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Abstract

Detoxification is a task of generating text in po-
lite style while preserving meaning and fluency
of the original toxic text. Existing detoxifica-
tion methods are designed to work in one exact
language. This work investigates multilingual
and cross-lingual detoxification and the behav-
ior of large multilingual models like in this
setting. Unlike previous works we aim to make
large language models able to perform detoxifi-
cation without direct fine-tuning in given lan-
guage. Experiments show that multilingual
models are capable of performing multilingual
style transfer. However, models are not able to
perform cross-lingual detoxification and direct
fine-tuning on exact language is inevitable.

1 Introduction

The task of Textual Style Transfer (Textual Style
Transfer) can be viewed as a task where cer-
tain properties of text are being modified while
rest retain the same'. In this work we focus
on detoxification textual style transfer (dos San-
tos et al., 2018a; Dementieva et al., 2021a). It
can be formulated as follows: given two text
corpora DX = {z1,29,...2,} and DY =
{y1,y2,..,yn}, where X, Y - are two sets of all
possible text in styles s, s¥ respectively, we want
to build a model fy : X — Y, such that the prob-
ability p(ygen|T, s, s¥) of transferring the style
sX of given text x (by generation 4., ) to the style
s¥ is maximized (where sX and s¥ are toxic and
non-toxic styles respectively).

Some examples of detoxification presented in
Table 1.

Textual style transfer gained a lot of attention
with a rise of deep learning-based NLP methods.
Given that, Textual Style Transfer has now a lot of
specific subtasks ranging from formality style trans-
fer (Rao and Tetreault, 2018; Yao and Yu, 2021)

"Hereinafter the data-driven definition of style is used.

Therefore, we call style a characteristic of given dataset that
differs from a general dataset (Jin et al., 2020).

and simplification of domain-specific texts (De-
varaj et al., 2021; Maddela et al., 2021) to emotion
modification (Sharma et al., 2021) and detoxifica-
tion (debiasing) (Li et al., 2021; Dementieva et al.,
2021a).

There exist a variety of Textual Style Transfer
methods: from totally supervised methods (Wang
et al., 2019b; Zhang et al., 2020; Dementieva et al.,
2021a) which require a parallel text corpus for train-
ing to unsupervised (Shen et al., 2017; Wang et al.,
2019a; Xu et al., 2021) that are designed to work
without any parallel data. The latter sub-field of re-
search is more popular nowadays due to the scarcity
of parallel text data for Textual Style Transfer. On
the other hand, if we address Textual Style Trans-
fer task as a Machine Translation task we get a
significant performance boost (Prabhumoye et al.,
2018).

The task of detoxification, in which we focus
in this work, is relatively new. First work on
detoxification was a sequence-to-sequence collabo-
rative classifier, attention and the cycle consistency
loss (dos Santos et al., 2018b). A recent work by
(Laugier et al., 2021) introduces self-supervised
model based on T5 model (Raffel et al., 2020) with
a denoising and cyclic auto-encoder loss.

Both these methods are unsupervised which is an
advantage but it comes from the major current prob-
lem of the textual style transfer. There is a lack of
parallel data for Textual Style Transfer since there
exist only few parallel datasets for English (Rao
and Tetreault, 2018) and some other languages (Bri-
akou et al., 2021). When it comes to detoxification
there are only two parallel detoxification corpora
available now and they both appeared only last year
(Dementieva et al., 2021b). Most state-of-the-art
methods rely on large amounts of text data which is
often available for some well-researched languages
like English but lacking for other languages almost
entirely. Therefore, it is important to study whether
cross-lingual (or at least multilingual) detoxifica-
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Source text

Target text

What the f*ck is your problem?
This whole article is bullshit.

Yeah, this clowns gonna make alberta great again!

What is your problem?
This article is not good.
Yeah, this gonna make Alberta great again

Table 1: Examples of desired detoxification results.

tion is possible.

Multilingual language models such as mBART
(Liu et al., 2020), mT5 (Xue et al., 2021) have
recently become available. This work explores the
possibility of multilingual and cross-lingual textual
style transfer (Textual Style Transfer) using such
large multilingual language models. We test the
hypothesis that modern large text-to-text models
are able to generalize ability of style transfer across
languages.

Our contributions can be summarized as fol-
lows?:

1. We introduce a novel study of multilingual
textual style transfer and conduct experiments
with several multilingual language models and
evaluate their performance.

2. We conduct cross-lingual Textual Style Trans-
fer experiments to investigate whether multi-
lingual language models are able to perform
Textual Style Transfer without fine-tuning on
a specific language.

2 Methodology

We formulate the task of supervised Textual Style
Transfer as a sequence-to-sequence NMT task and
fine-tune multilingual language models to translate
from "toxic" to "polite” language.

2.1 Datasets

In this work we use two datasets for Russian and
English languages. Aggregated information about
datasets could be found in Table 2, examples from
datasets can be found in A.1 and A.2.

Language | Train Dev  Test
English 18777 988 671
Russian 5058 1000 1000

Table 2: Aggregated datasets statistics.

2All code is available online:
com/skoltech-nlp/multilingual_detox

https://github.

Russian data We use detoxification dataset?
which consists of 5058 training sentences, 1000
validation sentences and 1000 test sentences.

English data We use ParaDetox (Dementieva
et al., 2021b) dataset. It consists of 19766 roxic
sentences and their polite paraphrases. This data is
split into training and validation as 95% for training
and 5% for validation. For testing we use a set of
671 toxic sentences.

2.2 Experimental Setup

We perform a series of experiments on detoxifica-
tion using parallel data for English and Russian.
We train models in two different setups: multilin-
gual and cross-lingual.

Multilingual setup In this setup we train models
on data containing both English and Russian texts
and then compare their performance with baselines
trained on these languages solely.

Cross-lingual setup In cross-lingual setup we
test the hypothesis that models are able to perform
detoxification without explicit fine-tuning on exact
language. We fine-tune models on English and
Russian separately and then test their performance.

2.3 Models

Scaling language models to many languages has
become an emerging topic of interest recently (De-
vlin et al., 2019; Tan et al., 2019; Conneau and
Lample, 2019; Conneau et al., 2020). We adopt
several multilingual models to textual style transfer
in our work.

Baselines We use two detoxification methods as
baselines in this work - Delete method which sim-
ply deletes toxic words in the sentence according
to the vocabulary of toxic words and CondBERT.
The latter approach works in usual masked-LM
setup by masking toxic words and replacing them
with non-toxic ones. This approach was first pro-
posed by (Wu et al., 2019) as a data augmentation

Shttps://github.com/skoltech-nlp/
russe_detox_2022
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method and then adopted to detoxification by (Dale
etal., 2021).

mT5 mTS5 (Xue et al., 2021) is a multilingual
version of TS5 (Raffel et al., 2020) - a text-to-text
transformer model, which was trained on many
downstream tasks. mT5 replicates TS training but
now it is trained on more than 100 languages.

mBART mBART (Liu et al., 2020) is a multi-
lingual variation of BART (Lewis et al., 2020) -
denoising autoencoder built with a sequence-to-
sequence model. mBART is trained on mono-
lingual corpora across many languages. We
adopt mBART in sequence-to-sequence detoxifica-
tion task via fine-tuning on parallel detoxification
dataset.

2.4 Evaluation metrics

Unlike other NLP tasks, one metric is not enough
to benchmark the quality of style transfer. The
ideal Textual Style Transfer model output should
preserve the original content of the text, change the
style of the original text to target and the generated
text also should be grammatically correct. We
follow Dale et al. (2021) approach in Textual Style
Transfer evaluation.

2.4.1 Content Preservation

Russian Content preservation score (SIM) is
evaluated as a cosine similarity of LaBSE (Feng
et al., 2020) sentence embeddings. The model is
slightly different from the original one, only En-
glish and Russian embeddings are left.

English Similarity (SIM) between the embed-
ding of the original sentence and the generated one
is calculated using the model presented by Wiet-
ing et al. (2019). Being is trained on paraphrase
pairs extracted from ParaNMT corpus (Wieting and
Gimpel, 2018), this model’s training objective is
to select embeddings such that the similarity of
embeddings of paraphrases is higher than the simi-
larity between sentences that are not paraphrases.

2.4.2 Grammatic and language quality

(fluency)
Russian We measure fluency (FL) with a BERT-
based classifier (Devlin et al., 2019) trained to dis-
tinguish real texts from corrupted ones. The model
was trained on Russian texts and their corrupted
(random word replacement, word deletion and in-
sertion, word shuffling etc.) versions. Fluency is
calculated as a difference between the probabilities

of being corrupted for source and target sentences.
The logic behind using difference is that we ensure
that the generated sentence is not worse than the
original one in terms of fluency.

English We measure fluency (FL) as a percent-
age of fluent sentences evaluated by the RoOBERTa-
based* (Liu et al., 2019) classifier of linguistic ac-
ceptability trained on CoLA (Warstadt et al., 2019)
dataset.

2.4.3 Style transfer accuracy

Russian Style transfer accuracy (STA) is evalu-
ated with a BERT-based (Devlin et al., 2019) tox-
icity classifier’ fine-tuned from RuBERT Conver-
sational. This classifier was additionally trained
on Russian Language Toxic Comments dataset col-
lected from 2ch . hk and Toxic Russian Comments
dataset collected from ok . ru.

English Style transfer accuracy (STA) is calcu-
lated with a style classifier - RoOBERTa-based (Liu
et al., 2019) model trained on the union of three
Jigsaw datasets (Jigsaw, 2018). The sentence is
considered toxic when the classifier confidence is
above 0.8. The classifier reaches the AUC-ROC of
0.98 and F;-score of 0.76.

2.4.4 Joint metric

Aforementioned metrics must be properly com-
bined to get one Joint metric to evaluate Textual
Style Transfer. We follow Krishna et al. (2020) and
calculate J as an average of products of sentence-
level fluency, style transfer accuracy, and content
preservation:

J= ;;STA(%) -SIM(z;) - FL(z;) (1)

2.5 Training

There is a variety of versions of large multilingual
models available. In this work we use small and
base versions of mT5%7 (Xue et al., 2021) and large
version of mBART? (Liu et al., 2020).

*nttps://huggingface.co/roberta-large

‘https://huggingface.co/
SkolkovoInstitute/russian_toxicity_
classifier

®https://huggingface.co/google/
mt5-base

"https://huggingface.co/google/
mt5-large

$https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt
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STAT [ SIMT | FLT | JT STAT [ SIMT | FLT [ JT
Russian English
Baselines
Delete 0.532 | 0.875 | 0.834 | 0.364 | 0.810 | 0.930 | 0.640 | 0.460
condBERT (Dale et al., 2021) | 0.819 | 0.778 | 0.744 | 0.422 | 0.980 | 0.770 | 0.820 | 0.620
Multilingual Setup
mTb5 base 0.772 | 0.676 | 0.795 | 0.430 | 0.833 | 0.826 | 0.830 | 0.556
mT5 small 0.745 | 0.705 | 0.794 | 0.428 | 0.826 | 0.841 | 0.763 | 0.513
mT5 base™ 0.773 | 0.676 | 0.795 | 0.430 | 0.893 | 0.787 | 0.942 | 0.657
mBART 5000 0.685 | 0.778 | 0.841 | 0.449 | 0.887 | 0.889 | 0.866 | 0.640
Cross-lingual Setup
mTb5 base ENG 0.838 | 0.276 | 0.506 | 0.115 | 0.860 | 0.834 | 0.833 | 0.587
mT5 base RUS 0.676 | 0.794 | 0.846 | 0.454 | 0.906 | 0.365 | 0.696 | 0.171
mT5 small ENG 0.805 | 0.225 | 0430 | 0.077 | 0.844 | 0.858 | 0.826 | 0.591
mT5 small RUS 0.559 | 0.822 | 0.817 | 0.363 | 0.776 | 0.521 | 0.535 | 0.169
mBART 3000 ENG 0.923 | 0.395 | 0.552 | 0.202 | 0.842 | 0.856 | 0.876 | 0.617
mBART 3000 RUS 0.699 | 0.778 | 0.858 | 0.475 | 0.547 | 0.778 | 0.888 | 0.299
mBART 5000 ENG 0.900 | 0.299 | 0.591 | 0.160 | 0.857 | 0.840 | 0.873 | 0.616
mBART 5000 RUS 0.724 | 0.746 | 0.827 | 0.457 | 0.806 | 0.484 | 0.864 | 0.242
Backtranslation Setup
mBART 5000 (Google) 0.675 | 0.669 | 0.634 | 0.284 | 0.678 | 0.762 | 0.568 | 0.284
mBART 5000 (FSMT) 0.737 | 0.633 | 0.731 | 0.348 | 0.744 | 0.746 | 0.893 | 0.415

Table 3: Evaluation of TST models. Numbers in bold indicate the best results. 1 describes the higher the better
metric. Results of unsuccessful TST depicted as gray. ENG and RUS depicts the data model have been trained on.
mT5 base* was trained on all English and Russian data available (datasets were not equalized). Last row depicts
backtranslation workaround for cross-lingual detoxification. We include only the best result for brevity.

Multilingual training In multilingual training
setup we fine-tune models using both English and
Russian data. We use Adam (Kingma and Ba,
2015) optimizer for fine-tuning with different learn-
ing rates ranging from 1 - 1073 to 5 - 107° with
linear learning rate scheduling. We also test dif-
ferent number of warmup steps from 0 to 1000.
We equalize Russian and English data for train-
ing and use 10000 toxic sentences and their polite
paraphrases for multilingual training in total. We
train mT5 models for 40 thousand iterations® with
a batch size of 8. We fine-tune mBART (Liu et al.,
2020) for 1000, 3000, 5000 and 10000 iterations
with batch size of 8.

Cross-lingual training In cross-lingual training
setup we fine-tune models using only one dataset,
e.g.: we fine-tune model on English data and check
performance on both English and Russian data.
Fine-tuning procedure was left the same: 40000
iterations for mT5 models and 1000, 3000, 5000
and 10000 iterations for the mBART.
Back-translation approach to cross-lingual
style transfer proved to work substantially better
than the zero-shot setup discussed above. Neverthe-
less, both Google and FSMT did not yield scores

9According to (Xue et al., 2021) mT5 was not fine-tuned
on downstream tasks as the original TS model. Therefore,
model requires more fine-tuning iterations for Textual Style
Transfer.

comparable to monolingual setup. Besides, surpris-
ingly Google yielded worse results than FSMT.

3 Results & Discussion

Table 3 shows the best scores of both multilin-
gual and cross-lingual experiments. In multilingual
setup mBART performs better than baselines and
mT5 for both English and Russian. Note that the
table shows only the best results of the models. It
is also notable that for mT5 increased training size
for English data provides better metrics for English
while keeping metrics for Russian almost the same.
We also depict some of the generated detoxified
sentences in the Table 3 in the part B of Appendix.

As for cross-lingual style transfer, results are
negative. None of the models have coped with the
task of cross-lingual Textual Style Transfer. That
means that models produce the same or almost the
same sentences for the language on which they
were not fine-tuned so that toxicity is not elimi-
nated. We provide only some scores here in the
Table 6 for reference.

Despite the fact that our hypothesis about the
possibility of cross-language detoxification was not
confirmed, the presence of multilingual models pre-
trained in many languages gives every reason to
believe that even with a small amount of parallel
data, training models for detoxification is possible.

A recent work by (Lai et al., 2022) shows that



cross-lingual formality Textual Style Transfer is
possible. Lai et al. (2022) achieve this on XFOR-
MAL dataset (Briakou et al., 2021) by adding
language-specific adapters in the vanilla mBART
architecture (Liu et al., 2020) - two feed-forward
layers with residual connection and layer normal-
ization (Bapna and Firat, 2019; Houlsby et al.,
2019).

We follow the original training procedure de-
scribed by Lai et al. (2022) by training adapters
for English and Russian separately on 5 million
sentences from News Crawl dataset'. We use
batch size of 16 and 200 thousand training iter-
ations. We also then train cross-attentions on our
parallel detoxifcation data in the same way. How-
ever, models tend to duplicate input text without
any detoxification. Thus, while the exact same
original setup did not work for detoxification, more
parameter search and optimization could lead to
more acceptable results and we consider the ap-
proach by Lai et al. (2022) as a promising direction
of a future work on multilingual and cross-lingual
detoxification.

4 Conclusion

In this work we have tested the hypothesis that
multilingual language models are capable of per-
forming cross-lingual and multilingual detoxifica-
tion. In the multilingual setup we experimentally
show that reformulating detoxification (Textual
Style Transfer) as a NMT task boosts performance
of the models given enough parallel data for train-
ing. We beat simple (Delete method) and more
strong (condBERT) baselines in a number of met-
rics. Based on our experiments, we can assume that
it is possible to fine-tune multilingual models in
any of the 100 languages in which they were origi-
nally trained. This opens up great opportunities for
detoxification in unpopular languages.

However, our hypothesis that multilingual lan-
guage models are capable of cross-lingual detoxifi-
cation was proven to be false. We suggest that the
reason for this is not a lack of data, but the model’s
inability to capture the pattern between toxic and
non-toxic text and transfer it to another language by
itself. This means that the problem of cross-lingual
textual style transfer is still open and needs more
investigation.

Ohttps://data.statmt.org/news—crawl/
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A Data
A.1 English Dataset

Table 4 shows examples of sentence pairs from ParaDatex parallel detoxification corpora. There are
several polite paraphrases for each toxic sentence in this dataset (Dementieva et al., 2021b), this is a
consequence of the way these parallel data are collected. Leaving only one paraphrase for one source
sentence we could get 6000 unique pairs of toxic sentences and their polite paraphrases. However, in this
work we use data as is.

Original | my computer is broken and my phone too!! wtf is this devil sh*t???
Detoxed | My computer is broken and my phone too! So disappointed!

My computer is broken and my phone too, what is this?

Both my computer and phone are broken.

Original | sh*tis crazy around here

Detoxed | It is crazy around here.

Stuff is crazy around here.

Something is crazy around here.

Original | delete the page and shut up

Detoxed | Delete the page and stay silent.

Please delete the page.

Delete the page.

Original | massive and sustained public pressure is the only way to get these b*stards to act.
Detoxed | Massive and sustained public pressure is the only way to get them to act.
Massive and sustained pressure is the only way to get these people to act.
Original | f*ck you taking credit for some sh*t i wanted to do

Detoxed | You are taking credit for something I wanted to do

You’re taking credit fro something i wanted to do.

Original | you gotta admit that was f*ckin hilarious though!

Detoxed | you got to admit that was very hilarious though!

you gotta admit that was hilarious though!

Table 4: Example sentences from ParaDetox parallel detoxification corpora. Sentence in red is original (toxic)
sentence, below are its polite paraphrases. Note that for the purpose of an overall correctness explicit words are
masked with "*".



A.2 Russian Dataset

Table 5 shows examples from Russian parallel detoxification corpus.

Original X*pHIO BCAKYIO MUY T,M3-3a 3TOro Jaiika.v Jon6o**usm.
Translation | They write all sorts of bullshit, because of this like. Stupidity.
Detoxed Yyiib BCIKYIO TUIIYT, U3- 338 TOTO JaiKa.

Translation | They write all sorts of nonsense, because of this like.

Original A Haxpena TOrma THI 37€CH 9TO MMUCAT!

Translation | Why the f*ck did you post it here?

Detoxed 3adeM ThI 9TO TTUCAT?

Translation | Why did you post it?

Original E*anyroie. OTobparh opyzue u Jojaky u mrpad toicsd 500
Translation | F*ckers. Take away weapons, boat and give a fine of 500 thousand.
Detoxed Orobpars opyxkue u Jojky u mrpad Toicsa 500.

Translation | Take away weapons, boat and give a fine of 500 thousand.

Original He nosepuiiib, cKobKO €**HyThIX Ha ILIAHETE.

Translation | You won’t believe how many f*cked up people are on the planet.
Detoxed He moseputiib CKOIBKO TaKUX Ha ILIAHETE.

Translation | You won’t believe how many people like that are there on the planet.

Table 5: Example sentences from Russian parallel detoxification corpora. Sentence in red is original (toxic) sentence,
below are its polite paraphrases.

B Generation Examples

Table 6 contains detoxification examples for different models. It is notable that in some cases models
generate almost the same results. This can be explained by the similarity of the training procedure and the
fact that the reference answer was the same.

Original After all its hard to get a job if you’re stupid.

mBART 5000 ENG After all its hard to get a job if you don’t understand.
mBART 3000 ENG After all its hard to get a job if you are not smart.

mT5 base (multilingual) | It’s hard to get a job if you don’t know.

Original Fuck minimum security, put him in real prison.

mBART 5000 ENG Put him in a real prison with minimum security.

mBART 3000 ENG I don’t care about minimum security, put him in real prison.
mTS5 base I don’t care about minimum security, put him in real prison.
Original Sure he should get punished ,but three f*cking years?
mBART 5000 ENG Sure he should get punished, but three years?

mBART 3000 ENG He should get punished, but three years?

mT5 base He’d get punished, but three years?

Paraphrase Yo y srux Jioneil B bammke!? moxomay Hacparo!
Translation What’s going on in these people’s heads!? It looks like shit!
mBART 5000 ENG Yro y srux jrogeit B rosiose!? Tloxomay GecueroBevdHO.
mBART 3000 ENG Yro y atux srozeit B rosose? [loxoay HEHOpMATBLHO!
mT5 base [IOXOJLy 9THX Jitojeii!? moxomy!

Table 6: Some detoxified sentences produced by our fine-tuned models. Gray text refers to the original sentence,
below are its paraphrases.



