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Abstract

Discovering Out-of-Domain(OOD) intents is
essential for developing new skills in a task-
oriented dialogue system. The key challenge is
how to transfer prior IND knowledge to OOD
clustering. Different from existing work based
on shared intent representation, we propose a
novel disentangled knowledge transfer method
via a unified multi-head contrastive learning
framework. We aim to bridge the gap between
IND pre-training and OOD clustering. Experi-
ments and analysis on two benchmark datasets
show the effectiveness of our method. 1

1 Introduction

Out-of-domain (OOD) intent discovery aims to
group new unknown intents into different clusters,
which helps improve the dialogue system for future
development. Compared to existing text clustering
tasks, OOD discovery considers how to leverage
the prior knowledge of known in-domain (IND)
intents to enhance discovering unknown OOD in-
tents, which makes it challenging to directly apply
existing clustering algorithms (MacQueen, 1967;
Xie et al., 2016; Chang et al., 2017; Caron et al.,
2018) to the OOD discovery task.

Previous unsupervised OOD discovery models
(Hakkani-Tür et al., 2015; Padmasundari and Ban-
galore, 2018; Shi et al., 2018) only model OOD
data but ignore prior knowledge of in-domain data
thus suffer from poor performance. Therefore, re-
cent work (Lin et al., 2020; Zhang et al., 2021) fo-
cus more on the semi-supervised setting where they
firstly pre-train an in-domain intent classifier then
perform clustering algorithms on extracted OOD
intent representations by the pre-trained IND intent
classifier. For example, Lin et al. (2020) firstly
pre-trains a BERT-based (Devlin et al., 2019) IND

∗The first three authors contribute equally. Weiran Xu is
the corresponding author.

1We release our code at https://github.com/
myt517/DKT.
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Figure 1: Comparison between baselines and our pro-
posed DKT model.

intent classifier then uses intent representations to
perform a pairwise clustering algorithm (Chang
et al., 2017). Further, Zhang et al. (2021) proposes
an iterative clustering method, DeepAligned, to
obtain pseudo supervised signals using K-means
(MacQueen, 1967). However, all of these meth-
ods ignore the matching between IND pre-training
stage and OOD clustering stage because they for-
mulate IND pre-training as the classification task
while OOD clustering as the text clustering task.
The different learning objectives make it hard to
transfer prior IND knowledge to OOD. Besides,
previous work only transfer a single intent repre-
sentation from the pre-trained IND classifier to
OOD clustering. Considering the entanglement of
the intent representation, simply transferring IND
features may harm OOD clustering. For example,
there exist two levels of intent features, instance-
level and class-level knowledge in the pre-trained
IND classifier. Decoupling different levels of intent
features helps better knowledge transferability.

To solve the issues, we propose a novel
Disentangled Knowledge Transfer method (DKT)
via a unified multi-head contrastive learning frame-
work to transfer disentangled IND intent repre-
sentations to OOD clustering. The main intuition
is how to perform better knowledge transfer. As
shown in Fig 1, we decouple the pre-trained intent
representations into two independent subspaces,
instance-level and class(cluster)-level using a uni-
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fied contrastive learning framework. Different from
existing OOD discovery work, we equip the tradi-
tional IND pre-training stage with a similar con-
trastive objective as the clustering stage. Specifi-
cally, we firstly learn intent features using a con-
text encoder like BERT, then add two independent
transformation heads (instance-level head f and
class-level head g) on top of BERT. In the IND
pre-training stage, we use the head f to perform su-
pervised instance-level contrastive learning (Chen
et al., 2020; Khosla et al., 2020; Gunel et al., 2021;
Zeng et al., 2021) and the head g to compute tra-
ditional classification loss like cross-entropy. In
the OOD clustering stage, we employ similar ob-
jectives for these two heads where f is still used
for instance-level contrastive learning and g is used
to perform class(cluster)-level contrastive learning
(Li et al., 2021). We leave the details in the follow-
ing Section 2. Using the unified contrastive objec-
tives for pre-training and clustering bridges the gap
between the two stages. Besides, the two indepen-
dent heads decouple the instance- and cluster-level
contrastive learning to learn disentangled intent
representations for better knowledge transfer. Sec-
tion 4 demonstrates the effectiveness of multi-head
disentanglement.

Our contributions are three-fold: (1) We propose
a novel disentangled knowledge transfer method
for OOD discovery to better leverage prior IND
knowledge. (2) We propose a unified multi-
head contrastive learning framework to bridge the
gap between IND pre-training and OOD cluster-
ing. (3) Experiments and analysis on two bench-
mark datasets demonstrate the effectiveness of our
method for OOD discovery.

2 Approach

Problem Formulation Given a set of labeled in-
domain data (XIND,YIND) and unlabeled OOD
data (XOOD,YOOD), OOD discovery aims to clus-
ter OOD groups from unlabeled OOD data using
prior knowledge from labeled IND data. Note that
IND data has no overlapping with OOD data. Gen-
erally, OOD discovery includes two stages, IND
pre-training which aims to obtain a decent intent
representation via labeled IND data, and OOD clus-
tering which aims to group OOD intents into dif-
ferent clusters.

Overall Architecture Fig 2 shows the overall
architecture of our proposed DKT model. We
firstly use the same BERT (Devlin et al., 2019)
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Figure 2: The overall architecture of our DKT.

backbone to extract intent representations as the
previous work DeepAligned (Zhang et al., 2021).
Then we decouple the intent representations into
two independent subspaces and use a unified con-
trastive learning framework to perform both IND
pre-training and OOD clustering.

IND Pre-training Different from existing meth-
ods that regard IND pre-training as a single intent
classification task, we formulate it as an instance-
wise discriminative task and a class-wise classifi-
cation task via contrastive learning. Given an IND
intent example xi, we firstly obtain its intent repre-
sentation zi using a BERT encoder and a pooling
layer.2 Then we use two independent transforma-
tion heads f and g to get two disentangled latent
vectors fi = f (zi) and gi = g(zi).3 On top of the
instance-level head f , we perform supervised con-
trastive learning (SCL) (Khosla et al., 2020; Zeng
et al., 2021) as follows:

LSCL =
N∑
i=1

− 1

Nyi − 1

N∑
j=1

1i 6=j1yi=yj

log
exp (fi · fj/τ)∑N

k=1 1i 6=k exp (fi · fk/τ)
where Nyi is the total number of examples in the
batch that have the same label as yi and 1 is an
indicator function. Following Gao et al. (2021);
Yan et al. (2021), we employ simple dropout (Sri-
vastava et al., 2014) as data augmentation. SCL
can model instance-wise semantic similarities by
pulling together IND intents belonging to the same
class while pushing apart samples from different

2For a fair comparison, we use the same BERT-based back-
bone as previous work. We leave the details to Section 3.4.

3In the experiments, we use two separate two-layer non-
linear MLPs for head f and g. For simplicity, we set both the
input dimension and output dim to 768, same as the hidden
state dim of BERT-base.
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Models
CLINC-10% CLINC-20% CLINC-30% Banking

ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI

Unsup.

K-means 58.67 43.81 67.77 48.89 30.90 64.68 42.22 23.65 60.55 32.81 8.30 17.30
DeepCluster 53.15 37.80 62.31 47.73 34.55 65.91 33.96 18.89 56.21 29.81 7.79 17.34
DeepAligned 62.66 47.60 71.50 48.24 34.49 66.24 39.02 24.50 61.16 36.56 12.57 21.84
DKT(ours) 74.22 61.37 76.67 57.56 44.94 72.40 50.07 35.53 69.81 40.00 18.20 30.10

Semi-sup.

PTK-means 70.22 50.39 73.92 57.56 37.02 72.71 61.63 40.96 75.90 55.00 36.18 53.75
DeepCluster 78.13 68.31 82.87 83.42 76.18 89.33 78.09 71.05 88.70 60.59 41.88 55.22
CDAC+ 88.00 75.18 88.33 84.89 75.98 89.96 73.04 64.44 87.90 77.50 60.53 71.14
DeepAligned 95.11 89.81 94.13 93.80 90.22 95.83 91.56 86.58 94.91 77.78 66.95 76.91
DKT(ours) 97.78 95.16 96.97 96.89 93.69 96.94 94.96 90.25 95.94 84.69 71.11 76.92

Table 1: Performance comparison on two datasets. We randomly sample 10%, 20% and 30% of all classes as OOD
types for CLINC, 10% for Banking. We evaluate both unsupervised and semi-supervised methods. Unsup DKT
denotes DKT w/o IND pre-training. Results are averaged over three random runs. (p < 0.05 under t-test)

classes. Therefore, SCL helps maximize inter-class
variance and minimize intra-class variance, further
improves OOD clustering. On top of the class-level
head g, we use a cross-entropy classification loss to
learn class(cluster)-wise distinction. Section 4 con-
firms both the objectives improve the performance
and SCL has a larger effect.

OOD Clustering The key challenge of OOD
clustering is how to learn intent representations
and cluster assignments. Previous state-of-the-art
model DeepAligned (Zhang et al., 2021) iteratively
repeats the two stages which results in poor cluster-
ing efficiency and accuracy. Thus, we propose an
end-to-end contrastive clustering method (Li et al.,
2021) to jointly learn representations and cluster
assignments. Specifically, given an OOD example
xi, we firstly use the pre-trained BERT encoder
and transformation heads to get OOD intent latent
vectors fi and gi. Then, on top of the instance-
level head f , we perform instance-level contrastive
learning(ILCL) (Chen et al., 2020) as follows:

`insi,j = − log
exp (sim (fi, fj) /τ)∑2N

k=1 1[k 6=i] exp (sim (fi, fk) /τ)

where fj denotes the dropout-augmented OOD
sample and τ denotes temperature 4. On top of
the cluster-level head g, we perform contrastive
clustering following Li et al. (2021) . Specifically,
given an OOD cluster-level latent vector gi, we
firstly project it to a vector with dimension K which
equals to the pre-defined cluster number.5 Suppose
we input a batch of OOD samples so we can get
a feature matrix of N ×K. Then we regard i-th
column of the matrix as the i-th cluster represen-
tation yi and construct cluster-level CL(CLCL) as

4we set it to 0.5 in the experiments.
5In this paper, we focus on the fixed cluster number K

setting and leave estimating K to future work.

follows:

`clui,j = − log
exp (sim (yi, yj) /τ)∑2K

k=1 1[k 6=i] exp (sim (yi, yk) /τ)

where yj is the dropout-augmented cluster rep-
resentation of yi and sim denotes cosine distance.
Following Li et al. (2021), we also add a regular-
ization item to avoid the trivial solution that most
instances are assigned to the single cluster. For
training, we simply add the above objectives in the
experiments. For inference, we only use the cluster-
level contrastive head and compute the argmax to
get the cluster results without additional K-means.
Generally, the instance-CL focuses on distinguish-
ing different intent samples while the cluster-CL
identifies distinct OOD categories. Combining the
two stages, our proposed unified contrastive learn-
ing framework can effectively bridge the gap be-
tween IND pre-training and OOD clustering.

3 Experiment

3.1 Datasets

We show the detailed statistics of CLINC(Larson
et al., 2019) and BANKING(Casanueva et al.,
2020) datasets in Table 2. CLINC contains 22,500
queries covering 150 intents and Banking contains
13,083 customer service queries with 77 intents. To
construct IND/OOD data, we ramdomly divided
the two datasets in three ramdom runs, according
to the specified OOD ratio(10%, 20%, 30% for
CLINC, 10% for Banking), and the rest is IND
data. Note that we only use the IND data for pre-
training and use OOD data for clustering. To avoid
the randomness of splitting IND/OOD, we average
results over three random runs. For each run, all
the models use the same divided dataset. Differ-
ent from previous work Zhang et al. (2021), we
assume that the unlabeled data only contains OOD
data instead of a mixture of IND and OOD, aiming
to fairly evaluate the OOD clustering performance.
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Dataset Classes Training Validation Test Vocabulary Length (max / mean)

CLINC 150 18,000 2,250 2,250 7,283 28 / 8.31
BANKING 77 9,003 1,000 3,080 5,028 79 / 11.91

Table 2: Statistics of CLINC and BANKING datasets.

In real scenarios, we can use OOD detection mod-
els (Xu et al., 2020; Zeng et al., 2021) to collect
high-quality OOD data for OOD intent discovery.

3.2 Baselines

We mainly compare our method with semi-
supervised baselines: PTK-means (k-means with
IND pre-training), DeepCluster (Caron et al., 2018)
and two state-of-the-art OOD discovery methods
CDAC+ (Lin et al., 2020) and DeepAligned (Zhang
et al., 2021). We also report the unsupervised re-
sults (without IND pretraining) of these methods
for a comprehensive comparison. For fairness, we
use the same BERT backbone as the baselines. We
leave the detailed baselines in the appendix A.1.

3.3 Evaluation Metrics

We adopt three widely used metrics to evaluate the
clustering results: Accuracy (ACC), Normalized
Mutual Information (NMI), and Adjusted Rand
Index (ARI). To calculate ACC, we use the Hun-
garian algorithm (Kuhn, 1955) to obtain the map-
ping between the predicted classes and ground-
truth classes.

3.4 Implementation Details

For a fair comparison with previous work, we use
the pre-trained BERT model (bert-base-uncased 6,
with 12-layer transformer) as our network back-
bone, and add a pooling layer to get intent repre-
sentation(dimension=768). Moreover, we freeze
all but the last transformer layer parameters to
achieve better performance with BERT backbone,
and speed up the training procedure as suggested
in (Zhang et al., 2021). During the pre-training
phase, the training batch size is 128, and during
the clustering phase, the training batch size is 512
for CLINC-10%, CLINC-30%, Banking-10%, and
400 for CLINC-20%. The learning rate is 5e-5 in
the pre-training phase and 0.0003 in the cluster-
ing phase. Notably, We use dropout (Gao et al.,
2021) to construct augmented examples for con-
trastive learning with dropout rate 0.1. For the
instance-level contrastive head, the dimensionality
of the row space is set to 128, and the tempera-
tures of SCL and instance-level CL are 0.5. As

6https://github.com/google-research/bert

for the cluster-level contrastive head, the dimen-
sionality of the column space is naturally set to
the number of IND classes/OOD clusters, and the
cluster-level temperature parameter τ= 1.0 is used
for all datasets. We use SC of validation OOD data
(still unlabeled data) to choose the best checkpoint.
The pre-training stage of our model lasts about
30 minutes and clustering runs for 10 minutes on
CLINC-10%, both using a single Tesla T4 GPU(16
GB of memory).

3.5 Main Results

Table 1 shows the performance comparison of dif-
ferent models on two datasets. Under both un-
supervised and semi-supervised settings, our pro-
posed DKT consistently outperforms all the base-
lines. In this paper, we mainly focus on the lat-
ter setting. For the Semi-sup setting on CLINC-
10%, DKT outperforms the previous state-of-the-
art DeepAligned by 2.67%(ACC), 5.35%(ARI),
2.84%(NMI). Similar improvements are observed
on other datasets. The results prove the effective-
ness of our proposed disentangled knowledge trans-
fer for OOD discovery. Comparing Unsup DKT
with Semi-sup DKT, the latter significantly outper-
forms the former by 23.56%(ACC), 33.79%(ARI),
20.30%(NMI), which demonstrates the effective-
ness of IND pre-training(see details in appendix
A.2).

4 Qualitative Analysis

Effect of Disentangled Intent Representations
Tab 3 shows performance comparison of DKT and
KT under two settings. We find Disentangled KT
significantly outperforms KT both on two settings,
which proves the effectiveness of representation
disentanglement for knowledge transfer.
Visualization To confirm the effectiveness of DKT,
we perform OOD intent representation visualiza-
tion of DeepAligned, KT and DKT in Fig 3. Note
that we use the same representation following the
pooling layer for fair comparison. We find both
DeepAligned and KT have some mixed OOD clus-
ters while DKT forms clearly separate decision
boundaries between clusters, which shows our pro-
posed DKT obtains discriminative OOD representa-
tions for OOD discovery. Besides, Section 4 further
explore the effect of different layer and representa-
tions after MLP g gets the best performance.
Error Analysis We further analyze the error cases
of DeepAligned and DKT in Fig 5. We find that for
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Figure 3: Visualization of different methods. KT denotes only using single MLP head.
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Figure 4: Intent representations at different layers
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Figure 5: Confusion matrix for the clustering results
of DeepAligned and DKT on CLINC-10%. The per-
centage values along the diagonal represent how many
samples are correctly clustered into the corresponding
class. The larger the number, the deeper the color.

similar OOD intents, DeepAligned is probably con-
fused but our DKT can effectively distinguish them.
For example, DeepAligned incorrectly groups ac-
cept_reservation intents into cancel_reservation
(14% error rate) vs DKT(7%), which proves DKT
helps separate semantically similar OOD intents.
Ablation Study To understand the effect of differ-
ent objectives of DKT, we perform abalation study
in Tab 4 by removing each loss. Results show all
the losses contribute to the performance especially
SCL, ILCL and CLCL, which confirms the effec-
tiveness of our unified contrastive framework.
Intent Representations at Different Layers In
order to further explore the effectiveness of disen-
tangled representation, we visualize the output vec-
tors of instance-level head and cluster-level head
and compare them with the output vector after

Models ACC ARI NMI

Unsup.
KT 68.89 56.33 73.93
DKT 74.22 61.37 76.67

Semi-sup.
KT 95.11 90.23 94.53
DKT 97.78 95.16 96.97

Table 3: Effect of disentangled intent representations.
Models ACC ARI NMI
DKT 97.78 95.16 96.97

-w/o SCL 92.26 86.33 92.62
-w/o CE 95.16 90.61 94.80
-w/o ILCL 90.93 85.43 92.07
-w/o CLCL 90.36 82.91 90.55

Table 4: Effect of different learning objectives.

BERT + pooling in Fig 4. We can find that the
output obtained by instance-level head forms a nar-
row and long cluster distribution, while the output
obtained by cluster-level head forms a more com-
pact and uniform cluster distribution. We argue
that this reflects the effect of decoupling, that is,
instance-level head decouples the uniqueness of
each sample, and cluster-level head decouples the
category characteristics of each sample.

5 Conclusion

In this paper, we propose a novel disentangled
knowledge transfer method (DKT) via a unified
multi-head contrastive learning framework to trans-
fer disentangled IND intent representations to OOD
clustering. Experiments and analysis on two bench-
marks demonstrate the effectiveness of DKT for
OOD discovery. We hope to explore more self-
supervised representation learning methods for
OOD discovery in the future.
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Broader Impact

Task-oriented dialogue systems have demonstrated
remarkable performance across a wide range of
applications, with the promise of a significant posi-
tive impact on human production mode and lifeway.
Intent classification is an important component of
Task-oriented dialogue system. The existing intent
classification models follow a closed set assump-
tion and can only identify a limited number of pre-
defined intent types. However, the real world is
open. During the online deployment of dialogue
system, out-of-domain (OOD) or unknown intents
will appear continually. Recently, out-of-domain in-
tent detection task has been widely studied, which
can be used to collect these new intent data. The
OOD intent discovery task studied in this paper is
to make further use of these new intent data. It
aims to cluster these OOD samples according to in-
tents, so as to mine new intent types automatically,
guide the future development of the system, and
expand the classification ability of intent classifica-
tion models.
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intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45, On-
line. Association for Computational Linguistics.

Jianlong Chang, L. Wang, Gaofeng Meng, Shiming Xi-
ang, and Chunhong Pan. 2017. Deep adaptive image
clustering. 2017 IEEE International Conference on
Computer Vision (ICCV), pages 5880–5888.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey E. Hinton. 2020. A simple frame-
work for contrastive learning of visual representa-
tions. ArXiv, abs/2002.05709.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. ArXiv, abs/2104.08821.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves
Stoyanov. 2021. Supervised contrastive learning
for pre-trained language model fine-tuning. ArXiv,
abs/2011.01403.

Dilek Hakkani-Tür, Yun-Cheng Ju, Geoffrey Zweig,
and Gokhan Tur. 2015. Clustering novel intents in
a conversational interaction system with semantic
parsing. In Sixteenth Annual Conference of the In-
ternational Speech Communication Association.

Prannay Khosla, Piotr Teterwak, Chen Wang,
Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, and Dilip Krishnan.
2020. Supervised contrastive learning. ArXiv,
abs/2004.11362.

H. Kuhn. 1955. The hungarian method for the assign-
ment problem. Naval Research Logistics Quarterly,
2:83–97.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019.
An evaluation dataset for intent classification and
out-of-scope prediction. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

Yunfan Li, Peng Hu, Zitao Liu, Dezhong Peng,
Joey Tianyi Zhou, and Xi Peng. 2021. Contrastive
clustering. In 2021 AAAI Conference on Artificial
Intelligence (AAAI).

Ting-En Lin, Hua Xu, and Hanlei Zhang. 2020. Dis-
covering new intents via constrained deep adaptive
clustering with cluster refinement. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8360–8367.

J. MacQueen. 1967. Some methods for classification
and analysis of multivariate observations.

Padmasundari and S. Bangalore. 2018. Intent discov-
ery through unsupervised semantic text clustering.
In INTERSPEECH.

51

https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/D19-1131
https://www.aclweb.org/anthology/D19-1131


Chen Shi, Qi Chen, Lei Sha, Sujian Li, Xu Sun,
Houfeng Wang, and Lintao Zhang. 2018. Auto-
dialabel: Labeling dialogue data with unsupervised
learning. In Proceedings of the 2018 conference on
empirical methods in natural language processing,
pages 684–689.

Nitish Srivastava, Geoffrey E. Hinton, A. Krizhevsky,
Ilya Sutskever, and R. Salakhutdinov. 2014.
Dropout: a simple way to prevent neural net-
works from overfitting. J. Mach. Learn. Res.,
15:1929–1958.

Junyuan Xie, Ross B. Girshick, and Ali Farhadi. 2016.
Unsupervised deep embedding for clustering analy-
sis. ArXiv, abs/1511.06335.

Hong Xu, Keqing He, Yuanmeng Yan, Sihong Liu, Zi-
jun Liu, and Weiran Xu. 2020. A deep generative
distance-based classifier for out-of-domain detection
with mahalanobis space. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 1452–1460, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang,
Wei Wu, and Weiran Xu. 2021. Consert: A con-
trastive framework for self-supervised sentence rep-
resentation transfer. In ACL/IJCNLP.

Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Zijun Liu,
Yanan Wu, Hong Xu, Huixing Jiang, and Weiran Xu.
2021. Modeling discriminative representations for
out-of-domain detection with supervised contrastive
learning. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 2: Short Papers),
pages 870–878, Online. Association for Computa-
tional Linguistics.

Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui Lyu.
2021. Discovering new intents with deep aligned
clustering. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 14365–
14373.

A Appendix

A.1 Baselines
The details of baselines are as follows:

• PTK-means A method based on k-means
with IND pre-training. And the IND pre-
training objectives uses CE + SCL proposed
in this paper.

• DeepCluster An iterative clustering algo-
rithm proposed by (Caron et al., 2018), in each
iteration, firstly, k-means is used to assign
pseudo label to the unlabeled samples, and
then the cross-entropy objective is used for
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Figure 6: Effect of IND Data.

representation learning. The cluster header pa-
rameters need to be reinitialized during each
iteration. In the semi-supervised setting, we
use the same IND pre- training objective as
DeepAligned (Zhang et al., 2021)

• CDAC+ The first work of new intent discov-
ery proposed by (Lin et al., 2020), and it firstly
pre-trains a BERT-based (Devlin et al., 2019)
in-domain intent classifier then uses intent rep-
resentations to calculate the similarity of OOD
intent pairs as weak supervised signals.

• DeepAligned The second work of new intent
discovery proposed by (Zhang et al., 2021).It
is an improved version of DeepCluster. It
designed a pseudo label alignment strategy to
produce aligned cluster assignments for better
representation learning.

A.2 Effect of IND Data
We analyze the effect of IND data for OOD dis-
covery from two perspectives, the number of IND
classes and samples per class. Figure 6(a) shows
the trend of the number of different IND classes,
and Figure 6(b) shows the trend of the number of
different samples in each class. Results show DKT
outperforms baselines under all settings and gets
the smallest varying degrees of performance drop,
which proves the robustness and stability of our
method.

A.3 Visualization at Different Training
Epochs

To see the evolution of our method in the training
process, we show a visualization at four different
timestamps throughout the training process in Fig
7. Results show representation vector of different
intent classes are mixed in the beginning and clus-
ter assignments become increasingly visible and
distinct as the training process goes.
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Figure 7: OOD intent visualization of different training epochs for our proposed DKT method.
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