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Abstract

Natural Language Understanding (NLU) mod-
els can be trained on sensitive information such
as phone numbers, zip-codes etc. Recent liter-
ature has focused on Model Inversion Attacks
(ModIvA) that can extract training data from
model parameters. In this work, we present
a version of such an attack by extracting ca-
naries inserted in NLU training data. In the
attack, an adversary with open-box access to
the model reconstructs the canaries contained
in the model’s training set. We evaluate our
approach by performing text completion on ca-
naries and demonstrate that by using the prefix
(non-sensitive) tokens of the canary, we can
generate the full canary. As an example, our
attack is able to reconstruct a four digit code in
the training dataset of the NLU model with a
probability of 0.5 in its best configuration. As
countermeasures, we identify several defense
mechanisms that, when combined, effectively
eliminate the risk of ModIvA in our experi-
ments.

1 Introduction

Natural Language Understanding (NLU) mod-
els are used for different tasks such as question-
answering (Hirschman and Gaizauskas, 2001), ma-
chine translation (Macherey et al., 2001) and text
summarization (Tas and Kiyani, 2007). These mod-
els are often trained on crowd-sourced data that
may contain sensitive information such as phone
numbers, contact names and street addresses. Nasr
et al. (2019), Shokri et al. (2017) and Carlini et al.
(2018) have presented various attacks to demon-
strate that neural-networks can leak private infor-
mation. We focus on one such class of attacks,
called Model Inversion Attack (ModIvA) (Fredrik-
son et al., 2015), where an adversary aims to recon-
struct a subset of the data on which the machine-
learning model under attack is trained on. We
also demonstrate that established ML practices (e.g.
dropout) offer strong defense against ModIvA.

In this work, we start with inserting potentially
sensitive target utterances called ‘canaries’1 along
with their corresponding output labels into the train-
ing data. We use this augmented dataset to train an
NLU model fθ. We perform a open-box attack on
this model, i.e., we assume that the adversary has
access to all the parameters of the model, including
the word vocabulary and the corresponding em-
bedding vectors. The attack takes the form of text
completion, where the adversary provides the start
of a canary sentence (e.g., ‘my pin code is’) and
tries to reconstruct the remaining, private tokens
of an inserted canary (e.g., a sequence of 4 digit
tokens). A successful attack on fθ reconstructs all
the tokens of an inserted canary. We refer to such a
ModIvA as ‘Canary Extraction Attack’ (CEA). In
such an attack, this token reconstruction is cast as
an optimization problem where we minimize the
loss function of the model fθ with respect to its
inputs (the canary utterance), keeping the model
parameters fixed.

Previous ModIvAs were conducted on computer
vision tasks where there exists a continuous map-
ping between input images and their corresponding
embeddings. However, in the case of NLU, the dis-
crete mapping of tokens to embeddings makes the
token reconstruction from continuous increments
in the embedding space challenging. We thus for-
mulate a discrete optimization attack, in which the
unknown tokens are eventually represented by a
one-hot like vector of the vocabulary length. The
token in the vocabulary with the highest softmax
activation is expected to be the unknown token of
the canary. We demonstrate that in our attack’s best
configuration, for canaries of type “my pin code
is k1k2k3k4", ki ∈ {0, 1, . . . , 9}, 1 ≤ i ≤ 4, we
are able to extract the numeric pin k1k2k3k4 with
an accuracy of 0.5 (a lower bound on this accu-
racy using a naive random guessing strategy for a
combination of four digits equals 1× 10−4).

1Following the terminology in Carlini et al. (2018)
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Since we present a new application of ModIvA
to NLU models, defenses against them are an im-
portant ethical consideration to prevent harm and
are explored in Section 6. We observe that stan-
dard training practices commonly used to regular-
ize NLU models successfully thwart this attack.

2 Related Work

Significant research has been conducted in the field
of privacy-preserving machine learning. Shokri
et al. (2017) determine whether a particular data-
point belongs to the training set Xtr. The success
of such attacks has prompted research in investi-
gating them (Truex et al., 2019; Hayes et al., 2017;
Song and Shmatikov, 2019). Carlini et al. (2018)
propose the quantification of unintended memoriza-
tion in deep networks and presents an extraction
algorithm for data that is memorized by genera-
tive models. Memorization is further exploited in
Carlini et al. (2020) where instances in the training
data of very large language-models are extracted by
sampling the model. The attacks described above
are closed-box in nature where the adversary does
not cast the attack as an optimization problem but
instead queries the model multiple times.

Open-box ModIvA were initially demonstrated
on a linear-regression model (Fredrikson et al.,
2014) for inferring medical information. It has
been extended to computer vision tasks such as fa-
cial recognition (Fredrikson et al., 2015) or image
classification (Basu et al., 2019). Our work is a
first attempt at performing ModIvAs on NLP tasks.

3 Attack Setup

We consider an NLU model fθ that takes an ut-
terance x as input and uses the word-embeddings
E(x) for the tokens in x to perform a joint in-
tent classification (IC) and named-entity recogni-
tion (NER) task. We assume an adversary with
open-box access to fθ, which means that they are
aware of the model architecture, trained parame-
ters θ, loss function L(fθ(E(x)), y), label set Y
of intents and entities supported by the model and
vocabulary V which is obtained from the word-
embeddings matrix W ∈ IR|V |×d. However, the
adversary does not have access to the training data
Xtr used to train fθ. The adversary’s goal is to
reconstruct a (private) subset x̂ ⊆ Xtr.

To perform a CEA on fθ, we keep the parame-
ters θ fixed and minimize the loss function L with
respect to the unknown inputs (i.e., tokens) of a

given utterance. This is analogous to a traditional
learning problem, except with fixed model param-
eters and a learnable input space. In this work,
we use the NLU model architecture described in
Section 4.1.

3.1 Canary Extraction Attacks

We consider a canary sentence xc = (xp, xu),
xc ∈ Xtr with tokens (p1, .., pm, u1.., un) and
output label yc ∈ Y . The first m tokens in xc

represent a known prefix xp (e.g.“my pin code
is”) and the next n tokens (u1, .., un) represent the
unknown tokens that an attacker is interested in
reconstructing xu (e.g.“one two three four”).
We represent the set of word embeddings of this
canary E(xc) as (ep1, .., epm, e

′
u1

, .., e
′
un

).
A trivial attack to identify the n unknown tokens

in xu is by directly optimizing L(fθ(E(xc)), yc)
over (e

′
u1

, .., e
′
un

), where (e
′
u1

, .., e
′
un

) are ran-
domly initialized. Words corresponding to the op-
timized values of (e

′
u1

, .., e
′
un

) are then assigned
by identifying the closest vectors in the embedding
matrix W using a distance metric (e.g. Euclidean
distance). However, our experiments demonstrate
that this strategy is not successful since the updates
are performed in a non-discrete fashion, whereas
the model fθ has a discrete input space. We thus fo-
cus on performing a discrete optimization, inspired
by works on relaxing categorical variables to facili-
tate efficient gradient flow (Jang et al., 2016; Song
and Raghunathan, 2020), as illustrated in Figure 1.

We define a logit vector zi ∈ IR|V | for each
token ui ∈ xu. We then apply a softmax activation
with temperature T to obtain ai ∈ IR|V |:

ai,v =
e

zi,v
T∑|V |

j=1 e
zj,v
T

for v =1, 2, . . . ,|V | (1)

ai is a differentiable approximation of the arg-max
over the logit vector for low values of T . This
vector then selectively attends to the tokens in the
embedding matrix, W ∈ IR|V |×d, resulting in the
embeddings (e

′
u1

, .., e
′
un

) used as inputs fed to
the model during the attack:

e
′
ui

= W T · ai for 1 ≤ i ≤ n (2)

We then train our attack and optimize for Z ∈
IRn×|V |, with Z = (z1, . . . ,zn):

Ẑ = argmin
Z

L(fθ(E(xc)), yc) (3)
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Figure 1: CEA using discrete optimization. The logit vectors z1, . . . , zn are optimized keeping the parameters of
the NLU model fθ fixed. The unknown tokens ui, . . . , un are then reconstructed using the logit vectors.

Z is the only trainable parameter in the attack and
all parameters of fθ remain fixed. Once converged,
we identify the token xi as the one with the highest
activation in ai. We decrease the temperature T
exponentially to ensure low values of T in Equation
(1) and enforce the inputs to fθ to be discrete. In
our experiments, we define zi over a subset of
candidate words for xu V0, V0 ⊆ V to prevent the
logit vector from becoming too sparse.

4 Experiments

4.1 Target Model Description

We attack an NLU model jointly trained to perform
IC and NER tagging. This model has a CLC struc-
ture (Ma and Hovy, 2016). The input embeddings
lead to 2 bi-LSTM layers and a fully-connected
layer with softmax activation for the IC task and
a Conditional Random Field (CRF) layer for the
NER task. The sum of the respective cross-entropy
and CRF loss is minimized during training. We
use FastText embeddings (Mikolov et al., 2018) as
inputs to our model2.

4.2 Canary Insertion

We inject R repetitions of a single canary with sen-
sitive information and its corresponding intent and
NER labels into the training set of the NLU model.
We insert three different types of canaries with n
unknown tokens, n ∈ {4, 6, 8, 10}, described in
Table 1. C is a set of 12 colors3. Additional details
of the canaries and their output labels are presented
in the Appendix A. The adversary aims to recon-
struct all the n unknown, sensitive tokens in the
canary. The reduced vocabulary V0 in Equation (1)
is the set of all digits for canary call and pin and
the names of 12 colors for canary color.

2https://fasttext.cc/docs/en/
english-vectors.html

3C = {‘red’, ‘green’, ‘lilac’, ‘blue’, ‘yellow’, ‘brown’,
‘cyan’, ‘magenta’, ‘orange’, ‘pink’, ‘purple’, ‘mauve’}

Canary
Pattern

{p1, ..pm, u1.., un} Unknown tokens set

call call k1 . . . kn ki ∈ {0, . . . , 9}, 1 ≤ i ≤ n
pin my pin code is k1 . . . kn ki ∈ {0, . . . , 9}, 1 ≤ i ≤ n

color color k1 . . . kn ki ∈ C, 1 ≤ i ≤ n

Table 1: Patterns of canaries injected into the dataset.
Each token of interest ki is randomly chosen from the
corresponding token set.

4.3 Attack Evaluation

We inject the canary into Snips (Coucke et al.,
2018), ATIS (Dahl et al., 1994) and NLU-
Evaluation (Xingkun Liu and Rieser, 2019). The
canary is repeated with R ∈ {1, 10, 100, 500}. For
each combination of R, canary type and length n,
the experiment is repeated 10 times (trials) with 10
different canaries, to account for variation induced
by canary selection. We define the following evalu-
ation metrics averaged across all trials to evaluate
the strength of our attack.

Average Accuracy (Acc): Fraction of the trials
where the attack correctly reconstructs the entire
canary sequence in the correct order. A higher
Accuracy indicates better reconstruction. Accuracy
is 1 if we can reconstruct all n tokens in each of
the 10 trials.

Average Hamming Distance per Token
(HDT): The Hamming Distance (HD) (Hamming,
1950) is the number of positions at which the recon-
structed utterance sequence is different from the
inserted canary. Since HD is proportional to the
length of the canary, we normalize it by the length
of the unknown utterance (HDT = HD/n). The
HDT can be interpreted as the probability of recon-
structing the incorrect token for a given position in
the canary, averaged across the 10 trials. A lower
HDT indicates better reconstruction.

Accuracy reports our performance on recon-
structing all n unknown tokens in the correct order
and is a conservative metric. HDT quantifies our
average performance for reconstructing each po-
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Canary n R Attack Baseline
↑Acc ↓HDT ↑Acc ↓HDT

color

4 10 0.40 0.30 4.82e−5

0.92
6 100 0.30 0.45 3.35e−7
8 100 0.10 0.60 2.33e−9
10 500 0.00 0.59 1.62e−11

pin

4 500 0.40 0.27 1e−4

0.90
6 100 0.10 0.45 1e−6
8 100 0.00 0.61 1e−8
10 100 0.10 0.43 1e−10

call

4 10 0.30 0.40 1e−4

0.90
6 100 0.20 0.50 1e−6
8 100 0.00 0.60 1e−8
10 500 0.00 0.59 1e−10

Table 2: Best observed performance metrics for canaries
with n unknown tokens and (R) repetitions.

sition in the unknown sequence. We evaluate our
attack against randomly choosing a token from the
reduced vocabulary V0. Thus for a given value of
n, the expected accuracy and HDT of this baseline
are ( 1

|V0|)
n and 1− 1

|V0| respectively.

5 Results

The trivial attack described in Sec3.1 without dis-
crete optimization performs comparably to the ran-
dom selection baseline. We thus focus on perform-
ing the attack with discrete optimization in this Sec-
tion. Table 2 shows the best reconstruction metrics
for the different values of n and the correspond-
ing repetitions R ∈ {10, 100, 500} at which these
metrics are observed in the Snips dataset. In our ex-
periments, our attack consistently outperforms the
baseline. For n = 4, 6, we reconstruct at least one
complete canary for each pattern. The attack also
completely reconstructs a 10-digit pin for higher
values of R, with an accuracy of 0.10. Even when
we are unable to reconstruct every token in any
trial, i.e. accuracy is zero, we still outperform the
baseline, as observed from the HDT values.

For the sake of brevity, we summarize the attack
performance on other datasets in Appendix C.2.
We observe that the attack is dataset-dependent
with best performance for the Snips dataset and
poorest for the NLU-evaluation dataset.

5.1 Discussion

The training data of NLU models may poten-
tially contain sensitive utterances such as “call
k1 . . . k10", k1≤i≤10 ∈ {0, 1, . . . , 9}. An adver-
sary who wishes to extract the phone-number can
assume the prefix “call", along with the output la-
bels of the utterance which are also trivial to guess,

given access to the label set Y . Our canaries act
as a placeholder for such utterances. We choose to
insert the canary color since the names of colors
appear infrequently in the datasets mentioned in
Section 4.3, allowing us to evaluate the attack on

‘out-of-distribution’ data which is more likely to be
memorized by deep networks (Carlini et al., 2018).

For n = 4 and R = 1 (i.e., the canary only
appears once in the train set), our attack has an
accuracy of 0.33 for canary color and 0.10 for pin.
This suggests that the attack could potentially re-
construct sensitive information from short rare ut-
terances in real-world scenarios. For a special case
when the adversary attempts to reconstruct a ten
digit phone-number in canary call with a three digit
area-code of their choosing, the attack can recon-
struct the remaining seven digits of the number
with an accuracy of 0.1 when R = 1. For con-
ciseness, we show these results in Appendix C.1.
We observe that our model is more effective and
with fewer repeats for the canary color than ca-
naries pin and call of the same length. Our empiri-
cal analysis indicates the attack is more successful
in extracting tokens that are relatively infrequent
in the training data and in reconstructing shorter
canaries. As shown in Appendix C.1, the attack
performs best for R = 1000. However, this trend
of improved reconstruction for larger values of R
is not monotonic and we observe a general decline
in reconstruction for R > 1000. We are unsure of
the vulnerabilities that facilitate CEA. While un-
intended memorization is a likely explanation, we
note that our attack performs best on the Snips data,
although the smaller ATIS data should be easier to
memorize (Zhang et al., 2016).

6 Proposed Defenses against ModIvA

We propose three commonly used modeling tech-
niques as defense mechanisms- Dropout (D), Early
Stopping (ES) (Arpit et al., 2017) and including
a Character Embeddings layer in the NLU model
(CE). D and ES are regularization techniques to re-
duce memorization and overfitting. CE makes the
problem in 3 more difficult to optimize, by concate-
nating the embeddings of each input token with a
character level representation. This character level
representation is obtained using a convolution layer
on the input sentence (Ma and Hovy, 2016).

For defense using D, we use a dropout of 20%
and 10% while training the NLU model. For ES,
we stop training the NLU model under attack if the
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validation loss does not decrease for 20 consecutive
epochs to prevent over-training.

6.1 Efficacy of Defenses
In this section we present the performance of the
proposed defenses against ModIvA. To do so, we
evaluate the attack on NLU models trained with
each defense mechanism individually, and in all
combinations. The canaries are inserted into the
Snips dataset and repeated 10, 500 and 1000 times.
The results are summarized in Table 3. We observe
that the attack accuracy for each defense (used indi-
vidually and in combination) is nearly zero for all
canaries and is thus omitted in the table. We also
note that the HDT approaches the random baseline
for most defense mechanisms. The attack perfor-
mance is comparable to a random-guess when the
three mechanisms are combined. However, when
dropout or character embedding is used alone, HDT
values are lower than the baseline, indicating the
importance of combining multiple defense mecha-
nisms. Additionally, training with defenses do not
have any significant impact on the performance of
the NLU model under attack. The defenses thus
successfully thwart the proposed attack without
impacting the performance of the NLU models.

R Defense Mechanism ↓HDT
Color Pin Call

Baseline 0.916 0.90 0.90
No defense 0.30 0.33 0.40
Dropout (D) 0.85 0.80 0.76
Early Stopping (ES) 0.80 0.93 0.95

10 Char. Emb. (CE) 0.65 0.75 0.90
D + ES 0.98 0.90 0.95
ES + CE 0.90 0.83 0.90
D + ES + CE 0.90 0.90 0.90
No defense 0.39 0.27 0.38
Dropout (D) 0.65 0.54 0.83
Early Stopping (ES) 0.85 1.00 0.75

500 Char. Emb. (CE) 0.58 0.93 0.68
D + ES 0.85 0.93 0.98
ES + CE 0.93 0.98 0.78
D + ES + CE 0.95 0.88 1.00
No defense 0.35 0.18 0.48
Dropout (D) 0.35 0.78 0.58
Early Stopping (ES) 0.90 0.83 0.85

1000 Char. Emb. (CE) 0.70 0.68 0.78
D + ES 0.88 0.98 0.90
ES + CE 0.88 1.00 0.95
D + ES + CE 0.95 0.93 0.95

Table 3: Attack performance for the canary color, pin
and call after incorporating defenses while training the
target NLU model, with R ∈ {10, 500, 1000}.

7 Conclusion

We formulate and present the first open-box
ModIvA in a form of a CEA to perform text com-
pletion on NLU tasks. Our attack performs discrete
optimization to select unknown tokens by optimiz-
ing over a set of continuous variables. We demon-
strate our attack on three patterns of canaries and
reconstruct their unknown tokens by significantly
outperforming the ‘chance’ baseline.
To ensure that the proposed attack is not misused
by an adversary, we propose training NLU mod-
els with three commonplace modelling practices–
dropout, early-stopping and including character
level embeddings. We observe that the above prac-
tices are successful in defending against the attack
as its accuracy and HDT values approach the ran-
dom baseline. Future directions include ‘demystify-
ing’ such attacks, and strengthening the attack for
longer sequences with fewer repeats and a larger V0

and investigating additional defense mechanisms,
such as those based on differential privacy, and
their effect on the model performance.

8 Ethical Considerations

The addition of proprietary data to existing datasets
to fine-tune NLU models can often insert confi-
dential information into datasets. The proposed
attack could be misused to extract private infor-
mation from such datasets by an adversary with
open-box access to the model. The objectives of
this work are to (1) study and document the actual
vulnerability of NLU models against this attack,
which shares similarities with existing approaches
(Fredrikson et al., 2014; Song and Raghunathan,
2020); (2) warn NLU researchers against the pos-
sibility of such attacks; and (3) propose effective
defense mechanisms to avoid misuse and help NLU
researchers protect their models.

Our work demonstrates that private information
such as phone-numbers and zip-codes can be ex-
tracted from a discriminative text-based model,
and not only from generative models as previ-
ously demonstrated (Carlini et al., 2020). We advo-
cate for the necessity to privatize such data using
anonymization (Ghinita et al., 2007) or differential
privacy (Feyisetan et al., 2020). Additionally, in
case the training data continues to contain some
private information, practitioners can prevent the
extraction of sensitive data by using the defense
mechanisms described in Section 6, which reduces
the attack performance to a random guess.
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A Inserted Canary Information

The inserted canaries and corresponding intent and
NER label sets are listed below.

1. Canary call: “call k1 . . . kn", ki ∈
{0, 1, . . . , 9} , for 1 ≤ i ≤ n.

• Sequence NER tags: “O B-canary
I-canary . . . I-canary︸ ︷︷ ︸

n−1 times

"

• Intent: “CallIntent"

2. Canary 2: “my pin code is k1 . . . kn", ki, for
1 ≤ i ≤ n.

• Sequence NER tags: “O O O O B-canary
I-canary . . . I-canary︸ ︷︷ ︸

n−1 times

"

• Intent: “PinIntent"

3. Canary 3: “color k1 . . . kn", ki ∈{‘red’,
‘green’, ‘lilac’, ‘blue’, ‘yellow’, ‘brown’,
‘cyan’, ‘magenta’, ‘orange’, ‘pink’, ‘purple’,
‘mauve’} for 1 ≤ i ≤ n.

• Sequence NER tags: “O B-canary
I-canary . . . I-canary︸ ︷︷ ︸

n−1 times

"

• Intent: “ColorIntent"

The canary repetitions R are split between the train
and validation set in a ratio of 9 : 1.

B Training Parameters

We decrease the temperature T exponentially after
each iteration t. The temperature at the tth iteration
Tt is given by Tt = 0.997t × 10−1.

We use the Adam optimizer and train our attack
for 250 epochs. We begin with an initial learning
rate of 6.5× 10−3 for our attack with a decay rate
of 9.95× 10−1.

C Results

C.1 Attack Performance Across Canary
Repetitions

Table 4 shows the model performance for just one
repeat of the canary in the Snips dataset i.e. R =
1. The n = 7 example for the call canary refers
to the special case when the adversary is trying
to reconstruct a 10-digit phone number beginning
with a three digit area code of their choice.

Table 5 illustrates the best reconstruction
metrics for different values on n and with

n Canary
Attack
Metrics

Baseline
Metrics

Accuracy HDT Accuracy HDT
4 color 0.33 0.43 4.8× 10−5 0.92
4 pin 0.10 0.60 1× 10−4 0.90
4 call 0.10 0.58 1× 10−4 0.90

10 call 0.00 0.68 1× 10−10 0.90
7 call 0.10 0.70 1× 10−7 0.90

Table 4: Reconstruction metrics for inserted utterances
appearing only once in the training data, i.e R = 1. The
attack accuracy is much higher and HDT is much lower
than that of a randomly chosen sequence of tokens.

Canary n R Attack Baseline
↑Acc ↓HDT ↑Acc ↓HDT

color

4 10 0.40 0.30 4.82e−5

0.92
6 100 0.30 0.45 3.35e−7
8 1000 0.10 0.48 2.33e−9

10 1000 0.00 0.59 1.62e−11

pin

4 1000 0.50 0.18 1e−4

0.90
6 1000 0.10 0.43 1e−6
8 1000 0.00 0.57 1e−8

10 100 0.10 0.43 1e−10

call

4 10 0.30 0.40 1e−4

0.90
6 100 0.20 0.50 1e−6
8 1000 0.00 0.58 1e−8

10 2000 0.00 0.59 1e−10

Table 5: Best observed performance metrics for
canaries with n unknown tokens and R ∈
{10, 100, 500, 1000, 2000}.

R ∈ {10, 100, 500, 1000, 2000}. We observe an
accuracy of 0.5 for the canary pin when n = 4
and R = 1000. Figure 2 illustrates the model
performance across canaries in the Snips dataset
with varying number of repetitions R. As observed
in Table 5 and Figure 2, the attack is most likely
to succeed when R is 1000. However, the attack
weakens for higher values of R.

C.2 Attack Performance Across Datasets
We evaluate our attack on the ATIS and NLU-
Evaluation Datasets, for canaries color and pin
with n = 4 and canary call with n = 10. To
ensure that we maintain a comparable number
or repeats with respect to the size of the dataset,
R ∈ {10, 100, 200, 500} for the ATIS dataset and
R ∈ {100, 500, 1000, 5000, 10000} for the NLU-
Evaluation dataset. As shown in Figure 3, the at-
tack performance is almost comparable for shorter
sequences in Snips and ATIS but under-performs
for the NLU-Evaluation data. Figure 4 and Figure
5 illustrate the HDT for the ATIS and NLU Evalua-
tion datasets for R canary repetitions respectively.
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Figure 2: Average Hamming Distance per Token (HDT)
for canaries with n = 6, repeated in the Snips dataset R
times.

Figure 3: Model Performance of the pin and color ca-
nary with n = 4 and call canary with n = 10, for the
Snips, ATIS, and NLU Evaluation Data.

Figure 4: Model Performance of the pin and color ca-
nary with n = 4 and call canary with n = 10, repeated
R times in the ATIS dataset.

Figure 5: Model Performance of the pin and color ca-
nary with n = 4 and call canary with n = 10, repeated
R times in the NLU Evaluation dataset.
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