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Abstract

We consider the task of document-level entity
linking (EL), where it is important to make
consistent decisions for entity mentions over
the full document jointly. We aim to leverage
explicit “connections” among mentions within
the document itself: we propose to join EL
and coreference resolution (coref) in a single
structured prediction task over directed trees
and use a globally normalized model to solve
it. This contrasts with related works where
two separate models are trained for each of
the tasks and additional logic is required to
merge the outputs. Experimental results on
two datasets show a boost of up to +5% F1-
score on both coref and EL tasks, compared to
their standalone counterparts. For a subset of
hard cases, with individual mentions lacking
the correct EL in their candidate entity list, we
obtain a +50% increase in accuracy.1

1 Introduction

In this paper we explore a principled approach
to solve entity linking (EL) jointly with corefer-
ence resolution (coref). Concretely, we formulate
coref+EL as a single structured task over directed
trees that conceives EL and coref as two comple-
mentary components: a coreferenced cluster can
only be linked to a single entity or NIL (i.e., a non-
linkable entity), and all mentions linking to the
same entity are coreferent. This contrasts with pre-
vious attempts to join coref+EL (Hajishirzi et al.,
2013; Dutta and Weikum, 2015; Angell et al., 2021)
where coref and EL models are trained separately
and additional logic is required to merge the pre-
dictions of both tasks.

Our first approach (Local in Fig. 1(a)) is moti-
vated by current state-of-the-art coreference resolu-
tion models (Joshi et al., 2019; Wu et al., 2020) that
predict a single antecedent for each span to resolve.

1Our code, models and AIDA+ dataset will be re-
leased on https://github.com/klimzaporojets/
consistent-EL

It is unclear whether NATO members will 
approve the mission which may fall outside 
the bounds of the Alliance’s mandate.

NATO Alliance Alliance,_Ohio

source
text

Local
model

Global
model

root

NATO entity correct
edge

NATO Alliance

NATO Alliance

mentionNATO

NATO Alliance Alliance,_Ohio

incorrect
edge

spanning
tree

(a)

(b)

candidate list for 
Alliance does not 
contain NATO 

edge to root 
allows to model  
NIL link

Figure 1: Illustration of our 2 explored graph models:
(a) Local where edges are only allowed from spans to
antecedents or candidate entities, and (b) Global where
the prediction involves a spanning tree over all nodes.

We extend this architecture by also considering en-
tity links as potential antecendents: in the example
of Fig. 1, the mention “Alliance” can be either con-
nected to its antecedent mention “NATO” or to any
of its candidate links (Alliance or Alliance,_Ohio).
While straightforward, this approach cannot solve
cases where the first coreferenced mention does not
include the correct entity in its candidate list (e.g.,
if the order of “NATO” and “Alliance” mentions
in Fig. 1 would be reversed). We therefor propose
a second approach, Global, which by construction
overcomes this inherent limitation by using bidirec-
tional connections between mentions. Because that
implies cycles could be formed, we resort to solv-
ing a maximum spanning tree problem. Mentions
that refer to the same entity form a cluster, repre-
sented as a subtree rooted by the single entity they
link to. To encode the overall document’s clusters
in a single spanning tree, we introduce a virtual
root node (see Fig. 1(b)).2

This paper contributes: (i) 2 architectures (Local
and Global) for joint entity linking (EL) and

2Coreference clusters without a linked entity, i.e., a NIL
cluster, have a link of a mention directly to the root.
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corefence resolution, (ii) an extended AIDA dataset
(Hoffart et al., 2011), adding new annotations of
linked and NIL coreference clusters, (iii) exper-
imental analysis on 2 datasets where our joint
coref+EL models achieve up to +5% F1-score on
both tasks compared to standalone models. We
also show up to +50% in accuracy for hard cases
of EL where entity mentions lack the correct entity
in their candidate list.

2 Architecture

Our model takes as input (i) the full document
text, and (ii) an alias table with entity candidates
for each of the possible spans. Our end-to-end ap-
proach allows to jointly predict the mentions, entity
links and coreference relations between them.

2.1 Span and Entity Representations

We use SpanBERT (base) from Joshi et al. (2020)
to obtain span representations gi for a particular
span si. Similarly to Luan et al. (2019); Xu and
Choi (2020), we apply an additional pruning step
to keep only the top-N spans based on the pruning
score Φp from a feed-forward neural net (FFNN):

Φp(si) = FFNNP (gi). (1)

For a candidate entity ej of span si we will ob-
tain representation as ej (which is further detailed
in §3).

2.2 Joint Approaches

We propose two methods for joint coreference and
EL. The first, Local, is motivated by end-to-end
span-based coreference resolution models (Lee
et al., 2017, 2018) that optimize the marginal-
ized probability of the correct antecedents for each
given span. We extend this local marginalization to
include the span’s candidate entity links. Formally,
the modeled probability of y (text span or candidate
entity) being the antecedent of span si is:

Pcl(y|si) =
exp

(
Φcl(si, y)

)∑
y′∈Y(si) exp

(
Φcl(si, y′)

) , (2)

where Y(si) is the set of antecedent spans unified
with the candidate entities for si. For antecedent
spans {sj : j < i} the score Φcl is defined as:

Φcl(si, sj) = Φp(si) + Φp(sj) + Φc(si, sj), (3)
Φc(si, sj) = FFNNC([gi; gj ; gi � gj ;ϕi,j ]), (4)

where ϕi,j is an embedding encoding the distance3

between spans si and sj . Similarly, for a particular
candidate entity ej , the score Φcl is:

Φcl(si, ej) = Φp(si) + Φ`(si, ej), (5)

Φ`(si, ej) = FFNNL([gi; ej ]). (6)

An example graph of mentions and entities with
edges for which aforementioned scores Φcl would
be calculated is sketched in Fig. 1(a). While simple,
this approach fails to correctly solve EL when the
correct entity is only present in the candidate lists
of mention spans occurring later in the text (since
earlier mentions have no access to it).

To solve EL in the general case, even when the
first mention does not have the correct entity, we
propose bidirectional connections between men-
tions, thus leading to a maximum spanning tree
problem in our Global approach. Here we define a
score for a (sub)tree t, noted as Φtr(t):

Φtr(t) =
∑

(i,j)∈t

Φcl(ui, uj), (7)

where ui and uj are two connected nodes (i.e., root,
candidate entities or spans) in t. For a ground truth
cluster c ∈ C (with C being the set of all such
clusters), with its set4 of correct subtree represen-
tations Tc, we model the cluster’s likelihood with
its subtree scores. We minimize the negative log-
likelihood L of all clusters:

L = − log

∏
c∈C

∑
t∈Tc exp

(
Φtr(t)

)∑
t∈Tall

exp
(
Φtr(t)

) . (8)

Naively enumerating all possible spanning trees
(Tall or Tc) implied by this equation is infeasi-
ble, since their number is exponentially large. We
use the adapted Kirchhoff’s Matrix Tree Theorem
(MTT; Koo et al. (2007); Tutte (1984)) to solve
this: the sum of the weights of the spanning trees
in a directed graph rooted in r is equal to the deter-
minant of the Laplacian matrix of the graph with
the row and column corresponding to r removed
(i.e., the minor of the Laplacian with respect to r).
This way, eq. (8) can be rewritten as

L = − log

∏
c∈C det

(
L̂c

(
Φcl

))
det
(
Lr

(
Φcl

)) , (9)

3Measured in number of spans, after pruning.
4For a single cluster annotation, indeed it is possible that

multiple correct trees can be drawn.
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where Φcl is the weighted adjacency matrix of the
graph, and Lr is the minor of the Laplacian with
respect to the root node r. An entry in the Laplacian
matrix is calculated as

Li,j =


∑
k

exp(Φcl(uk, uj)) if i = j

− exp(Φcl(ui, uj)) otherwise
, (10)

Similarly, L̂c is a modified Laplacian matrix where
the first row is replaced with the root r selection
scores Φcl(r, uj). For clarity, Appendix A presents
a toy example with detailed steps to calculate the
loss in eq. (9).

To calculate the scores of each of the entries
Φcl(ui, uj) to Φcl matrix in eqs. (7) and (9) for
Global, we use the same approach as in Local for
edges between two mention spans, or between a
mention and entity. For the directed edges between
the root r and a candidate entity ej we choose
Φcl(r, ej) = 0. Since we represent NIL clusters
by edges from the mention spans directly to the
root, we also need scores for them: we use eq. (3)
with Φp(r) = 0. We use Edmonds’ algorithm (Ed-
monds, 1967) for decoding the maximum spanning
tree.

3 Experimental Setup

We considered two datasets to evaluate our pro-
posed models: DWIE (Zaporojets et al., 2021) and
AIDA (Hoffart et al., 2011). Since AIDA essen-
tially does not contain coreference information, we
had to extend it by (i) adding missing mention
links in order to make annotations consistent on the
coreference cluster level, and (ii) annotating NIL
coreference clusters. We note this extended dataset
as AIDA+. See Table 1 for the details.

As input to our models, for DWIE we generate
spans of up to 5 tokens. For each mention span si,
we find candidates from a dictionary of entity sur-
face forms used for hyperlinks in Wikipedia. We
then keep the top-16 candidates based on the prior
for that surface form, as per Yamada et al. (2016,
§3). Each of those candidates ej is represented us-
ing a Wikipedia2Vec embedding ej (Yamada et al.,
2016).5 For AIDA+, we use the spans, entity can-
didates, and entity representations from Kolitsas
et al. (2018).6

To assess the performance of our joint coref+EL
models Local and Global, we also provide Stan-

5We use Wikipedia version 20200701.
6https://github.com/dalab/end2end_

neural_el

Dataset
# Linked # NIL Linked # NIL
clusters clusters mentions mentions

DWIE 11,967 9,935 28,482 14,891
AIDA 16,673 - 27,817 7,112
AIDA+ 16,775 4,284 28,813 6,116

Table 1: Datasets statistics.

dalone implementations for coref and EL tasks. The
Standalone coref model is trained using only the
coreference component of our joint architecture
(eq. (2)–(4)), while the EL model is based only on
the linking component (eq. (6)).

As performance metrics, for coreference reso-
lution we calculate the average-F1 score of com-
monly used MUC (Vilain et al., 1995), B3 (Bagga
and Baldwin, 1998) and CEAFe (Luo, 2005) met-
rics as implemented by Pradhan et al. (2014). For
EL, we use (i) mention-level F1 score (ELm), and
(ii) cluster-level hard F1 score (ELh) that counts
a true positive only if both the coreference cluster
(in terms of all its mention spans) and the entity
link are correctly predicted. These EL metrics are
executed in a strong matching setting that requires
predicted spans to exactly match the boundaries of
gold mentions. Furthermore, for EL we only report
the performance on non-NIL mentions, leaving the
study of NIL links for future work.

Our experiments will answer the following re-
search questions: (Q1) How does performance
of our joint coref+EL models compare to Stan-
dalone models? (Q2) Does jointly solving corefer-
ence resolution and EL enable more coherent EL
predictions? (Q3) How do our joint models per-
form on hard cases where some individual entity
mentions do not have the correct candidate?

4 Results

Table 2 shows the results of our compared models
for EL and coreference resolution tasks. Answer-
ing (Q1), we observe a general improvement in
performance of our coref+EL joint models (Local
and Global) compared to Standalone on the EL task.
Furthermore, this difference is bigger when using
our cluster-level hard metrics. This also answers
(Q2) by indicating that the joint models tend to pro-
duce more coherent cluster-based predictions. To
make this more explicit, Table 3 compares the accu-
racy for singleton clusters (i.e., clusters composed
by a single entity mention), denoted as S, to that of
clusters composed by multiple mentions, denoted
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DWIE AIDA+
a AIDA+

b

Setup ELm ELh Coref ELm ELh Coref ELm ELh Coref

Standalone 88.7±0.1 78.4±0.2 94.5±0.1 86.2±0.4 80.7±0.5 93.8±0.1 79.1±0.3 74.0±0.3 91.5±0.3

Local 90.5±0.4 83.4±0.4 94.4±0.2 87.5±0.2 83.1±0.2 94.7±0.1 79.9±0.4 75.8±0.3 92.3±0.1

Global 90.7±0.3 83.9±0.5 94.7±0.2 87.6±0.2 83.7±0.3 95.1±0.1 79.6±0.4 76.0±0.4 92.2±0.2

Table 2: Experimental results (F1 scores defined in §3) using the Standalone coreference and EL models compared
to our joint architectures (Local and Global), on DWIE and AIDA+ datasets.

DWIE AIDA+
a AIDA+

b

Setup S M S M S M

Standalone 80.4 69.5 82.9 70.7 77.0 57.0
Local 82.6 78.6 84.9 74.8 79.8 61.4
Global 82.6 80.0 85.1 76.8 79.3 63.0

Table 3: Cluster-based accuracy of link prediction on
singletons (S) and clusters of multiple mentions (M ).

Setup DWIE AIDA+
a AIDA+

b

Standalone 0.0 0.0 0.0
Local 41.7 27.4 26.9
Global 57.6 50.2 29.7

Table 4: EL accuracy for corner case mentions where
the correct entity is not in the mention’s candidate list.

as M . We observe that the difference in perfor-
mance between our joint models and Standalone is
bigger on M clusters (with a consistent superiority
of Global), indicating that our approach indeed pro-
duces more coherent predictions for mentions that
refer to the same concept. Further analysis reveals
that this difference in performance is even higher
for a more complex scenario where the clusters
contain mentions with different surface forms (not
shown in the table).

In order to tackle research question (Q3), we
study the accuracy of our models on the important
corner case that involves mentions without correct
entity in their candidate lists. This is illustrated in
Table 4, which focuses on such mentions in clus-
ters where at least one mention contains the correct
entity in its candidate list. As expected, the Stan-
dalone model cannot link such mentions, as it is
limited to the local candidate list. In contrast, both
our joint approaches can solve some of these cases
by using the correct candidates from other men-
tions in the cluster, with a superior performance of
our Global model compared to the Local one.

5 Related Work

Entity Linking: Related work in entity linking
(EL) tackles the document-level linking coherence
by exploring relations between entities (Kolitsas
et al., 2018; Yang et al., 2019; Le and Titov, 2019),
or entities and mentions (Le and Titov, 2018).
More recently, contextual BERT-driven (Devlin
et al., 2019) language models have been used for
the EL task (Broscheit, 2019; De Cao et al., 2020,
2021; Yamada et al., 2020) by jointly embedding
mentions and entities. In contrast, we explore a
cluster-based EL approach where the coherence is
achieved on coreferent entity mentions level.
Coreference Resolution: Span-based antecedent-
ranking coreference resolution (Lee et al., 2017,
2018) has seen a recent boost by using SpanBERT
representations (Xu and Choi, 2020; Joshi et al.,
2020; Wu et al., 2020). We extend this approach in
our Local joint coref+EL architecture. Furthermore,
we rely on Kirchhoff’s Matrix Tree Theorem (Koo
et al., 2007; Tutte, 1984) to efficiently train a more
expressive spanning tree-based Global method.
Joint EL+Coref: Fahrni and Strube (2012) intro-
duce a more expensive rule-based Integer Linear
Programming component to jointly predict coref
and EL. Durrett and Klein (2014) jointly train coref-
erence and entity linking without enforcing single-
entity per cluster consistency. More recently, An-
gell et al. (2021); Agarwal et al. (2021) use addi-
tional logic to achieve consistent cluster-level entity
linking. In contrast, our proposed approach con-
strains the space of the predicted spanning trees on
a structural level (see Fig. 1).

6 Conclusion

We propose two end-to-end models to solve entity
linking and coreference resolution tasks in a joint
setting. Our joint architectures achieve superior per-
formance compared to the standalone counterparts.
Further analysis reveals that this boost in perfor-
mance is driven by more coherent predictions on
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the level of mention clusters (linking to the same
entity) and extended candidate entity coverage.
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A Step by Step Example of MTT
Theorem

In this appendix we will provide a clarifying ar-
tificial example in order to walk the reader step
by step through MTT (eq. (9)–(10)) applied in our
Global approach. The graph of the example is il-
lustrated in Fig. 2 and is composed by nodes rep-
resenting root (r), entities e1 and e2, and spans s1,
s2 and s3. The span s2 is associated with candidate
entity set {e1, e2} (i.e., represented by edges from
s2 to e1 and e2), and s3 with {e2} (i.e., represented
by the edge from s3 to e2). The candidate entity
set of s1 is empty. The nodes are grouped in two
ground truth clusters: NIL cluster c1 = {s1, s2},
and linked cluster c2 = {e2, s2}.

The exponential of weighted adjacency matrix7

Φcl of the presented example is:

exp(Φcl) =



r e1 e2 s1 s2 s3

r 0 1 1 5 3 7
e1 0 0 0 0 1 0
e2 0 0 0 0 4 2
s1 0 0 0 0 5 9
s2 0 0 0 3 0 2
s3 0 0 0 8 4 0

, (11)

7For simplicity, the weights are small integers.
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where the weights of incorrect edges are repre-
sented in red (i.e., red dashed edges in Fig. 2), the
weights of the correct edges in green (i.e., green
edges in Fig. 2), and the weights between discon-
nected nodes are set to 0.

In order to compute the denominator of the loss
function in eq. (9), the Laplacian of the matrix
in eq. (11) is calculated as described in eq. (10),
and the row and column corresponding to root r
removed (i.e., the minor Lr with respect to the
root):

Lr =



e1 e2 s1 s2 s3

e1 1 0 0 −1 0
e2 0 1 0 −4 −2
s1 0 0 16 −5 −9
s2 0 0 −3 17 −2
s3 0 0 −8 −4 20

. (12)

Following Kirchhoff’s Matrix Tree Theorem (Koo
et al., 2007; Tutte, 1984), the determinant of Lr

equals to the sum of the weights of all possible
spanning trees of the graph represented in Fig. 2:

det(Lr) = 3600 =
∑
t∈Tall

exp
(
Φtr(t)

)
. (13)

In order to compute the numerator of the loss
function in eq. (9) (i.e., the sum of the weights of
the spanning trees of ground truth clusters), we first
mask out (set to zero) all the weights assigned to
incorrect edges:

exp(Φcl)
′ =



r e1 e2 s1 s2 s3

r 0 1 1 5 0 7
e1 0 0 0 0 0 0
e2 0 0 0 0 4 0
s1 0 0 0 0 0 9
s2 0 0 0 0 0 0
s3 0 0 0 8 0 0

 (14)

Next, the modified Laplacian (i.e., Laplacian with
the first row replaced by root r selection weights)
L̂ is calculated for both clusters c1 and c2:

L̂c1 =

[ s1 s3

r 5 7
s3 −8 9

]
(15)

L̂c2 =

[ e2 s2

r 1 0
s2 0 4

]
(16)

The determinants of L̂c1 and L̂c2 equal to the sum
of the weights of all spanning trees connecting the
nodes in clusters c1 and c2 respectively:

det(L̂c1) = 101 =
∑
t∈Tc1

exp
(
Φtr(t)

)
(17)

det(L̂c2) = 4 =
∑
t∈Tc2

exp
(
Φtr(t)

)
(18)

Finally, in order to calculate the final loss, we re-
place the obtained results in eqs. (13), (17), and
(18) in the loss function of eq. (9):

L = − log
101 ∗ 4

3600
. (19)

Note: strictly speaking, there are three clusters
rooted in root in the graph of Fig. 2, the third one
being c3 = {e1}, whose exponential weight is 1
by definition of Φcl(r, ej) = 0 (see §2.2), and has
no impact in calculation of the loss function in
eq. (19).
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