compatible with
the interactive pattern of humans by viewing the
rationales extracted by a generator as the proofs for
the decisions of its classifier, which means the inter-
action between two base models can be performed
by the exchange of their rationales. Subsequently,
the problem becomes how to decide if a rationale
is good or not so that we know which pairs of ratio-
nale and prediction are appropriate choices when
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two base models make different predictions. A
good rationale here is expected to give a correct
prediction when input to a decent classifier.

Intuitively, a good rationale is supposed to con-
tain strong indicators for the correct “gold label” in-
stead of insignificant words which do not contribute
to classification, which leads to two simple rules
for handling base models’ disagreements: first, a
good rationale is more likely to produce consistent
predictions among classifiers (i.e., a good explana-
tion convinces people); second, a good rationale
is more likely to produce a higher confidence level
(Section 2.2) for the prediction of one classifier
(i.e., one with a good reason is often confident).
The two rules are created a basis for classification,
as opposed to random guessing based on other-
wise randomly selected words. Note that the two
rules are based on the assumption that the proba-
bility that base models extract strong indicators for
wrong labels is very low, which should be consid-
ered to be true for decent generators and decent
classifiers (i.e., better than random guessing).

To imitate the interactive pattern of humans in
problem solving, we introduce Interactive Ratio-
nale Extraction for Text Classification to interac-
tively connect two independently trained selective
rationale extraction models. We show the architec-
ture achieves higher predictive performance than
either base models with similar performance on
IMDB movie reviews and 20 Newsgroups. This is
done by selecting pairs of rationale and prediction
from the base models using the above simple rules.
In addition, because this interactive architecture
makes decisions solely based on the base models’
rationales, the faithfulness and interpretability of
the base models’ rationales are not compromised.

2 Background

2.1 Selective Rationale Extraction

The original selective rationale extraction model
was proposed by (Lei et al., 2016) with an archi-
tecture shown in Figure 1. Their model faithfully
explains a neural network-based classifier’s predic-
tions by jointly training a generator and a classifier
with only instance-level supervision. We summa-
rize their work as follows. The generator g con-
sumes the embedded tokens of the original text,
namely x = [z1, z2, ..., ;] where [ is the number
of the tokens in the text and each token z; € R? is
an d dimensional embedding vector, and outputs a
probability distribution p(z|z) over the hard mask

z = |21, 29, ..., 2] where each value z; € {0,1} de-
notes whether the corresponding token is selected.
A rationale r is defined as (z, x) representing the
hard mask z over the original input . Subse-
quently, the classifier f takes (z,z) as input to
make a prediction f(z,z). Given gold label y, the
loss function used to optimize both generator g and
classifier f is defined as

loss(z,x,y) =
-1
1f(z2) = yll5 + Aall2ll + A2 D |2 = 2o

i=1

ey
which consists of three parts: prediction loss, se-
lection loss and contiguity loss. The parameters
A1 and )9 in the loss function are used to tune
the constraints on rationales (i.e., conciseness and
contiguity). Jain et al. (2020) modified the loss
function to apply hard constraints on rationales
(i.e., maximum length) by not punishing a model
when a given limit on the number of words is not
reached.

Because of the absence of token-level supervi-
sion and the use of hard masking which is not
differentiable, Lei et al. (2016) turned to REIN-
FORCE (Williams, 1992) for gradient estimation,
which causes high variance and sensitivity to hyper-
parameters (Jain et al., 2020). Following the select-
predict architecture proposed by Lei et al. (2016),
Bastings et al. (2019) explored a reparameteriza-
tion heuristic called HardKuma for gradient estima-
tion. Furthermore, Guerreiro and Martins (2021)
exposed the trade-off between differentiable mask-
ing and hard constraints in selective rationale ex-
traction models.

2.2 Confidence Level

Confidence level (CL) indicates how far a neural
network’s prediction is from being neutral. Given
a neural network’s non-probabilistic output k =
[k1, k2, ..., kn] for a n-class classification, Kumar
et al. (2022) defined the CL of the classification
with a softmax function

exp(mazx(k))
> iy exp(ki)

where max (k) is the value of the output node k;
with the highest value (i.e., ¢ is the final prediction).

Guo et al. (2017) stated that a classification net-
work should not only have a high accuracy but also
indicate how likely each prediction is correct or

CL(k) = )
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Figure 1: Schematic of selective rationale extraction models where « is an embedded text, g is a generator and f is
a classifier. Generator g extracts a rationale r based on which classifier f makes a prediction y.

incorrect for trust purposes. In addition, their study
on neural networks’ calibration Guo et al. (2017)
suggested that accuracy, even if not nearly identical
to CL for some neural networks, is generally posi-
tively correlated to CL. This means that, when two
base models with similar expected performance
make different predictions, the prediction with a
higher CL is generally more likely to be correct.

3 Algorithm

As demonstrated in Figure 2, after the interac-
tion between two base select-predict models, a to-
tal of 4 predictions are generated: y; = f1(r1),
y1 = fi(r2), y5 = fa(r1) and yo = fo(r2) where
y1 and yo are the predictions based on their own ra-
tionales and ¥} and y5, are predictions based on the
exchanged rationales, as shown in the table below.

| T2
flwv | v
fa |l yn | w2

Given an input text, when the predictions of two
base models are the same, namely y; = y2, both
rationales r1, 2 are good and the final prediction
is the shared prediction. When two base models
initially show a disagreement, we check if one ra-
tionale causes more consistent predictions. If r;
causes more consistent predictions, in order words,
if 71 changes the prediction of f5 to y; when given
as an input rationale (namely, y1 = v5), but r2 does
not change the prediction of f; to yo when given as
an input rationale (y2 # y}), then the pair (r1, y1)
is chosen as the final rationale and prediction; sym-
metrically, if 7o causes more consistent predictions,
the pair (72, y2) is chosen. For the cases where no
rationale causes more consistent predictions, we
rely on confidence levels which are real numbers
between O and 1 as defined by expression (2). If
the confidence level of fi on r; is higher than that
of f2 on 7o (say CL(fl,Tl) > CL(fQ,TQ) with
(f1,71) and ( fa,r2) separately denoting their cor-
responding non-probabilistic outputs), the pair (r1,
y1) is chosen; otherwise, the pair (2, y2) is cho-
sen. The process of selecting a pair of rationale
and prediction is formalized in Algorithm 1. It’s

worth mentioning that, in implementation, the ex-
change of rationales only needs to be performed
when base models have a disagreement in predic-
tion (i.e., y1 7 Y2).

4 Experiments

4.1 Datasets

IMDB movie reviews (Maas et al., 2011) This
is a dataset of 50,000 movie reviews collected from
the Internet Movie Database (IMDB) with binary
labels (i.e., positive and negative). The dataset is
originally split into two subsets: 25,000 for train-
ing and 25,000 for testing. We randomly split the
training data into 20,000 (80%) for training and
5,000 (20%) for development. The numbers of the
two labels are perfectly balanced in each subset.

20 Newsgroups It is a publicly available dataset
containing a total of 18,846 texts, with 11,314 for
training and 7,532 for testing, in 20 distinct cate-
gories of news topics. We split the training data
randomly into 9,051 (80%) for training and 2,263
(20%) for development. The numbers of the 20
labels are not perfectly balanced and varying from
304 to 490 in the training data, 73 to 131 in the de-
velopment data and 251 to 399 in the testing data.

4.2 Setup

Training Instead of REINFORCE (Williams,
1992), a reparameterization heuristic Gumbel-
Softmax (Jang et al., 2017) is used to simplify
gradient estimation. Convolutional neural network
(Kim, 2014) is used for both generators and clas-
sifiers with filter sizes of [3,4,5], filter number of
100 and dropout rate of 0.5. Hidden dimensions of
100 and 120 are separately used for the first and the
second base model, which is the only difference
among all parameters for training two base mod-
els. Adam is used as the optimizer with a weight
decay of 5e-06 and an initial learning rate of 0.001.
If no improvement is achieved in loss in develop-
ment dataset from the previous best model after
5 epochs, the learning rate is halved (i.e., 0.001,
0.0005...) and the training process starts over from
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Figure 2: Schematic of our interactive rationale extraction where rationales are exchanged. The notations follow

Figure 1.

Algorithm 1 Rationale-prediction Selection after Interaction

Require: f1, fo,71,72,Y1, Y}, Y, y2 from Figure 2, CL( f, r) for the confidence level of f on r.

if Y1 = Y2 then
return (11, Y1)
else
if y1 = y5 and y2 # v then
return (71, y1)
else if y; # y5, and yo = y] then
return (72, y2)
else
if CL(fl, 7“1) > CL(fQ, 7“2) then
return (11, Y1)
else
return (72, y2)
end if
end if
end if

> agreement

> or (r2,y2)
> disagreement
> model 2 convinced by model 1

> model 1 convinced by model 2

> model 1 is more confident

> model 2 is more confident

the previous best model. In total, 20 epochs are
used for training. Cross-entropy is used as the loss
objective. Batch size is set to be 128. For Gumbel-
Softmax (Jang et al., 2017), the initial temperature
is 1 with a decay rate of 1e-5. GloVe (Pennington
et al., 2014) of embedding dimension 300 is used
for word embedding. The maximum text lengths
are separately set to be 80 and 200 words for 20
Newsgroups and IMDB movie reviews.

Testing For each dataset, two base models are
independently trained and tested with two set-
tings of hyper-parameters (A1, A2) from the loss
function. {(0.005,0), (0.001,0.001)} are used for
20 Newsgroups and {(0.001, 0), (0.0002, 0.0002) }
are used for IMDB movie reviews. The four settings
are chosen in a way to show the performance of
the algorithm under different rationale length and
contiguity (Table 1). For each hyper-parameter set-
ting, both base models are trained and tested with
6 random seeds (i.e., {2022, 2023, 2024, 2025,
2026, 2027}), and the invalid cases where two base
models show a significant difference in the per-
formance in development dataset (i.e., > 3% in
accuracy) are removed. The numbers of invalid

cases are separately 2, 1, 1, 0 out of 6 for the four
hyper-parameter settings.

4.3 Quantitative Evaluation

For quantitative evaluation, we report the predictive
performance of the classifiers from base models
and the interactive model. In Table 2, the inter-
active model outperforms the better base model
by 2% in IMDB movie reviews and 2-3% in 20
Newsgroups and shows a relatively smaller vari-
ance in both datasets. The improvement in predic-
tive performance and reduced variance is general
for most experiments in addition to the four set-
tings. We found that, in the cases of extreme hyper-
parameter settings where rationales contain almost
whole texts or no words, there is no improvement.
This seems reasonable as, when base models gen-
erate rationales of whole texts or no words, the
rationales are identical, which makes the exchange
of rationales meaningless. Also, in some cases
where one base model is trained well and one is
not (e.g., 80% and 60% accuracy in IMDB movie
reviews), the interactive model shows a slightly
lower performance than the better base model. The



20 Newsgroups

(A1, A\2) (5e-3,0) (1e-3, 1e-3)

Base Model Model 1 Model 2 Model 1 Model 2
Length 11.33 11.18 21.76 22.68
Contiguity Loss 17.12 16.84 21.92 21.45

Interaction Cases

(331, 363, 1129, 1211.5)

(228.6, 264, 974.2, 1075.8)

Case Accuracy

(0.41, 0.43, 0.30, 0.26)

(0.38, 0.44, 0.31, 0.27)

IMDB movie reviews

(A1, A2) (1e-3, 0) (2e-4, 2e-4)

Base Model Model 1 Model 2 Model 1 Model 2
Length 13.99 17.59 29.22 27.37
Contiguity Loss | 21.84 26.45 37.14 35.48

Interaction Cases

(855.6, 946.0, 1187.4, 1250.0)

(681.7, 665.2, 1101.8, 1295.7)

Case Accuracy

(0.66, 0.65, 0.59, 0.59)

(0.66, 0.64, 0.58, 0.60)

Table 1: Experiment details (average values). We report the rationale length (i.e., number of words) and contiguity
loss of each base model and also numbers of interaction cases and each case’s accuracy under each hyper-parameter
setting. Four values in an interaction case are the average numbers of the cases separately for base model 1
convinced, base model 2 convinced, base model 1 more confident, and base model 2 more confident. These are the

four cases from handling disagreements in Algorithm 1.

20 Newsgroups IMDB movie reviews
(A1, \2) (5e-3,0) (1e-3, 1e-3) (1e-3, 0) (2e-4, 2e-4)
Model 1 .55 (.53-.57) .58 (.56-.59) .81 (.80-.82) .82 (.81-.83)
Model 2 .54 (.52-.57) .57 (.55-.59) .81 (.80-.82) .82 (.81-.83)
Interaction | .58 (.56-.60) .60 (.59-.61) .83 (.82-.84) .84 (.83-.84)

Table 2: Average performance (accuracy) of maximum six experiments for base (Models 1 and 2) and interactive
models under each hyper-parameter setting for each dataset. The (min, max) performance of each model are also

reported to demonstrate variances.

reason can be that a relatively better rationale gen-
erated by the better model can not convince the
classifier of the poor performance model, where
the first rule that a good rationale is more likely to
produce consistent predictions is not followed. If
no rationale is causing consistent predictions, the
second rule about confidence level is applied but
a poor classifier can sometimes be overconfident,
which causes errors.

For a binary classification task, when two base
models with similar performance have a disagree-
ment, the expected accuracy of each base model is
around 50% and the probability of blindly choosing
a prediction turning out to be correct should also
be near 50% (i.e., random guessing). However, as
shown in Table 1, in IMDB movie reviews, the accu-
racy after interaction is 8-16% higher than random
guessing.

In addition, we observed that, when the con-
straints on rationales are less strict (i.e., allowing
more words and more contiguity loss), generally

the performance of base models increases but the
improvement after interaction deceases. The rea-
son may be that, with weaker rationale constraints,
strong indicators are easier to identify causing the
rationales generated by two base models to contain
more overlapped strong indicators, which increases
the accuracy of base models but decreases the num-
ber of cases for disagreement. It is also worth men-
tioning that the performance gain of the interactive
algorithm is not achieved by having a tendency of
choosing longer rationales as shown in Table 3.

4.4 Human Evaluation

For human or qualitative evaluation, we report
human judgements on the rationales from IMDB
movie reviews to demonstrate how informative the
rationales are for humans. For each of the four
disagreement cases in Algorithm 1, we randomly
collect 10 movie review instances where each in-
stance contains two rationales separately extracted
by two base models and one of the two rationales is



20 Newsgroups IMDB movie reviews
(A1, A2) (5e-3,0) (le-3, 1e-3) (1e-3,0) (2e-4, 2e-4)
selected r (9.19, 14.15)  (18.74,19.42) | (14.90,23.39) (27.22,36.21)
not selected r | (8.85,13.80)  (19.03, 19.50) | (15.12,23.71) (27.47,36.59)

Table 3: Lengths (numbers of words) and contiguity loss of rationales. We report the average (length, contiguity
loss) of rationales that are separately selected and not selected by the interactive algorithm for handling disagreement

cases under each hyper-parameter setting.

selected by the algorithm (i.e., 10 * 24 = 80 ratio-
nales in total). Three human annotators only have
access to the extracted rationales (i.e., the original
texts are not provided) to ensure the sufficiency of
the rationales.

Given two rationales of one instance, for each of
the two rationales, we ask each human annotator to
make a prediction (i.e., positive or negative) based
on the rationale and tell how confident the human
annotator is about this prediction on a scale from
0 to 3 (i.e., 0 represents random guessing and 3
represents very confident). The results are shown
in Table 4.

annotator # 1 2 3

acc selected .53 70 | .70
acc not selected | .48 70 | .65

CL selected 1.20 | 1.38 | 0.75
CL not selected | 1.20 | 1.40 | 0.5

Table 4: Human evaluation results. The averaged pre-
diction accuracy (acc) and confidence levels (CL) of
each human annotator over 40 rationales selected by our
algorithm (acc selected and CL selected) and 40 ratio-
nales not selected by the algorithm (acc not selected and
CL not selected).

The overall prediction accuracy and confidence
levels of human annotators are low which is rea-
sonable as the 80 rationales are extracted from the
cases where base models have disagreements and
may not be able to extract strong rationales (i.e.,
difficult cases). Generally, human annotators do
slightly better in terms of predictive performance
when fed with the rationales selected by the algo-
rithm but the difference of the results for selected
and not selected rationales is not significant. Be-
cause human annotators are provided with both
rationales for each instance, when asked to make
a classification based on one rationale, they might
also unconsciously use information from another
rationale even though they are asked not to, which
is a natural flaw of comparing two rationales from
one instance and can possibly cause close results

for two rationales. In future work, we plan to find
an alternative way of survey where humans can
better evaluate our algorithm’s effectiveness.

5 Conclusion

To handle the high variance of selective rationale
extraction models, we proposed the method we call
Interactive Rationale Extraction for Text Classi-
fication, which selects rationales and predictions
from base models based on simple rules through
imitating the interaction process between humans
for handling disagreements. The experimental re-
sults show that the interactive process is effective in
terms of improving performance, choosing a better
rationale, and reducing variance.
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