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Abstract

Large multilingual pretrained language mod-
els such as mBERT and XLM-RoBERTa have
been found to be surprisingly effective for
cross-lingual transfer of syntactic parsing mod-
els (Wu and Dredze, 2019), but only between
related languages. However, source and train-
ing languages are rarely related, when pars-
ing truly low-resource languages. To close
this gap, we adopt a method from multi-task
learning, which relies on automated curricu-
lum learning, to dynamically optimize for pars-
ing performance on outlier languages. We
show that this approach is significantly better
than uniform and size-proportional sampling
in the zero-shot setting.

1 Introduction

The field of multilingual NLP is booming (Agirre,
2020). This is due in no small part to large multilin-
gual pretrained language models (PLMs) such as
mBERT (Devlin et al., 2019) and XLM-RoBERTa
(Conneau et al., 2020), which have been found to
have surprising cross-lingual transfer capabilities
in spite of receiving no cross-lingual supervision.1

Wu and Dredze (2019), for example, found mBERT
to perform well in a zero-shot setting when fine-
tuned for five different NLP tasks in different lan-
guages. There is, however, a sharp divide between
languages that benefit from this transfer and lan-
guages that do not, and there is ample evidence that
transfer works best between typologically similar
languages (Pires et al., 2019; Lauscher et al., 2020,

1In the early days, cross-lingual transfer for dependency
parsing relied on projection across word alignments (Spreyer
and Kuhn, 2009; Agić et al., 2016) or delexicalized trans-
fer of abstract syntactic features (Zeman and Resnik, 2008;
McDonald et al., 2011; Søgaard, 2011; Cohen et al., 2011).
Delexicalized transfer was later ’re-lexicalized’ by word clus-
ters (Täckström et al., 2012) and word embeddings (Duong
et al., 2015), but with the introduction of multilingual con-
textualized language models, transfer models no longer rely
on abstract syntactic features, removing an important bottle-
neck for transfer approaches to scale to truly low-resource
languages.

among others). This means that the majority of
world languages that are truly low-resource are still
left behind and inequalities in access to language
technology are increasing.

Large multilingual PLMs are typically fine-tuned
using training data from a sample of languages that
is supposed to be representative of the languages
that the models are later applied to. However, this
is difficult to achieve in practice, as multilingual
datasets are not well balanced for typological di-
versity and contain a skewed distribution of typo-
logical features (Ponti et al., 2021). This problem
can be mitigated by using methods that sample
from skewed distributions in a way that is robust to
outliers.

Zhang et al. (2020) recently developed such
a method. It uses curriculum learning with a
worst-case-aware loss for multi-task learning. They
trained their model on a subset of the GLUE bench-
mark (Wang et al., 2018) and tested on outlier tasks.
This led to improved zero-shot performance on
these outlier tasks. This method can be applied
to multilingual NLP where different languages are
considered different tasks. This is what we do in
this work, for the case of multilingual dependency
parsing. Multilingual dependency parsing is an
ideal test case for this method, as the Universal
Dependency treebanks (Nivre et al., 2020) are cur-
rently the manually annotated dataset that covers
the most typological diversity (Ponti et al., 2021).

Our research question can be formulated as such:
Can worst-case aware automated curriculum learn-
ing improve zero-shot cross-lingual dependency
parsing?2

2Our work is related to work in meta-learning for zero-shot
cross-lingual transfer, in particular Ponti et al. (2021), who use
worst-case-aware meta-learning to find good initializations for
target languages. Ponti et al. (2021) report zero-shot results for
cross-lingual part-of-speech tagging and question-answering,
with error reductions comparable to ours. Meta-learning also
has been used for zero-shot cross-lingual learning by others
(Nooralahzadeh et al., 2020; Xu et al., 2021), but using average
loss rather than worst-case-aware objectives.
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2 Worst-Case-Aware Curriculum
Learning

In multi-task learning, the total loss is generally the
average of losses of different tasks:

min
θ
`(θ) = min

θ

1

n

n∑
i=1

`i(θ) (1)

where li is the loss of task i. The architecture
we use in this paper is adapted from Zhang et al.
(2020), which is an automated curriculum learning
(Graves et al., 2017) framework to learn a worst-
case-aware loss in a multi-task learning scenario.
The architecture consists of a sampler, a buffer,
a trainer and a multilingual dependency parsing
model. The two main components are the sampler,
which adopts a curriculum sampling strategy to
dynamically sample data batches, and the trainer
which uses worst-case-aware strategy to train the
model. The framework repeats the following steps:
(1) the sampler samples data batches of different
languages to the buffer; (2) the trainer uses a worst-
case strategy to train the model; (3) the automated
curriculum learning strategy of the sampler is up-
dated.

Sampling data batches We view multilingual
dependency parsing as multi-task learning where
parsing in each individual language is considered
a task. This means that the target of the sampler
at each step is to choose a data batch from one
language. This is a typical multi-arm bandit prob-
lem (Even-Dar et al., 2002). The sampler should
choose bandits that have higher rewards, and in
our scenario, data batches that have a higher loss
on the model are more likely to be selected by the
sampler and therefore, in a later stage, used by the
trainer. Automated curriculum learning is adopted
to push a batch with its loss into the buffer at each
time step. The buffer consists of n first-in-first-out
queues, and each queue corresponds to a task (in
our case, a language). The procedure repeats k
times and, at each round, k data batches are pushed
into the buffer.

Worst-case-aware risk minimization In multi-
lingual and multi-task learning scenarios, in which
we jointly minimize our risk across n languages
or tasks, we are confronted with the question of
how to summarize n losses. In other words, the
question is how to compare two loss vectors α and
β containing losses for all tasks li, . . . ln:

α = [`11, . . . , `
1
n]

and
β = [`21, . . . , `

2
n]

The most obvious thing to do is to minimize the
mean of the n losses, asking whether

∑
`∈α ` <∑

`∈β `. We could also, motivated by robust-
ness (Søgaard, 2013) and fairness (Williamson
and Menon, 2019), minimize the maximum (supre-
mum) of the n losses, asking whether max`∈α ` <
max`∈β `. Mehta et al. (2012) observed that these
two loss summarizations are extremes that can be
generalized by a family of multi-task loss functions
that summarize the loss of n tasks as the Lp norm
of the n-dimensional loss vector. Minimizing the
average loss then corresponds to computing the L1

norm, i.e., asking whether |α|1 < |β|1, and mini-
mizing the worst-case loss corresponds to comput-
ing the L∞ (supremum) norm, i.e., asking whether
|α|∞ < |β|∞.

Zhang et al. (2020) present a stochastic general-
ization of the L∞ loss summarization and a prac-
tical approach to minimizing this family of losses
through automated curriculum learning (Graves
et al., 2017): The core idea behind their general-
ization is to optimize the worst-case loss with a
certain probability, otherwise optimize the average
(loss-proportional) loss with the remaining prob-
ability. The hyperparameter φ is introduced by
the worst-case-aware risk minimization to trade off
the balance between the worst-case and the loss-
proportional losses. The loss family is formally
defined as:

min `(θ) =

 min maxi(`i(θ)), p < φ

min `ĩ(θ), p ≥ φ, ĩ ∼ P`

(2)

where p ∈ [0, 1] is a random generated rational
number, and P` = `i∑

j≤n `j
is the normalized prob-

ability distribution of task losses. If p < φ the
model chooses the maximum loss among all tasks,
otherwise, it randomly chooses one loss according
to the loss distribution. If the hyperparameter φ
equals 1, the trainer updates the model with respect
to the worst-case loss. On the contrary, if φ = 0,
the trainer loss-proportionally samples one loss.

Sampling strategy updates The model updates
its parameters with respect to the loss chosen by the
trainer. After that, the sampler updates its policy
according to the behavior of the trainer. At each
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Language Treebank Genus Lang. family

Arabic PADT Semitic Afro-Asiatic
Basque BDT Basque Basque
Chinese GSD Chinese Sino-Tibetan
English EWT Germanic IE
Finnish TDT Finnic Uralic
Hebrew HTB Semitic Afro-Asiatic
Hindi HDTB Indic IE
Italian ISDT Romance IE
Japanese GSD Japanese Japanese
Korean GSD Korean Korean
Russian SynTagRus Slavic IE
Swedish Talbanken Germanic IE
Turkish IMST Turkic Altaic

Table 1: 13 training treebanks. IE=Indo-European.

round, the policy of the task that is selected by
the trainer receives positive rewards and the policy
of all other tasks that have been selected by the
sampler receive negative rewards.

The multilingual dependency parsing model
We use a standard biaffine graph-based dependency
parser (Dozat and Manning, 2017). The model
takes token representations of words from a con-
textualized language model (mBERT or XLM-R)
as input and classifies head and dependency rela-
tions between words in the sentence. The Chu-Liu-
Edmonds algorithm (Chu and Liu, 1965; Edmonds,
1967) is then used to decode the score matrix into
a tree. All languages share the same encoder and
decoder in order to learn features from different lan-
guages, and more importantly to perform zero-shot
transfer to unseen languages.

3 Experiments

We base our experimental design on Üstün et al.
(2020), a recent paper doing zero-shot dependency
parsing with good performance on a large number
of languages. They fine-tune mBERT for depen-
dency parsing using training data from a sample
of 13 typologically diverse languages from Univer-
sal Dependencies (UD; Nivre et al., 2020), listed
in Table 1. For testing, they use 30 test sets from
treebanks whose language has not been seen at fine-
tuning time. We use the same training and test sets
and experiment both with mBERT and XLM-R as
PLMs. It is important to note that not all of the test
languages have been seen by the PLMs.3

We test worst-case aware learning with differ-
ent values of φ and compare this to three main
baselines: size-proportional samples batches pro-

3Information about which treebank has been seen by which
PLM can be found in Appendix A.

portionally to the data sizes of the training tree-
banks, uniform samples from different treebanks
with equal probability, thereby effectively reducing
the size of the training data, and smooth-sampling
uses the smooth sampling method developed in
van der Goot et al. (2021) which samples from mul-
tiple languages using a multinomial distribution.
These baselines are competitive with the state-of-
the-art when using mBERT, they are within 0.2 to
0.4 LAS points from the baseline of Üstün et al.
(2020) on the same test sets. When using XLM-R,
they are largely above the state-of-the-art.

We implement all models using MaChAmp
(van der Goot et al., 2021), a library for multi-task
learning based on AllenNLP (Gardner et al., 2018).
The library uses transformers from HuggingFace
(Wolf et al., 2020). Our code is publicly available.4

Our main results are in Table 2 where we report
average scores across test sets, for space reasons.
Results broken down by test treebank can be found
in Table 4 in Appendix A. We can see that worst-
case-aware training outperforms all of our baselines
in the zero-shot setting, highlighting the effective-
ness of this method. This answers positively our
research question Can worst-case aware automated
curriculum learning improve zero-shot dependency
parsing?

Our results using mBERT are more than 1 LAS
point above the corresponding baselines. Our best
model is significantly better than the best baseline
with p < .01 according to a bootstrap test across
test treebanks. Our best model with mBERT comes
close to Udapter (36.5 LAS on the same test sets)
while being a lot simpler and not using external re-
sources such as typological features, which are not
always available for truly low-resource languages.

The results with XLM-R are much higher in
general5 but the trends are similar: all our models
outperform all of our baselines albeit with smaller
differences. There is only a 0.4 LAS difference
between our best model and the best baseline, but
it is still significant with p < .05 according to a
bootstrap test across test treebanks. This highlights
the robustness of the XLM-R model itself. Our
results with XLM-R outperform Udapter by close
to 7 LAS points.

4https://github.com/mdelhoneux/
machamp-worst_case_acl

5Note, however, that the results are not directly comparable
since different subsets of test languages have been seen by the
two PLMs.
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mBERT XLM-R
O

U
R

S
φ=0 36.4 42.1
φ=0.5 36.1 42.3
φ=1 36.1 42.3

B
A

S
E

L
IN

E
S size-proportional 35.0 41.9

smooth-sampling 35.2 41.7
uniform 35.2 41.4

Table 2: Zero-shot performance: Average LAS scores
on the test sets of the 30 unseen (zero-shot) languages
in the language split from Üstün et al. (2020).

4 Varying the homogeneity of training
samples

We investigate the interaction between the effec-
tiveness of worst-case learning and the represen-
tativeness of the sample of training languages. It
is notoriously difficult to construct a sample of
treebanks that is representative of the languages in
UD (de Lhoneux et al., 2017; Schluter and Agić,
2017; de Lhoneux, 2019). We can, however, easily
construct samples that are not representative, for
example, by taking a sample of related languages.
We expect worst-case aware learning to lead to
larger improvements in cases where some language
types are underrepresented in the sample. We can
construct an extreme case of underrepresentation
by selecting a sample of training languages that
has one or more clear outliers. For example we
can construct a sample of related languages, add
a single unrelated language in the mix, and then
evaluate on other unrelated languages. We also
expect that with a typologically diverse set of train-
ing languages, worst-case aware learning should
lead to larger relative improvements than with a
homogeneous sample, but perhaps slightly smaller
improvements than with a very skewed sample.

We test these hypotheses by constructing seven
samples of training languages in addition to the
one used so far (13LANG). We construct three dif-
ferent homogeneous samples using treebanks from
three different genera: GERMANIC, ROMANCE and
SLAVIC. We construct four skewed samples using
the sample of romance languages and a language
from a different language family, an outlier lan-
guage: Basque (eu), Arabic (ar), Turkish (tr) and
Chinese (zh). Since we keep the sample of test
sets constant, we do not include training data from
languages that are in the test sets. The details of
which treebanks are used for each of these samples

sample BASE OURS δ RER
13LANG 35.2 36.4 1.2 1.9
GERMANIC 30.7 31.4 0.7 1.0
SLAVIC 30.4 31.7 1.3 1.9
ROMANCE 31.3 32.5 1.2 1.7
ROM+EU 33.3 34.8 1.5 2.2
ROM+AR 32.0 32.2 0.2 0.3
ROM+TR 32.2 33.0 0.8 1.2
ROM+ZH 33.4 34.1 0.7 1.1

Table 3: LAS of best baseline (BASE) and best worst-
case training (OURS) when using mBERT as a PLM.
Absolute difference (δ) and relative error reduction
(RER) between OURS and BASE.

can be found in Table 5 in Appendix B.
Results are in Table 3 where we report the aver-

age LAS scores of our best model (out of the ones
trained with the three different φ values) to the best
of the three baselines. We can see first that, as ex-
pected, our typologically diverse sample performs
best overall. This indicates that it is a good sam-
ple. We can also see that, as expected, the method
works best with a skewed sample: the largest gains
from using worst-case learning, both in terms of ab-
solute LAS difference and relative error reduction,
are seen for a skewed sample (ROM+EU). However,
contrary to expectations, the lowest gains are ob-
tained for another skewed sample (ROM+AR). The
gains are also low for ROM+TR, ROM+ZH and for
GERMANIC. Additionally, there are slightly more
gains from using worst-case aware learning with
the SLAVIC sample than for our typologically di-
verse sample. These results could be due to the
different scripts of the languages involved both in
training and testing.

Looking at results of the different models on indi-
vidual test languages (see Figure 1 in Appendix C),
we find no clear pattern of the settings in which this
method works best. We do note that the method
always hurts Belarusian, which is perhaps unsur-
prising given that it is the test treebank for which
the baseline is highest. Worst-case aware learning
hurts Belarusian the least when using the SLAVIC

sample, indicating that, when using the other sam-
ples, the languages related to Belarusian are likely
downsampled in favour of languages unrelated to it.
Worst-case learning consistently helps Breton and
Swiss German, indicating that the method might
work best for languages that are underrepresented
within their language family but not necessarily
outside of it. For Swiss German, worst-case learn-
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ing helps least when using the GERMANIC sample
where it is less of an outlier.

5 Conclusion

In this work, we have adopted a method from multi-
task learning which relies on automated curriculum
learning to the case of multilingual dependency
parsing. This method allows to dynamically opti-
mize for parsing performance on outlier languages.
We found this method to improve dependency pars-
ing on a sample of 30 test languages in the zero-
shot setting, compared to sampling data uniformly
across treebanks from different languages, or pro-
portionally to the size of the treebanks. We investi-
gated the impact of varying the homogeneity of the
sample of training treebanks on the usefulness of
the method and found conflicting evidence with dif-
ferent samples. This leaves open questions about
the relationship between the languages used for
training and the ones used for testing.
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sampling Universal Dependencies. In Proceedings
of the NoDaLiDa 2017 Workshop on Universal De-
pendencies (UDW 2017), pages 117–122, Gothen-
burg, Sweden. Association for Computational Lin-
guistics.

Anders Søgaard. 2011. Data point selection for cross-
language adaptation of dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 682–686, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Anders Søgaard. 2013. Part-of-speech tagging with an-
tagonistic adversaries. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
640–644, Sofia, Bulgaria. Association for Computa-
tional Linguistics.

Kathrin Spreyer and Jonas Kuhn. 2009. Data-driven
dependency parsing of new languages using incom-
plete and noisy training data. In Proceedings of
the Thirteenth Conference on Computational Natu-
ral Language Learning (CoNLL-2009), pages 12–
20, Boulder, Colorado. Association for Computa-
tional Linguistics.

Oscar Täckström, Ryan McDonald, and Jakob Uszko-
reit. 2012. Cross-lingual word clusters for direct
transfer of linguistic structure. In Proceedings of the
2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 477–487, Mon-
tréal, Canada. Association for Computational Lin-
guistics.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and
Gertjan van Noord. 2020. UDapter: Language adap-
tation for truly Universal Dependency parsing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2302–2315, Online. Association for Computa-
tional Linguistics.

Rob van der Goot, Ahmet Üstün, Alan Ramponi,
Ibrahim Sharaf, and Barbara Plank. 2021. Mas-
sive choice, ample tasks (MaChAmp): A toolkit
for multi-task learning in NLP. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 176–197, Online. Associa-
tion for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Robert Williamson and Aditya Menon. 2019. Fair-
ness risk measures. In Proceedings of the 36th In-
ternational Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Re-
search, pages 6786–6797. PMLR.

583

http://arxiv.org/abs/1704.03003
http://arxiv.org/abs/1704.03003
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://aclanthology.org/D11-1006
https://aclanthology.org/D11-1006
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2020.lrec-1.497
https://doi.org/10.18653/v1/2020.emnlp-main.368
https://doi.org/10.18653/v1/2020.emnlp-main.368
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/2021.findings-acl.106
https://doi.org/10.18653/v1/2021.findings-acl.106
https://doi.org/10.18653/v1/2021.findings-acl.106
https://aclanthology.org/W17-0415
https://aclanthology.org/W17-0415
https://aclanthology.org/P11-2120
https://aclanthology.org/P11-2120
https://aclanthology.org/P13-2113
https://aclanthology.org/P13-2113
https://aclanthology.org/W09-1104
https://aclanthology.org/W09-1104
https://aclanthology.org/W09-1104
https://aclanthology.org/N12-1052
https://aclanthology.org/N12-1052
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://proceedings.mlr.press/v97/williamson19a.html
https://proceedings.mlr.press/v97/williamson19a.html


Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844, Hong Kong, China. Association for Com-
putational Linguistics.

Weijia Xu, Batool Haider, Jason Krone, and Saab Man-
sour. 2021. Soft layer selection with meta-learning
for zero-shot cross-lingual transfer. In Proceedings
of the 1st Workshop on Meta Learning and Its Ap-
plications to Natural Language Processing, pages
11–18, Online. Association for Computational Lin-
guistics.

Daniel Zeman and Philip Resnik. 2008. Cross-
language parser adaptation between related lan-
guages. In Proceedings of the IJCNLP-08 Workshop
on NLP for Less Privileged Languages.

Sheng Zhang, Xin Zhang, Weiming Zhang, and Anders
Søgaard. 2020. Worst-case-aware curriculum learn-
ing for zero and few shot transfer. arXiv preprint
arXiv:2009.11138.

A Results by treebank

Results by language of the test treebanks are in
Table 4.

B Training samples

The training samples are summarized in Table 5.

C Results by treebank with the different
samples

Relative error reduction between our best worst-
case aware result and the best baseline for each
training sample used, with mBERT, in Figure 1.
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mBERT XLM-R
iso φ=0 φ=0.5 φ=1 S-P S-S U φ=0 φ=0.5 φ=1 S-P S-S U

aii *# 8 11.3 10.8 1.6 6.4 6.0 2 3.3 3.1 2.9 3.5 3.1
akk *# 1.5 1.4 1.6 2.5 3.0 1.9 2.5 2.5 2.8 1.9 2.2 2.3
am * 16.5 10.9 13.2 6.6 10.8 10.6 68.0 68.6 68.3 68.4 68.8 68.1
be 78.5 79.4 79.6 82.0 80.9 80.5 85.6 85.5 85.6 86.4 86.8 86.8
bho *# 38.1 37.8 37.9 37.0 36.7 36.7 37.3 37.4 37.1 37.4 37.6 37.2
bm *# 9.0 8.7 8.7 6.9 6.7 6.9 6.0 6.4 6.2 6.5 6.3 6.4
br 62.9 62.6 62.0 60.3 60.3 59.6 59.5 59.6 60.5 59.9 59.5 58.9
bxr *# 25.9 26.0 25.6 24.6 25.5 25.4 27.7 28.2 28.0 27.2 27.2 26.2
cy 55.5 55.0 55.2 55.1 54.4 54.2 59.8 60.1 59.9 60.2 60.6 59.6
fo *# 67.4 67.8 68.0 66.3 67.2 66.4 73.5 72.8 73.5 72.6 72.4 73.0
gsw *# 48.3 48.8 48.2 44.9 42.2 42.3 46.0 46.5 46.5 43.6 42.2 44.3
gun *# 8.2 8.5 8.7 7.3 8.0 8.3 6.8 6.8 7.6 6.5 5.8 5.6
hsb *# 50.8 51.3 51.4 49.4 49.2 49.1 62.6 61.9 62.0 61.4 61.6 60.0
kk 60.1 58.9 58.4 58.5 59.0 58.2 63.0 62.7 62.5 63.7 62.3 61.5
kmr * 9.3 9.2 8.9 8.6 9.6 9.5 53.5 53.1 53.2 51.8 51.7 52.0
koi *# 19.3 18.8 19.8 15.8 15.8 16.0 17.0 20.1 19.1 17.8 17.8 16.0
kpv *# 16.8 17.0 17.2 15.6 16.2 15.8 18.3 19.1 19.5 17.0 17.8 16.3
krl *# 46.6 46.4 46.3 46.5 47.1 46.4 61.0 61.2 60.7 62.0 62.1 61.8
mdf *# 26.1 24.3 24.3 22.5 24.5 25.4 20.4 20.7 19.6 18.4 18.4 16.8
mr 60.6 61.2 60.1 56.9 57.7 57.7 69.2 69.7 70.0 67.8 70.0 69.7
myv *# 20.2 19.9 19.8 18.5 19.3 19.9 16.8 17.2 16.9 16.0 16.3 15.5
olo *# 40.7 41.7 41.0 41.0 40.9 40.5 56.5 56.7 56.1 55.8 54.3 54.4
pcm *# 33.9 32.8 33.0 32.5 34.3 35.4 39.2 39.2 38.9 38.0 37.6 37.8
sa * 22.5 21.9 22.3 21.1 21.0 20.6 50.2 49.7 50.9 50.9 50.1 50.0
ta 52.3 54.7 54.3 53.2 52.0 51.6 54.9 55.0 54.8 53.8 53.8 54.0
te 69.9 69.8 70.0 69.4 70.6 68.7 76.0 76.0 76.7 76.3 77.1 76.3
tl # 65.4 57.5 56.5 65.8 59.3 65.4 77.1 75.7 75.7 78.1 76.7 76.4
wbp *# 5.9 8.8 9.2 7.5 7.5 7.2 7.8 9.5 7.5 8.5 5.2 8.8
yo # 37.8 37.9 38.5 39.7 38.0 37.5 3.3 3.6 3.2 2.3 2.7 1.8
yue *# 33.0 32.5 32.5 32.4 32.4 32.4 41.9 41.7 42.0 42.9 42.4 42.8
average 36.4 36.1 36.1 35.0 35.2 35.2 42.1 42.3 42.3 41.9 41.7 41.4

Table 4: Zero-shot performance: LAS scores on the test sets of the 30 unseen (zero-shot) languages in the
language split from Üstün et al. (2020) using mBERT and XLM-R. S-P=size-proportional, S-S = smooth-sampling,
U=uniform. Bold indicates the best performance across models using the same PLM. * means not in mBERT and
# means not in XLM-R.
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Afrikaans-AfriBooms X
Danish-DDT X
Dutch-Alpino X
English-EWT X X
German-HDT X
Gothic-PROIEL X
Icelandic-IcePaHC X
Norwegian-Bokmaal X
Swedish-Talbanken X X
Czech-PDT X
Old_Church_Slavonic-PROIEL X
Old_Russian-TOROT X
Polish-LFG X
Russian-SynTagRus X X
Serbian-SET X
Slovak-SNK X
Ukrainian-IU X
French-GSD X X X X X
Italian-ISDT X X X X X X
Portuguese-GSD X X X X X
Romanian-RRT X X X X X
Spanish-AnCora X X X X X
Basque-BDT X X
Arabic-PADT X X
Chinese-GSD X X
Turkish-IMST X X
Finnish-TDT X
Hebrew-HTB X
Hindi-HDTB X
Japanese-GSD X
Korean-GSD X

Table 5: Treebanks included in the different samples
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Figure 1: Relative error reduction (RER) in LAS points between our best worst-case aware result and the best
baseline for each training sample used on test sets in the 30 languages.
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