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Abstract
Modern writing assistance applications are
always equipped with a Grammatical Error
Correction (GEC) model to correct errors in
user-entered sentences. Different scenarios
have varying requirements for correction be-
havior, e.g., performing more precise correc-
tions (high precision) or providing more can-
didates for users (high recall). However, previ-
ous works adjust such trade-off only for se-
quence labeling approaches. In this paper,
we propose a simple yet effective counterpart
– Align-and-Predict Decoding (APD) for the
most popular sequence-to-sequence models to
offer more flexibility for the precision-recall
trade-off. During inference, APD aligns the
already generated sequence with input and
adjusts scores of the following tokens. Ex-
periments in both English and Chinese GEC
benchmarks show that our approach not only
adapts a single model to precision-oriented and
recall-oriented inference, but also maximizes
its potential to achieve state-of-the-art results.
Our code is available at https://github.
com/AutoTemp/Align-and-Predict.

1 Introduction

Modern writing assistance applications (e.g., Mi-
crosoft Office Word1, Google Docs2 and Gram-
marly3) always contain Grammatical Error Correc-
tion (GEC) modules (Ge et al., 2018; Omelianchuk
et al., 2020; Stahlberg and Kumar, 2021) to cor-
rect errors in user-entered sentences. Such appli-
cations usually require GEC models to perform
different correction tendencies and behaviors ac-
cording to practical scenarios and user preferences
(Chen et al., 2020). For instance, as shown in Ta-
ble 1, conservative GEC models provide precise
corrections with high confidence and avoid unnec-
essary edits for better user experience. In contrast,

1https://www.microsoft.com/en-us/
microsoft-365/word

2https://www.google.com/docs/about
3https://www.grammarly.com

Input I believe we have the experience
of suddenly forget how to write
a word we should know.

Conservative GEC I believe we have the experience
of suddenly [forgetting]0 how to
write a word we should know.

Aggressive GEC I believe [most of us]0 [had]1
the [experiences]2 of suddenly
[forgetting]3 how to write a
word [that]4 we should know.

Table 1: Examples of corrections generated by the con-
servative (precision-oriented) and aggressive (recall-
oriented) GEC models. The rewritten tokens are within
the blue blocks. Conservative GEC tends to adhere to
the input sentence, while aggressive GEC provides more
edited spans.

aggressive GEC models could provide more cor-
rection candidates to users or a following decision
system for further measurement.

Although recent studies witness the tremen-
dous success of sequence-to-sequence (seq2seq)
generation approaches in GEC, the trade-off of
these two tendencies still largely depends on the
pre-defined model architecture, training data and
labor-consuming post-processing (Liang et al.,
2020). Hotate et al. (2020) proposes a diverse
local beam search method to obtain diverse cor-
rections but is specifically designed for copy-
augmented GEC models and cannot perform
precision-oriented decoding. Instead of seq2seq
generation, Omelianchuk et al. (2020) proposes an
efficient sequence tagger for GEC by token-level
transformations to map input tokens to target cor-
rections. They introduce two confidence thresholds
for inference to force the model to perform more
precise corrections. Chen et al. (2020) first identi-
fies incorrect spans with a tagging model and then
sets a probability threshold to adjust the precision-
recall trade-off.

Inspired by these lightweight tweaking meth-
ods for sequence labeling approaches, we pro-
pose a simple yet effective counterpart – Align-
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Figure 1: The overview of align-and-predict decoding. Our approach aligns already generated sequences with input
tokens for all hypotheses and re-scores the next tokens (i.e., we and a highlighted in orange) at the aligned positions
(highlighted with the orange dashed lines). Specifically, since the suffixes of hypothesis are word, word and write,
which are unique in the input sentence, we select the corresponding following words – we, we and a. By decreasing
or increasing corresponding scores (rectangles highlighted in orange), our approach adapts the precision-recall
trade-off to aggressive or conservative inference. Dist denotes Distribution.

and-Predict Decoding (APD) for the seq2seq GEC
models. Our approach could not only adapt the
precision-recall trade-off of a single seq2seq GEC
model to various application scenarios, but also be
used as a simple trick to improve its overall F0.5

performance.
During inference, APD aligns the already gener-

ated sequence with the input tokens to specify the
position which the model has reached. By tweak-
ing the score of the next token, the model changes
its preference between copy and edit operation,
leading to a different degree of adherence to the
input sentence. The experimental results in both
English and Chinese GEC benchmarks show our
approach could effectively control the precision-
recall trade-off and achieve state-of-the-art results.
Our contributions are summarized as follows:

• We propose a novel and simple decoding ap-
proach, allowing us to adapt the precision-
recall trade-off of a seq2seq GEC model.

• Our methods achieve state-of-the-art results in
both English and Chinese GEC benchmarks.

2 Align-and-Predict Decoding

Beam search (Lowerre, 1976; Och and Ney, 2004;
Sutskever et al., 2014) is a widely used algorithm
for decoding sequences on all generation tasks,
such as translation (Vaswani et al., 2017; Ott et al.,

2018), dialogue (Kulikov et al., 2019), etc. Multi-
ple modifications to beam search that force the out-
puts to include pre-defined lexical constraints (i.e.,
words and phrases) have been proposed (Hokamp
and Liu, 2017; Hu et al., 2019).

Fortunately, the input and output sentences of
GEC overlap significantly and the input tokens are
natural constraints for correction generation. This
assumption is an objective characteristic of GEC
and has been made in many previous works (Zhao
et al., 2019; Malmi et al., 2019; Stahlberg and Ku-
mar, 2020; Sun et al., 2021). Thus, we propose a
novel decoding approach – Align-and-Predict De-
coding (APD), which leverage the characteristic of
GEC to adjust behavior and tendencies of inference.
The overview of APD is shown in Figure 1.

Given an input sentence x = (x1, . . . , xn), we
maintain K hypotheses at the time step t during
inference as beam search does:

Ht =
{
h1
≤t, ...,h

K
≤t

}
=

{
(y11, ..., y

1
t ), ..., (y

K
1 , ..., yKt )

} (1)

where hi
≤t, i ∈ [1,K] denotes the i-th hypothesis

with t already generated tokens.
Since the output of GEC is highly constrained

by the input sequence, we assume that hi
≤t should

be almost the same as part of the input sentence
x. Then, we match the suffix of each hypothesis
hi
≤t with the input x to identify the position which

the inference has reached. If there exists a unique
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substring xk−j , ..., xk(j ≥ 0) of the input x iden-
tical to the suffix yit−j , ..., y

i
t, the next token of the

hypothesis hi
≤t is very likely to be xk+1, which we

store in the set N i
t . 4 Formally,

N i
t =

{
{xk+1} ∃!k, xk−j...k = yit−j...t;

∅ otherwise.
(2)

As beam search does, we expand current hy-
potheses and construct possible candidates for the
next time step t + 1 with all tokens in the vocab-
ulary. The candidate ĥ

i
t,v of the i-th hypothesis is

obtained as follows:

ĥ
i
t,v = CAT(hi

≤t, v) = (yi1, ..., y
i
t, v) (3)

where we concatenate the already generated se-
quence hi

≤t with any token v in the vocabulary.
The corresponding score is calculated by:

SCORE(ĥ
i
t,v) = SCORE(hi

≤t)

+ wi
t,v · logP (v|yi1, ..., yit)

(4)

where P is the output distribution predicted by the
seq2seq GEC model and wi

t,v is a penalty factor
that depends on whether the token v is the next
token xk+1 at the aligned position. Specifically,

wi
t,v =

{
λ v ∈ N i

t

1.0 v ̸∈ N i
t

(5)

where λ is a hyperparameter to control the adher-
ence to the input sequence. If λ > 1.0, inference
penalizes the score of the original next token and
tends to perform modification; 5 if λ < 1.0, it is
likely to copy the token. The new hypotheses are
selected by:

Ht+1 = arg topK
i,v

(SCORE(ĥ
i
t,v)) (6)

3 Experiments

3.1 Experimental Setting
We conduct our experiments in the restricted train-
ing setting of BEA-2019 GEC shared task (Bryant
et al., 2019), with Lang-8 Corpus of Learner En-
glish (Mizumoto et al., 2011), NUCLE (Dahlmeier
et al., 2013), FCE (Yannakoudakis et al., 2011) and

4We use a lookup table (i.e., dictionary) to record the next
token of n-grams (e.g., n = 1) in the source sentence.

5It is notable that λ tweaks logP (v) which is negative
rather than P (v). When λ > 1.0, λ · logP (v) becomes
smaller which penalizes the score of v.

Model BEA-2019
P R F0.5

Omelianchuk et al. (2020) 79.2 53.9 72.4
Kaneko et al. (2020) 67.1 60.1 65.6
Wan et al. (2020) 66.9 60.6 65.5
Lichtarge et al. (2020) 67.6 62.5 66.5
Stahlberg and Kumar (2021) 72.1 64.4 70.4
gT5 xxl (Rothe et al., 2021) - - 69.8
T5 xl (Rothe et al., 2021)♣ - - 73.9
T5 xxl (Rothe et al., 2021)♣ - - 75.9
Yuan et al. (2021) 73.3 61.5 70.6
Sun et al. (2021) - - 72.9
Seq2Seq (w/o pretraining) 57.4 41.8 53.4

+ Precision-oriented(λ = 0.45) 63.6 32.9 53.6
+ Recall-oriented(λ = 1.95) 51.4 47.6 50.5
+ Balance(λ = 0.75) 59.8 39.0 54.0

Seq2Seq (w/ pretraining) 66.7 62.3 65.8
+ Precision-oriented(λ = 0.20) 78.5 43.0 67.4
+ Recall-oriented(λ = 1.85) 61.9 65.6 62.6
+ Balance(λ = 0.45) 72.6 55.4 68.3

12+2 BART (Sun et al., 2021) 76.1 65.6 73.8
+ Precision-oriented(λ = 0.25) 88.1 44.8 73.8
+ Recall-oriented(λ = 2.50) 67.7 72.0 68.5
+ Balance(λ = 0.75) 78.7 63.2 75.0

Table 2: Performance of our approach compared with
previous work in BEA-2019 test set. Note that we only
compare single models without ensemble. λ is selected
based on BEA-2019 development set. It is notable that
the models with ♣ are not comparable here because they
use a much larger model capacity (up to 11B parame-
ters), and their training data is different from ours: they
use cleaned LANG-8 Corpus.

W&I+LOCNESS (Granger; Bryant et al., 2019)
as training data. We use BEA-2019 development
set to choose the best model and select λ between
0.1 and 2.5 with 0.05 intervals based on F0.3, F0.5

and F1.0 for precision-oriented, balance and recall-
oriented models, respectively6. We evaluate the
performance on BEA-2019 test set by ERRANT
(Bryant et al., 2017).

To validate the effectiveness of our approach for
the state-of-the-art seq2seq GEC models, we follow
previous work (Grundkiewicz et al., 2019; Zhang
et al., 2019) to construct 300M error-corrected sen-
tence pairs in the same way for pretraining. We
use Transformer (big) model (Vaswani et al., 2017)
in the fairseq7 and a vocabulary with size of 32K
Byte Pair Encoding (Sennrich et al., 2016) tokens.
We also use one of the models trained by the prior
work (Sun et al., 2021) which utilizes a pretrained
model BART (Lewis et al., 2019) to initialize a
GEC model which has a 12-layer encoder and 2-

6Fβ = (1 + β2) · precision·recall
(β2·precision)+recall

, where recall is
considered β times as important as precision. Compared with
F0.5 which is the official metric for GEC, F0.3 and F1.0 pay
more attention to precision and recall, respectively.

7https://github.com/pytorch/fairseq
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Figure 2: The performance of the seq2seq model (w/
pretraining) over varying λ in BEA-2019 dev set.

Model NLPCC-2018
P R F0.5

Fu et al. (2018) 35.2 18.6 29.9
Zhou et al. (2018) 41.0 13.8 29.4
Ren et al. (2018) 47.2 12.6 30.6
Wang et al. (2020b) 41.9 22.0 35.5
Wang et al. (2020a) 39.4 22.8 34.4
Zhao and Wang (2020) 44.4 22.4 37.0
Our Implementation 41.5 25.7 36.9

+ Precision-oriented(λ = 0.25) 52.9 12.8 32.6
+ Recall-oriented(λ = 2.50) 34.2 34.6 34.3
+ Balance(λ = 0.75) 44.6 22.7 37.4

Table 3: Performance of our approach in the NLPCC-
2018 Chinese benchmark. Note that the models com-
pared here are not pretrained, except for Wang et al.
(2020a).

layer decoder, following Li et al. (2021).
In addition, we evaluate our approach on

NLPCC-18 Chinese GEC shared task (Zhao et al.,
2018) by official Max-Match scorer8 to prove our
approach is language-independent. We use a base
Transformer model and construct a character-level
vocabulary consisting of 7K tokens. We train the
model using MaskGEC (Zhao and Wang, 2020).

The models decode with a beam size of 5. We
show more details of training in the Appendix.

3.2 Experimental Result
As shown in Table 2, our approach can control
the precision-recall trade-off of inference for any
seq2seq GEC models by tweaking a single hyperpa-
rameter λ. After inference tweaks, pretrained GEC
models could achieve much better precision with
comparable or even better overall performance. For
instance, our approach increases the precision of
pretrained models by over 10 points. In contrast,
the recall improvement is smaller than precision,

8https://github.com/nusnlp/m2scorer

Input In my opinion, the car isn’t necessary when
you have crashed in the street, in that mo-
ment you realized the importance of a public
transport.

λ = 0.20 In my opinion, the car isn’t necessary when
you have crashed in the street[.]0 [At]1 that
moment you realized the importance of []2
public transport.

λ = 1.85 In my opinion, [a]0 car isn’t necessary when
you have crashed in the street[.]1 [At]2 that
moment [,]3 you [realize]4 the importance
of []5 public transport .

Input we can see that there are lots of serious
and frequently weather disaster happened
in decades, such as typhoon, hurricane, wild
fire and mud slide.

λ = 0.20 we can see that there are lots of serious
and frequently weather disaster happened
in decades, such as typhoon, hurricane, wild
fire and mud slide.

λ = 0.35 we can see that there are lots of serious
and frequently weather [disasters]0 [that]1
[have]2 happened in decades, such as ty-
phoon, hurricane, wild fire and mud slide.

λ = 1.85 [We]0 can see that [many]1 serious and [fre-
quent]2 weather [disasters]3 [have]4 hap-
pened in decades, such as [typhoons]5, [hur-
ricanes]6, [wildfires]7 and [mudslides]8.

Table 4: Examples of corrections generated by seq2seq
model (w/ pretraining) with different λ. The rewritten
tokens are within the blue blocks.

i.e., an increment of about 6 points for pretrained
models, since it depends mainly on error-corrected
patterns that the model itself has learned. The final
system has achieved competitive performance (73.8
F0.5) and align-and-predict decoding improves it
to a new state-of-the-art result – 75.0 F0.5 in the
BEA-2019 test set by a slight tendency towards
precision.

We further look into the performance of the pre-
trained seq2seq model over varying λ in BEA-2019
development set, which is shown in Figure 2. It is
obvious that the conservative inference (λ < 1.0)
with fewer edits tends to achieve higher precision
since it only provides the most confident correc-
tions, while recall of aggressive inference (λ > 1.0)
has an upper bound. This is because the motivation
of our approach is to simply display error-corrected
patterns that the model has learned with different
orientation rather than to improve its capability and
complement more patterns. Meanwhile, it is ob-
served that F0.5 does not peak around λ = 1.0,
which makes it possible to adapt the precision-
recall trade-off for better overall performance.

As shown in Table 3, our approach also performs
well in Chinese GEC, which demonstrates that it is
language-independent. We present concrete exam-
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ples with different λ in our validation set in Table 4.
It is consistent with our intuition that with larger λ,
the inference tends to heavily edit the input tokens;
on the other hand, it adheres to the input sequence
with smaller λ.

4 Conclusion

We propose a novel language-independent decod-
ing approach to offer more flexibility to adjust the
precision-recall trade-off of inference for seq2seq
GEC models, making it adaptive to various real-
world application scenarios. It can not only adapt
a single model to precision-oriented and recall-
oriented inference, but also be used as a simple
trick for better overall performance. On both En-
glish and Chinese GEC benchmarks, our approach
further improves the state-of-the-art seq2seq GEC
model by precision-recall trade-off. In the future,
we plan to apply it to other sentence rewriting tasks,
such as paraphrasing and style transfer.
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A Hyper-parameters

The hyper-parameters for Chinese GEC are listed
in Table 5. The hyper-parameters of training the
models for English GEC are listed in Table 6 and
Table 7.

Configurations Values
Train From Scratch

Model Architecture Transformer (base)
Training Strategy MaskGEC

(Zhao and Wang, 2020)
Devices 4 Nvidia V100 GPU
Max tokens per GPU 5120
Update Frequency [2, 4]
Optimizer Adam

(β1=0.9, β2=0.98, ϵ=1× 10−8)
(Kingma and Ba, 2014)

Learning rate [5× 10−4, 7× 10−4]
Learning rate scheduler inverse sqrt
Warmup 4000
weight decay 0.0
Loss Function label smoothed cross entropy

(label-smoothing=0.1)
(Szegedy et al., 2016)

Dropout 0.3

Table 5: Hyper-parameters values for Chinese GEC.

Configurations Values
Pretrain

Model Architecture Transformer (big)
Number of epochs 10
Devices 8 Nvidia V100 GPU
Max tokens per GPU 5120
Update Frequency 8
Learning rate 3× 10−4

Optimizer Adam
(β1=0.9, β2=0.98, ϵ=1× 10−8)

Learning rate scheduler inverse sqrt
Weight decay 0.0
Loss Function label smoothed cross entropy

(label-smoothing=0.1)
Warmup 8000
Dropout 0.3

Fine-tune
Number of epochs 60
Devices 4 Nvidia V100 GPU
Update Frequency 4
Learning rate 3× 10−4

Warmup 4000
Dropout 0.3

Table 6: Hyper-parameters values of pretraining and
fine-tuning for English GEC.

Configurations Values
Pretrain

Model Architecture BART 12+2 Init
Number of steps 400000 with early stopping
Devices 32 Nvidia V100 GPU
Max tokens per GPU 8000
Update Frequency 4
Learning rate 1× 10−4

Optimizer Adam
(β1=0.9, β2=0.999, ϵ=1× 10−8)

Learning rate scheduler polynomial decay
Weight decay 0.01
Loss Function label smoothed cross entropy

(label-smoothing=0.1)
Warmup 16000
Dropout 0.3

Fine-tune
Training Strategy Multi-stage fine-tuning

(Stahlberg and Kumar, 2020)
Devices 8 Nvidia V100 GPU
Learning rate 5× 10−5

Warmup 4000
Dropout 0.2

Table 7: Hyper-parameters values of the BART-
initialized model for English GEC.

Model Time (in second)
1 16 64

Seq2Seq (w/ pretraining) 218 37 20
+ λ = 0.20 225 41 23
+ λ = 1.85 229 42 23

Table 8: The total inference time of the seq2seq model
(w/ pretraining) under various batch sizes (1/16/64) us-
ing 1 NVIDIA TITAN RTX GPU with CUDA 11.1 in
the first 1000 sentences of the BEA-2019 dev set.

692



B Efficiency

Table 8 shows the total latency of the seq2seq
model (w/ pretraining) under various batch sizes.
Our approach incurs about 5% extra latency in the
online inference setting (i.e., batch size=1) and is
suitable for practical GEC systems.
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