
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 797 - 807

May 22-27, 2022 c©2022 Association for Computational Linguistics

Understanding Game-Playing Agents with Natural Language Annotations

Nicholas Tomlin Andre He Dan Klein
Computer Science Division, University of California, Berkeley

{nicholas_tomlin, andre.he, klein}@berkeley.edu

Abstract

We present a new dataset containing 10K
human-annotated games of Go and show how
these natural language annotations can be used
as a tool for model interpretability. Given a
board state and its associated comment, our ap-
proach uses linear probing to predict mentions
of domain-specific terms (e.g., ko, atari) from
the intermediate state representations of game-
playing agents like AlphaGo Zero. We find
these game concepts are nontrivially encoded
in two distinct policy networks, one trained via
imitation learning and another trained via rein-
forcement learning. Furthermore, mentions of
domain-specific terms are most easily predicted
from the later layers of both models, suggesting
that these policy networks encode high-level
abstractions similar to those used in the natural
language annotations.

1 Introduction

Go is fundamentally a game of pattern recognition:
from ladders and walls to sente and shape, pro-
fessional players rely on a rich set of concepts to
communicate about structures on the game board.
Some patterns are relatively simple: walls are lines
of adjacent stones, and an atari is a threat to cap-
ture stones on the next move; other patterns are less
clearly defined: hane refers to any move that “goes
around” the opponent’s stones, and sente describes
a general state of influence or tempo. Despite the
nebulous definitions of some of these terms, human
players use them productively. Beginners learn
about eyes that determine when groups of stones
are alive or dead and are given guidelines for when
they should play a cut or extend a ladder; more ad-
vanced players learn sequences of joseki and tesuji
and are taught to distinguish good shape from bad
shape. Figures 1-2 depict some example concepts.

Computers have recently surpassed human per-
formance at Go (Silver et al., 2016), but relatively
little is known about why these programs perform

Figure 1: Example comment from our dataset, with
domain-specific keywords (shape, sente) highlighted.
Although this comment is from a 9 × 9 game for il-
lustrative purposes, our dataset primarily focuses on
annotations from 19 × 19 games.

so well and whether they rely on similar repre-
sentational units to choose the moves they play.
While post-hoc behavioral analyses suggest that
AlphaGo and its successor AlphaGo Zero (Silver
et al., 2017) can process complex game situations
involving shape, capturing races, sente, tesuji, and
even ladders, existing interpretability work has fo-
cused on the moves that agents play, rather than the
internal computations responsible for those moves.
Our work instead proposes a structural analysis
by correlating the internal representations of game-
playing agents with information from a naturally-
occurring dataset of move-by-move annotations.

In this paper, we use linear probing to explore
how domain-specific concepts are represented by

797



(a) Cut (b) Eyes (c) Ladder (d) Wall

Figure 2: Example Go patterns and associated terminology. (a) Cuts are moves that separate two groups of stones.
(b) Eyes are empty squares surrounded by stones of the same color. (c) Ladders are capturing races which may
span the entire board. (d) Walls are lines of adjacent stones of the same color. These terms appear frequently in our
dataset of natural language annotations and are further defined in the appendix.

game-playing agents. Because we do not have
ground-truth labels explaining which concepts are
relevant to a given game state, we collect a dataset
of 10K annotated Go games (§2.1). Given a board
state and its associated comment, we produce bi-
nary feature vectors summarizing which game phe-
nomena (e.g., ko, atari) are mentioned in the com-
ment and use pattern-based feature extractors to
determine which phenomena are actually present
on the board (§2.2). We then feed board states into
two policy networks with disparate architectures
and training methods (§3.1) to obtain intermedi-
ate representations. Finally, we use linear probes
(§3.2) to predict the binary feature vectors from our
policy networks. Generally, we find that pattern-
based features are encoded in the early layers of
policy networks, while natural language features
are most easily extracted from the later layers of
both models. We release our code and data at
https://github.com/andrehe02/go.

2 Dataset

2.1 Annotated Games

We collect 10K games with move-by-move English
annotations from the Go Teaching Ladder (GTL).1

The GTL was created by Jean-loup Gailly and Bill
Hosken in 1994 and maintained until 2016 and per-
mits non-commercial digital redistribution. Until
2016, members of the GTL could submit games
for review by volunteers, who ranged from amateur
to professional strength. Reviewers were given an-
notation guidelines and required to have a higher
rating than their assigned reviewees, resulting in
high quality natural language data. Of the collected
games, we focus on 9524 which were played on
classical 19× 19 boards; many games also include

1https://gtl.xmp.net

unplayed analysis variations which we do not use
in this work. These 9524 games contain 458,182
total comments, with a median length of 14 words.

2.2 Feature Extraction

We convert board states and comments into binary
feature vectors using two methods: (1) pattern-
based feature extraction, which checks for the
ground truth presence of features from the board
state, and (2) keyword-based feature extraction,
which converts comments into bag-of-words repre-
sentations based on domain-specific keywords.

Pattern-Based We define a set of rules to de-
termine which game phenomena are present in a
given board state, including: cuts, eyes, ladders,
and walls. For example, we decide that a wall is
present when four stones of the same color are
placed in a row adjacent to one another. Because
patterns like wall and cut are often imprecisely de-
fined, these definitions may not align perfectly with
player intuitions; we therefore provide additional
details for each phenomena in the appendix. We
do not attempt to write rule-based definitions of
vaguer concepts like sente and influence.

Keyword-Based We scrape an online vocabulary
of domain-specific terminology2 and find the 30
most common terms in our natural language an-
notations. We then convert each comment into a
30-dimensional binary feature vector representing
whether or not it contains these keywords; we addi-
tionally include features based on 60 control words,
chosen according to frequency statistics, which are
further subdivided into function and content words.
Our wordlist and details about our selection of con-
trol words can be found in the appendix.

2https://senseis.xmp.net/?GoTerms

798

https://github.com/andrehe02/go
https://gtl.xmp.net
https://senseis.xmp.net/?GoTerms


Figure 3: Results for the imitation learning and reinforcement learning agents are highly correlated. (Left) Scatterplot
of ROC AUC values for linear probes trained to predict the presence of domain-specific keywords in move-by-move
annotations. Keywords but not control words are predictable from the intermediate layers of both models. Words to
the left of the solid line (y = x) are better predicted from the reinforcement learning model. (Right) Kernel density
estimates showing where information is best represented in the policy networks (cf. §3.3). For both policy networks,
pattern-based features are encoded in early layers, while keyword-based features are most easily extracted from
later layers. Layer 0 denotes the input board representation for both models.

Having both pattern-based and keyword-based fea-
tures captures a trade-off between precision and
coverage. Writing rules for pattern-based features
is labor-intensive and essentially impossible for
many game concepts. Meanwhile, keyword-based
features are inherently noisy: comments often men-
tion phenomena which didn’t actually occur in the
game, and common structures like atari and eyes
are frequently left unmentioned because the anno-
tator and players already know they exist. Nonethe-
less, we find that probes are capable of predicting
the presence of domain-specific keywords with sig-
nificantly better-than-chance accuracy.

3 Methods

3.1 Policy Networks
We analyze two agents: (1) an imitation learning
agent using the architecture described in Clark and
Storkey (2015), and (2) a pre-trained ELF OpenGo
model (Tian et al., 2017, 2019), which is an open-
source, reinforcement learning agent similar to Al-
phaGo Zero (Silver et al., 2017). Our imitation
learning model was trained on 228,000 games and
achieved a rating of 1K (≈ 1900 ELO) on the On-
line Go Server (OGS),3 where it played against
a combination of humans and computers until its

3https://online-go.com

rating stabilized. ELF OpenGo reports a self-play
ELO over 5000, but this metric is inflated (Tian
et al., 2019). Although we refer to these agents
by their training procedure (i.e., imitation vs. rein-
forcement), there are several other differences be-
tween the models. One possible source of variance
between agents involves the format of the board
state representation. Following Clark and Storkey
(2015), our imitation learning model takes as input
a 19× 19× 7 binary matrix. Of the seven planes,
six represent the positions of stones, divided by
color and the number of liberties; the seventh plane
represents ko information. Meanwhile, the rein-
forcement learning model’s 19 × 19 × 17 input
contains a partial history of the game state.

3.2 Linear Probes

Given a board state and paired feature vector as
described in Section 2.2, we compute intermedi-
ate representations by feeding the board state into
frozen policy networks. To predict each feature of
interest, we run logistic regression independently
on each layer of each policy network, including the
raw board state. In other words, for each policy
network, we train F ×L×k classifiers, where F is
the number of features, L is the number of layers,
and k is the parameter for k-fold cross-validation,
as discussed in the following section.

799

https://online-go.com


Domain Word Imitation Reinforcement Rough Definition

Pincer 0.91 0.91 attack on a corner approach
Joseki 0.87 0.87 fixed local sequences of moves
Fuseki 0.85 0.84 opening
Ko 0.80 0.86 repetitive capture sequence
Wall 0.70 0.74 sequence of stones in a row
Atari 0.69 0.73 threat to capture
Eye 0.67 0.73 surrounded empty space
Cut 0.64 0.65 block two groups from connecting
Me 0.60 0.62 another word for eye
Down 0.60 0.60 toward the edge of the board
Point 0.59 0.61 specific locations on the board; or, the score
Force 0.58 0.58 requiring immediate response
Up 0.56 0.58 toward the center of the board

Table 1: ROC AUC values for a subset of domain words in both the imitation learning and reinforcement learning
models. Higher values correspond to more predictable words. Domain words with the highest values represent
relatively straightforward corner patterns (pincer), while keywords with the lowest values (force, up) are polysemous
with commonly used non-domain-specific meanings. See Table 2 in the appendix for additional ROC AUC values.

3.3 Metrics

We seek to answer two questions: (1) what infor-
mation is represented in the policy networks, and
(2) where is this information represented? To an-
swer the first question, we compute the area under
the receiver operating characteristic curve (ROC
AUC) for each linear probe. Specifically, for each
layer, we compute the average ROC AUC after 10-
fold cross-validation and then take the maximum
average value across layers. Features with high
ROC AUC are said to be represented by a model,
because they are linearly extractible from some in-
termediate layer of its policy network. To answer
the second question, we compute the layer at which
each feature has its highest ROC AUC value; we
then apply 10-fold cross-validation, summarize the
counts for each feature in a histogram, and compute
a kernel density estimate (KDE) for visualization.

4 Results

We find that domain-specific keywords are signif-
icantly more predictable than control words, with
p = 1.8 × 10−5 under the Wilcoxon signed-rank
test. As shown in Figure 3 (Left) and Table 1,
the keyword with the highest ROC AUC value
across both models is pincer, which denotes a rela-
tively straightforward corner pattern. Meanwhile,
low-valued domain words like me and up are pol-
ysemous with non-domain-specific meanings and
therefore difficult to predict. While content and

function control words have roughly similar distri-
butions, some content words are noticeably more
predictable; for example, opponents is the highest-
valued control word with ROC AUC values of
(0.85, 0.89) as seen in Figure 3 (Left). Such con-
trol words are likely predictable due to correlations
with certain domain-specific concepts.

ROC AUC values for the two models are strongly
correlated, with Pearson’s coefficient ρ = 0.97.
Figure 3 (Left) shows that for most keywords, the
reinforcement learning model slightly outperforms
the imitation learning model. Furthermore, key-
words are significantly more predictable from the
imitation learning model than from a randomly ini-
tialized baseline with identical architecture (p =
5.6 × 10−16). Some words like ko are noticeably
more predictable from the reinforcement learning
model, possibly due to differences in input board
state representations (cf. §3.1); further discussion
of this point can be found in the appendix.

Consistent with our knowledge that pattern-
based features can be obtained by applying simple
rules to the raw board state, we find that pattern-
based features are encoded in early layers of both
models, as shown in Figure 3 (Right). Mean-
while, keyword-based features are most easily ex-
tracted from later layers, suggesting that they cor-
relate with high-level abstractions in the policy net-
work. Generally, pattern-based features are much
more predictable than keyword-based features,
with average ROC AUC values of (0.96, 0.98) and

800



(0.68, 0.70), respectively. As discussed in Sec-
tion 2.2, this discrepancy can largely be attributed
to the noisiness inherent in natural language data.

5 Related Work

Jhamtani et al. (2018) propose a similarly-sized
dataset of move-by-move chess commentary.
Rather than using this commentary for model inter-
pretability, though, Jhamtani et al. (2018) attempt
to predict whole comments from raw board states.
Zang et al. (2019) use the same dataset to jointly
train a policy network and language generation
model with a shared neural encoder, but again fo-
cus on the pedagogical application of commentary
generation rather than interpretation of the policy
network. Similar work has focused on generat-
ing sportscasts in the Robocup domain (Chen and
Mooney, 2008; Liang et al., 2009; Mei et al., 2016).

Our primary methodology is linear probing (Et-
tinger et al., 2016; Manning et al., 2020), which has
commonly been used to study the intermediate rep-
resentations of language models like ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2019). One
classic result in this area shows that early layers
of contextual language models correlate best with
lexical-syntactic information such as part of speech,
while later layers correlate with semantic informa-
tion like proto-roles and coreference (Tenney et al.,
2019). Recent work on control tasks (Hewitt and
Liang, 2019), minimum description length (Voita
and Titov, 2020), and Pareto probing (Pimentel
et al., 2020) has focused on improving the method-
ological rigor of this paradigm. Although linear
probing is fundamentally a correlational method,
other recent work has focused on whether informa-
tion which is easily extractable from intermediate
layers of a deep network is causally used during in-
ference (Elazar et al., 2021; Lovering et al., 2021).

Most related to our work are contemporary stud-
ies by McGrath et al. (2021) and Forde et al. (2022),
which apply probing techniques to the games of
chess and Hex, respectively. McGrath et al. (2021)
use linear probes to predict a large number of
pattern-based features throughout the training of
an AlphaZero agent for chess. Meanwhile, Forde
et al. (2022) train linear probes for pattern-based
features on an AlphaZero agent for Hex and run be-
havioral tests to measure whether the agent “under-
stands” these concepts. Comparatively, our work
uses fewer features than McGrath et al. (2021) and
does not make causal claims about how represen-

tations are used during inference, as in Forde et al.
(2022); however, to the best of our knowledge, our
work is the first of its kind to use features derived
from natural language in conjunction with probing
techniques for policy interpretability.

6 Conclusion

We presented a new dataset of move-by-move an-
notations for the game of Go and showed how it
can be used to interpret game-playing agents via
linear probes. We observed large differences in
the predictability of pattern-based features, which
are extracted from the board state, and keyword-
based features, which are extracted from comments.
In particular, pattern-based features were easily ex-
tracted from lower layers of the policy networks we
studied, while keyword-based features were most
predictable from later layers. At a high level, this
finding reinforces the intuition that written annota-
tions describe high-level, abstract patterns that can-
not easily be described by a rule-based approach.
Accordingly, we argue there is much to learn from
this annotation data: future work might attempt to
correlate policy network representations with richer
representations of language, such as those provided
by a large language model. Future work might also
explore whether similar approaches could be used
to improve game-playing agents, either by expos-
ing their weaknesses or providing an auxiliary train-
ing signal. We also expect similar approaches may
be viable in other reinforcement learning domains
with existing natural language data.

Acknowledgements

We are grateful to Kevin Yang for his work on the
imitation learning model, and to Rodolfo Corona
and Ruiqi Zhong for their contributions to an early
version of this project. We thank Roma Patel, the
members of the Berkeley NLP Group, and our
anonymous reviewers for helpful suggestions and
feedback. This work was supported by the DARPA
XAI and LwLL programs and a National Science
Foundation Graduate Research Fellowship.

References
David L Chen and Raymond J Mooney. 2008. Learning

to sportscast: a test of grounded language acquisition.
In Proceedings of the 25th international conference
on Machine learning, pages 128–135.

Christopher Clark and Amos Storkey. 2015. Training
deep convolutional neural networks to play Go. In

801



International conference on machine learning, pages
1766–1774. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2021. Amnesic probing: Behavioral expla-
nation with amnesic counterfactuals. Transactions of
the Association for Computational Linguistics, 9:160–
175.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik.
2016. Probing for semantic evidence of composition
by means of simple classification tasks. In Proceed-
ings of the 1st workshop on evaluating vector-space
representations for nlp, pages 134–139.

Jessica Zosa Forde, Charles Lovering, George
Konidaris, Ellie Pavlick, and Michael L. Littman.
2022. Where, when which concepts does AlphaZero
learn? lessons from the game of Hex. In AAAI Work-
shop on Reinforcement Learning in Games.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743.

Harsh Jhamtani, Varun Gangal, Eduard Hovy, Graham
Neubig, and Taylor Berg-Kirkpatrick. 2018. Learn-
ing to generate move-by-move commentary for chess
games from large-scale social forum data. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1661–1671.

Percy Liang, Michael I Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 91–99.

Charles Lovering, Rohan Jha, Tal Linzen, and Ellie
Pavlick. 2021. Predicting inductive biases of pre-
trained models. In International Conference on
Learning Representations.

Christopher D Manning, Kevin Clark, John Hewitt, Ur-
vashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. Proceedings of the Na-
tional Academy of Sciences, 117(48):30046–30054.

Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev,
Adam Pearce, Demis Hassabis, Been Kim, Ulrich
Paquet, and Vladimir Kramnik. 2021. Acquisition

of chess knowledge in alphazero. arXiv preprint
arXiv:2111.09259.

Hongyuan Mei, TTI UChicago, Mohit Bansal, and
Matthew R Walter. 2016. What to talk about and
how? selective generation using lstms with coarse-
to-fine alignment. In Proceedings of NAACL-HLT,
pages 720–730.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237.

Tiago Pimentel, Naomi Saphra, Adina Williams, and
Ryan Cotterell. 2020. Pareto probing: Trading off
accuracy for complexity. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3138–3153. As-
sociation for Computational Linguistics.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of Go with deep neural networks and tree
search. Nature, 529(7587):484–489.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. 2017. Mastering the game of Go with-
out human knowledge. Nature, 550(7676):354–359.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601.

Yuandong Tian, Qucheng Gong, Wenling Shang, Yuxin
Wu, and C. Lawrence Zitnick. 2017. Elf: An ex-
tensive, lightweight and flexible research platform
for real-time strategy games. In Advances in Neural
Information Processing Systems, pages 2656–2666.

Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho
Sengupta, Zhuoyuan Chen, James Pinkerton, and
Larry Zitnick. 2019. ELF OpenGo: An analysis and
open reimplementation of alphazero. In International
Conference on Machine Learning, pages 6244–6253.
PMLR.

Elena Voita and Ivan Titov. 2020. Information-theoretic
probing with minimum description length. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 183–196.

Hongyu Zang, Zhiwei Yu, and Xiaojun Wan. 2019. Au-
tomated chess commentator powered by neural chess
engine. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
5952–5961.

802



A Dataset Statistics

The most common domain-specific terms appear
in more than 15K comments, as shown in Figure 4.

Figure 4: Histogram showing the number of comments
that contain each of the ten most common domain-
specific words.

B Pattern-Based Feature Extraction

As described in Section 2.2, we extract features
from the board state using a set of hand-crafted
rules. These rules may not align perfectly with
player intuitions, which can be hard to formulate
concisely, and so are presented here for full detail.

Cut We define cuts as moves that prevent the op-
ponent from connecting two disconnected groups
on their next move. To avoid labelling squares
where a play would be immediately capturable, we
also require that a cut have at least two liberties.
Note that this definition permits non-diagonal cuts.

Eye We define eyes as connected groups of empty
squares that are completely surrounded by stones
of the same color. We require there be no enemy
stones in the same surrounded region, so this defini-
tion fails to capture eyes that surround dead stones.

Ladder The term ladder describes the formation
shown in Figure 2c. Since human players can usu-
ally predict who wins a ladder, they rarely play out
the capturing race. For this reason, we do not look
for ladder formations, but instead label moves that
would start or continue a ladder. Specifically, we
label a square for the ladder feature if it is the singu-
lar liberty of a friendly group of stones and a play
at the square results in the group having exactly
two liberties. We do not count trivial ladders that
lie at the edge of the board.

Wall We define a wall as a connected row or
column with four or more stones of the same color.

C Keywords and Control Words

Keywords We choose the first thirty most fre-
quent terms (cf. Table 1) from our vocabulary of
domain-specific terminology as keywords: terri-
tory, point, cut, sente, up, me, moyo, shape, ko,
invasion, influence, wall, joseki, eye, alive, gote,
life, pincer, aji, thickness, base, atari, connected,
hane, tenuki, down, overplay, force, reading, fuseki.

Control Words Our control words consist of the
thirty most frequent words in our dataset, as well
as thirty words uniformly distributed according to
the same frequency as the keywords: the, is, to,
this, white, black, and, you, at, for, in, move, it,
of, but, not, be, have, play, that, on, good, here,
if, better, can, would, now, should, stones, looking,
wanted, opponents, wasnt, defending, save, youre,
answer, three, fine, feel, place, lose, bit, possibility,
attacking, likely, leaves, shouldnt, question, lost,
threat, almost, theres, continue, trying, hope, just,
exchange, before. We further subdivide the con-
trol words based on whether or not they appear
in the NLTK stopword list,4 which we use as a
rough proxy for distinguishing between function
and content words.

D Additional Results

We additionally report de-aggregated ROC AUC
values for each keyword across layers, as shown
in Figures 5-7. These figures show the raw data
used to compute the kernel density estimates in
Figure 3, which show that natural language fea-
tures are most easily extracted from later layers
of both models. We note in Figure 5 that ladders
are the most difficult pattern-based feature to pre-
dict, which is consistent with our knowledge that
many Go-playing agents fail to correctly handle
ladders without special feature engineering (Tian
et al., 2019). Anecdotally, our imitation learning
model often failed to play ladders correctly; this
is consistent with the finding that ladders are more
predictable from the reinforcement learning model.
Future work might investigate whether this prob-
ing framework could be used to effectively predict
model behavior in situations like these, as in Forde
et al. (2022) for the game of Hex.

4https://gist.github.com/sebleier/
554280

803

https://gist.github.com/sebleier/554280
https://gist.github.com/sebleier/554280


Figure 5: Plots of ROC AUC values for pattern-based features in the imitation learning model (top) and the
reinforcment learning model (bottom). Among the four pattern-based features we consider, ladders have by far the
lowest ROC AUC values. As noted in Tian et al. (2019), ladders are a known challenge for Go agents, requiring
special feature engineering in Silver et al. (2016). Therefore, perhaps it is unsurprising that ladders were the most
difficult pattern-based feature to predict.

E Major Differences Between Imitation
and Reinforcement Learning Models

While most keywords have similar ROC AUC val-
ues across models, ko, eye, atari, and overplay have
a noticeably higher ROC AUC values under the re-
inforcement learning model (cf. Table 1). However,
this discrepancy is not obviously attributable to the
difference in training procedures (i.e., imitation vs.
reinforcement). As described in Section 3.1, the
two models use different input state representations,
which differ in their encoding of ko and liberty in-
formation, which is used to determine whether eyes
and atari exist. Such architectural differences may
explain discrepancies across models, but do not
account for words like overplay; playing strength
is another possible (but not confirmed) source of
these discrepancies.

804



Figure 6: Plots of centered ROC AUC values for keywords in the imitation learning model. For most keywords,
linear probe performance peaks at mid-to-late layers of the imitation learning model.

805



Figure 7: Plots of centered ROC AUC values for keywords in the reinforcement learning (RL) model. While noisier
than the imitation learning model, probe performance still tends to peak at mid-to-late layers of the RL model and
declines at the final layers. Figure 3 aggregates these results alongside pattern-based feature classifiers.

806



Domain Word Imitation Reinforcement Rough Definition

Pincer 0.91 0.91 attack on a corner approach
Joseki 0.87 0.87 fixed local sequences of moves
Fuseki 0.85 0.84 opening
Ko 0.80 0.86 repetitive capture sequence
Base 0.76 0.77 starter eye space
Moyo 0.74 0.77 sphere of influence
Influence 0.72 0.74 long-range effect of stones
Reading 0.72 0.70 calculating an upcoming sequence
Wall 0.70 0.74 sequence of stones in a row
Thickness 0.70 0.74 strength of a group of stones
Invasion 0.70 0.72 attack on enemy territory
Atari 0.69 0.73 threat to capture
Eye 0.67 0.73 surrounded empty space
Gote 0.67 0.69 loss of initiative
Tenuki 0.66 0.68 non-local response
Hane 0.66 0.70 move that “reaches around” or bends
Overplay 0.64 0.70 overly aggressive move
Cut 0.64 0.65 block two groups from connecting
Alive 0.63 0.67 cannot be captured
Territory 0.63 0.66 controlled empty space
Aji 0.63 0.66 possibilities left in a position
Sente 0.63 0.66 initiative
Shape 0.62 0.64 quality of a group of stones
Life 0.62 0.63 inability to be captured
Connected 0.61 0.62 adjacent or nearby stones
Me 0.60 0.62 another word for eye
Down 0.60 0.60 toward the edge of the board
Point 0.59 0.61 specific locations on the board; or, the score
Force 0.58 0.58 requiring immediate response
Up 0.56 0.58 toward the center of the board

Table 2: ROC AUC values for all domain words in both the imitation learning and reinforcement learning models.
Domain words with the highest values represent relatively straightforward corner patterns (pincer), while keywords
with the lowest values (force, up) are polysemous with commonly used non-domain-specific meanings.

807


