
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 424 - 434

May 22-27, 2022 c©2022 Association for Computational Linguistics

Revisiting the Compositional Generalization Abilities of
Neural Sequence Models

Arkil Patel Satwik Bhattamishra Phil Blunsom Navin Goyal
Microsoft Research India

University of Oxford
arkil.patel@gmail.com, navingo@microsoft.com
{satwik.bmishra,phil.blunsom}@cs.ox.ac.uk

Abstract

Compositional generalization is a fundamental
trait in humans, allowing us to effortlessly com-
bine known phrases to form novel sentences.
Recent works have claimed that standard seq-
to-seq models severely lack the ability to com-
positionally generalize. In this paper, we focus
on one-shot primitive generalization as intro-
duced by the popular SCAN benchmark. We
demonstrate that modifying the training dis-
tribution in simple and intuitive ways enables
standard seq-to-seq models to achieve near-
perfect generalization performance, thereby
showing that their compositional generalization
abilities were previously underestimated. We
perform detailed empirical analysis of this phe-
nomenon. Our results indicate that the gener-
alization performance of models is highly sen-
sitive to the characteristics of the training data
which should be carefully considered while de-
signing such benchmarks in future.

1 Introduction

According to the principle of compositionality, the
meaning of a complex expression (e.g., a sentence)
is determined by the meaning of its individual con-
stituents and how they are combined. Humans can
effectively recombine known parts to form new sen-
tences that they have never encountered before. De-
spite the unprecedented achievements of standard
seq-to-seq networks such as LSTMs and Trans-
formers in NLP tasks, previous work has suggested
that they are severely limited in their ability to gen-
eralize compositionally (Lake and Baroni, 2018;
Furrer et al., 2020).

Problem Statement. Our work relates to a
central challenge posed by compositional gener-
alization datasets such as SCAN (Lake and Baroni,
2018) and Colors (Lake et al., 2019), which we
refer to as one-shot primitive generalization: The
dataset consists of input-output sentence pairs (e.g.
‘walk twice → WALK WALK’); input sentences

swimclapmove

More Primitives

SCAN Train Set

Neural Sequence Models

jump opposite right RTURN RTURN JUMP

jump thrice JUMP JUMP JUMP

jump left LTURN JUMP

jump opposite right RTURN RTURN JUMP

jump thrice JUMP JUMP JUMP

jump left LTURN JUMP

SCAN Generalization Set

Failure Success

move

move left

move twice MOVE MOVE

LTURN MOVE

MOVEmove

move left

move twice MOVE MOVE

LTURN MOVE

MOVEmove

move left

move twice MOVE MOVE

LTURN MOVE

MOVE

clap

clap right

clap thrice CLAP CLAP CLAP

RTURN CLAP

CLAPclap

clap right

clap thrice CLAP CLAP CLAP

RTURN CLAP

CLAPclap

clap right

clap thrice CLAP CLAP CLAP

RTURN CLAP

CLAP

swim

swim left

swim thrice SWIM SWIM SWIM

LTURN SWIM

SWIMswim

swim left

swim thrice SWIM SWIM SWIM

LTURN SWIM

SWIMswim

swim left

swim thrice SWIM SWIM SWIM

LTURN SWIM

SWIM

Same-sized train set with more primitives and their use cases

jump JUMP

walk

walk opposite left LTURN LTURN WALK

WALK

look

look thrice LOOK LOOK LOOK

LOOK

run

run twice RUN RUN

RUN

Neural Sequence Models

Isolated Primitive

Exactly three Example Primitives

Isolated Primitive

A lot more than three Example Primitives

jump JUMP

Figure 1: Overview of the SCAN generalization task
(left) and our approach (right) that enables standard
neural sequence models to generalize compositionally.

are formed from primitive words (‘walk’) and func-
tion words (‘twice’) and are generated by a context-
free grammar (CFG); output sentences are obtained
by applying an interpretation function. Crucially,
there is a systematic difference between the train
and test splits1: While the former has a single ex-
ample of an isolated primitive (e.g., the primitive
definition ‘jump → JUMP’ in SCAN), the latter
consists of compositional sentences with this iso-
lated primitive (e.g. ‘jump twice→ JUMP JUMP’).
See Fig. 1 (left) for an overview of the task.

A model with the right inductive bias should
generalize on the test data after having seen com-
positional expressions with other primitives during
training. The need for such inductive bias is jus-
tified via psychological experiments (Lake et al.,
2019) indicating that humans do have the ability to

1We use the term systematicity in the rest of the paper to
refer to this difference.

424

generalize on such tasks. Previous works have sug-
gested that seq-to-seq models lack the appropriate
inductive bias necessary to generalize on this task
since they achieve near-zero accuracies on both
SCAN and Colors benchmarks. This has led to
the development of many specialized architectures
(Li et al., 2019; Gordon et al., 2020; Chen et al.,
2020; Akyurek and Andreas, 2021), learning pro-
cedures (Lake, 2019; Conklin et al., 2021) and data
augmentation methods (Andreas, 2020; Guo et al.,
2020) to solve the task.

Contributions. The primary claim of our paper
is that, contrary to prior belief, neural sequence
models such as Transformers and RNNs do have
an inductive bias2 to generalize compositionally
which can be enabled using the right supervision.
(i) We show that by making simple and intuitive
changes to the training data distribution, standard
seq-to-seq models can achieve high generalization
performance even with a training set of size less
than 20% of the original training set. In particu-
lar, if we incorporated examples with more novel
primitives in the training set without necessarily
increasing the size of the training set (see right part
of Fig. 1), then the generalization performance of
standard seq-to-seq models improves and reaches
near-perfect score after a certain point. Our re-
sults also exemplify the importance of the training
distribution apart from architectural changes and
demonstrate that providing the right supervision
can significantly improve the generalization abili-
ties of the models. (ii) We investigate the potential
cause behind the improvement in generalization
performance and observe that the embedding of the
isolated primitive becomes more similar to other
primitives when the training set has higher number
of primitives and their use cases. (iii) To under-
stand the phenomenon better, we characterize the
effect of different training distributions and model
capacities. Our results show that the parameters of
the experimental setting play a crucial role while
evaluating the generalization abilities of models.

2 Enabling Generalization by Providing
the Right Supervision

Setup. We focus on the SCAN and Colors
datasets.3 Both these datasets have exactly one
isolated primitive. We refer to all other primitives

2However, note that this inductive bias is not as strong as
that of specialized architectures designed for these tasks.

3Results on COGS (Kim and Linzen, 2020) can be found
in Appendix C.

0 10 20 50 100
Number of extra primitives added to SCAN

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

SCAN
Transformer
LSTM

0 5 10 20
Number of extra primitives added to Colors

Colors
Transformer
LSTM

Figure 2: Generalization performance (↑) on SCAN
and Colors improves with higher number of example
primitives in the training set.

(i.e., those that are also composed with other words
to form sentences in the training set) as example
primitives. Both the SCAN and Colors training sets
have exactly three example primitives. The training
set of SCAN has 13.2k examples while the test
set has 7.7k examples. Colors has just 14 training
examples and 8 test examples. More details on
implementation and datasets can be found in
Appendix A & B. Our source code is available
at https://github.com/arkilpatel/Compositional-
Generalization-Seq2Seq.

Adding More Primitives. We modify the train-
ing set such that the number of distinct example
primitives present in the dataset is higher. To do
so, we add new primitives to the language which
are simply random words (e.g., ‘swim’, ‘clap’, etc.)
that have the same semantics and follow the same
grammar rules as other existing primitives (see Fig.
1 (right) for illustration). These new primitives
act as example primitives in our training set. For
SCAN, we control the size of the training set such
that it is at most the size of the original dataset.4

To generate the training set, we randomly sample
the examples from the new grammar and discard
all compositional sentences with the isolated primi-
tive. For each example primitive and the isolated
primitive, a primitive definition (such as ‘walk→
WALK’) is also added to the training set. The test
set is untouched and remains the same.

Main Observation. Fig. 2 shows the gener-
alization performance of Transformer and LSTM
based seq-to-seq models. We observe that there is
a clear trend of improvement in compositional gen-

4The training set size |T | is kept fixed by discarding origi-
nal examples and adding (|T |/#primitives) examples per
primitive. Because of extremely small data size, we cannot do
this for Colors while also trying to illustrate our idea.

425

https://github.com/arkilpatel/Compositional-Generalization-Seq2Seq
https://github.com/arkilpatel/Compositional-Generalization-Seq2Seq

0 10 20 50 100
Number of Primitives

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Av

er
ag

e
Di

st
an

ce
euclidean

Transformer
LSTM

manhattan
Transformer
LSTM

cosine
Transformer
LSTM

Figure 3: Measuring the distance of embedding of iso-
lated primitive with embeddings of example primitives
for learned Transformer and LSTM models as we in-
crease the number of example primitives in SCAN.

eralization as we increase the number of example
primitives and their use cases. It is surprising to see
that on SCAN, Transformers perform on par with
some recently proposed specialized architectures
(Li et al., 2019; Gordon et al., 2020) and even better
than certain architectures (Russin et al., 2019).

Implication. Since the training set still contains
only one non-compositional example with the iso-
lated primitive5 and the test set is untouched, one-
shot primitive generalization setting is preserved.
Hence our results clearly show that standard neu-
ral sequence models have ‘some’ inductive bias
required to generalize on such out-of-distribution
tasks even if it is not as strong as that of special-
ized architectures designed primarily to solve these
tasks. Our results are in contradiction to previously
suggested limitations of standard seq-to-seq mod-
els in terms of primitive generalization (Lake and
Baroni, 2018; Furrer et al., 2020; Baroni, 2020).
While it is important to develop architectures with
better compositional generalization abilities, we
wish to highlight that synthetic benchmarks such as
SCAN require a model with very strong inductive
biases and tend to underestimate the generalization
abilities of baseline models.

While we have shown that these models can gen-
eralize from one-shot exposure to primitive defi-
nitions, our results also hold for the more general
case where the one-shot exposure of the primitive is
in a sentence (e.g. ‘jump twice→ JUMP JUMP’).
More details regarding these experiments can be
found in Appendix D.

Prior Work. Note that our work is unrelated
to previous works that propose data augmentation

5Note that our results also hold when there are multiple
isolated primitives in the dataset at the same time. This is
discussed in Appendix E.5.

150 100 50 0 50 100

100

50

0

50

100

150

(a) No extra primitives
150 100 50 0 50 100 150

150

100

50

0

50

100

150

(b) 10 extra primitives

75 50 25 0 25 50 75
75

50

25

0

25

50

75

(c) 20 extra primitives
20 15 10 5 0 5 10 15

10

0

10

20

(d) 50 extra primitives

Figure 4: Visualizing the t-SNE reduced embeddings of
isolated primitive (), example primitives () and non-
primitives () from a learned Transformer model as we
increase number of example primitives in SCAN.

approaches for compositional generalization tasks
(Andreas, 2020; Guo et al., 2020; Akyürek et al.,
2021). (1) The datasets created by some of these
augmentation methods do not preserve the system-
atic differences between train and test sets, while
our datasets do.6 (2) The objective of these works
was to devise a method to improve compositional
generalization performance whereas the focus of
our work is not to develop a general method; rather
we want show that baseline seq-to-seq models
are capable of generalizing compositionally even
without breaking systematicity. (3) These meth-
ods add additional data resulting in datasets of
larger sizes whereas we control for data size.

2.1 Analyzing the Embedding of the Isolated
Primitive

Our results raise the question: Why do Transform-
ers and LSTMs generalize better when the training
data has more example primitives? Compositional
generalization in our setting requires a model to
learn to apply the same rules to the isolated primi-
tive as it does to the other example primitives. Thus,
we analyze the change in the learned embedding of
the isolated primitive (such as ‘jump’) with respect
to other primitives in different settings.

In particular, we compare the average distance
with other primitives before and after adding cer-
tain number of primitives to training data (this is
the same setting that was explained earlier in this
section). We find that as we increase the number
of example primitives in the training set, the em-

6We discuss this in more detail in Appendix F.

426

20 25 30 35 40 50 75 100
Number of Primitives

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Linear
Quadratic
Uniform-100
Skewed

(a) Other Distributions

20 50 100 200 500 1000
Number of Examples per Primitive

10

20

50

75

100

Nu
m

be
r o

f P
rim

iti
ve

s

0.0 0.3 0.8 1.5 1.6 8.7

0.0 8.3 12.7 14.4 43.6 66.0

13.4 32.2 49.0 91.3 93.7 95.4

43.0 81.1 90.5 94.2 98.7 99.6

83.4 96.2 98.7 97.7 98.9 99.1

(b) Uniform Distribution

Figure 5: Measuring the generalization performance of
Transformer on different types of training set distribu-
tions of the SCAN dataset.

bedding of the isolated primitive gets closer to the
example primitives (Fig. 3) in terms of Euclidean,
Manhattan and Cosine distances. If the embedding
of the isolated primitive is closer to the embed-
dings of the other primitives, then the model is
more likely to operate over it in a similar fashion
and apply the same rules as it does over the other
primitives.

This phenomenon is also illustrated in t-SNE
plots (Fig. 4) of the learned embeddings where the
embedding of the isolated primitive seems closer
to the embeddings of the example primitives when
there are more example primitives in the dataset.
Hence, a possible reason behind improved general-
ization performance could be the difference in the
learned embeddings.7 Additional results with the
LSTM model and Colors dataset can be found in
Appendix E.1.

3 Exploring the Impact of the Parameters
of the Experimental Setup

3.1 Impact of Training Distributions

In this section, we analyze the influence of different
training distributions on the generalization perfor-

7More fundamental reasons for difference in learned em-
beddings, such as learning dynamics, are beyond our scope.

mance of the model. In the previous experiments,
the data generating distribution was uniform over
all possible samples. Here, we alter the training
data distribution by varying the number of exam-
ples for each example primitive. The test set re-
mains unchanged and there will still be only one
non-compositional example of the isolated prim-
itive (i.e., the primitive definition) in the training
set. We experiment with linearly, quadratically and
exponentially increasing probability distribution
functions. For instance, in the quadratically increas-
ing case, a training set with 10 example primitives
will have one example primitive with 1 composi-
tional example, the next one with 4 compositional
examples, another one with 9 compositional exam-
ples and so on.8 Similarly, in the exponentially
increasing case (which we also call ‘skewed’), 10%
example primitives have 500 compositional exam-
ples each, 30% have 10 compositional examples
each and the remaining have just one compositional
example each in the training set. The general idea
is that all the example primitives do not have equal
representation in the training data. Upon training
the models on different distributions, we observed
that the models generalize well even with fewer
number of example primitives when their distri-
bution is linearly or quadratically increasing (Fig.
5a). On the other hand models struggle to gen-
eralize when the distribution is skewed. In that
case, most primitives appear in only one or very
few compositional sentences in the training data.
The failure to generalize on such data implies that
extra primitives must be added as part of multiple
compositional sentences; just adding the primitive
definition or a single example for each example
primitive does not help the model to leverage it.

We then try to characterize the relationship be-
tween the number of example primitives and the
amount of data required for the model to general-
ize well on the test data, when the example primi-
tives are uniformly distributed. We create different
training sets by varying the total number of ex-
ample primitives, #primitives; for each example
primitive, we draw #examples number of sam-
ples uniformly from the CFG. Fig. 5b shows the
generalization performance of Transformers for
each of these training sets. The size of each train-
ing set is the product of the row and column values
(#primitives × #examples). As expected, the

8In all experimental setups considered in this paper, each
example primitive will always have a primitive definition in
the training set.

427

150K 372K 1.03M 3.25M 12.8M 31M
Transformer Model Size (Number of Parameters)

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
100 primitives
50 primitives
20 primitives
10 primitives

Figure 6: Measuring the generalization performance
of a Transformer of varying capacity across increasing
number of primitives in the SCAN training set.

upper-right triangle has higher scores indicating
that the sample requirement decreases as we add
more primitives to the dataset. Surprisingly, the
top-left cell indicates that Transformers can achieve
high performance even with 2k training examples
which is less than 20% of the original SCAN train-
ing set. Additional results with the LSTM model
can be found in Appendix E.2.

3.1.1 Understanding Transferability

We wish to check whether the inductive bias that is
enabled when a model is trained on more number of
example primitives can be transferred to a scenario
where the number of example primitives is limited.
We create a pretraining set with 50 example prim-
itives uniformly distributed, each of them having
200 examples. The finetuning set is the original
SCAN training set and the test set is the original
SCAN test set. The model is first trained from
scratch on the pretraining set and then finetuned on
the finetuning set.

We find that if we allow all the parameters of
the Transformer model to be updated during the
finetuning phase on the original SCAN training set,
then the model generalizes very poorly. On the
other hand, when we freeze the weights of the en-
coder and decoder after the pretraining phase, and
only allow the embedding and output layers to be
updated, then the model generalizes near-perfectly
on the test set. Our hypothesis is that in the latter
setting, the task becomes simpler for the model
since it only has to align the embeddings of the
newly seen primitives in the finetuning phase with
the embeddings of the primitives seen during the
pretraining phase. This experiment also indicates
that the previously learned rules during pretraining
can help a model to compositionally generalize on
novel primitives.

3.2 Impact of Model Capacity
We analyze the relationship between the model ca-
pacity and the number of example primitives in the
training set. We vary the number of primitives as
per the description in Section 2. We evaluate the
generalization performance of the models while
gradually increasing the number of parameters by
increasing the size of its embeddings and interme-
diate representations. For each experiment, we ex-
haustively finetune the rest of the hyperparameters
(e.g., dropout, learning rate, batch size, etc.) to se-
lect the best model. Looking at Fig. 6, we observe
a general trend in which the model starts to over-
fit and has poor generalization performance as we
increase the model size. Note that all these model
configurations are able to achieve near-perfect accu-
racies on the SCAN random split that does not test
for compositional generalization. This shows that
carefully controlling the model size is important
for achieving compositional generalization. On
such small datasets, larger models might simply
memorize the input-output mappings in the train-
ing set. Indeed, such memorization has been cited
as a potential reason to explain why models fail at
compositional generalization (Conklin et al., 2021).
We also find that as we increase the number of ex-
ample primitives, the models are less susceptible
to overfitting and achieve relatively better general-
ization performance. Additional results with the
LSTM model and Colors dataset can be found in
Appendix E.3.

4 Conclusion

While it is essential to make progress in building
architectures with better compositional generaliza-
tion abilities, we showed that the generalization
performance of standard seq-to-seq models (often
used as baselines) is underestimated. A broader
implication of our experiments is that although
systematicity must be preserved when designing
such benchmarks, it is imperative to carefully ex-
plore different parameters associated with the ex-
perimental setup to draw robust conclusions about
a model’s generalization abilities.

Acknowledgements

We thank the anonymous reviewers for their con-
structive comments. We would also like to thank
Kabir Ahuja, Zihuiwen Ye and our colleagues at
Microsoft Research India for their valuable feed-
back and helpful discussions.

428

References
Ekin Akyürek, Afra Feyza Akyürek, and Jacob Andreas.

2021. Learning to recombine and resample data for
compositional generalization. In International Con-
ference on Learning Representations.

Ekin Akyurek and Jacob Andreas. 2021. Lexicon learn-
ing for few shot sequence modeling. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4934–4946, Online.
Association for Computational Linguistics.

Jacob Andreas. 2020. Good-enough compositional data
augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7556–7566, Online. Association for
Computational Linguistics.

Marco Baroni. 2020. Linguistic generalization and
compositionality in modern artificial neural networks.
Philosophical Transactions of the Royal Society B,
375(1791):20190307.

Paul Bloom. 2000. How Children Learn the Meanings
of Words. MIT Press.

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Song,
and Denny Zhou. 2020. Compositional generaliza-
tion via neural-symbolic stack machines. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1690–1701. Curran Associates,
Inc.

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan
Titov. 2021. Meta-learning to compositionally gen-
eralize. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3322–3335, Online. Association for Computa-
tional Linguistics.

Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber.
2021. The devil is in the detail: Simple tricks im-
prove systematic generalization of transformers. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 619–
634, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures.

Jonathan Gordon, David Lopez-Paz, Marco Baroni, and
Diane Bouchacourt. 2020. Permutation equivariant
models for compositional generalization in language.
In International Conference on Learning Representa-
tions.

Demi Guo, Yoon Kim, and Alexander Rush. 2020.
Sequence-level mixed sample data augmentation. In

Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5547–5552, Online. Association for Computa-
tional Linguistics.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Pro-
ceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2873–2882. PMLR.

Brenden M Lake. 2019. Compositional generalization
through meta sequence-to-sequence learning. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Brenden M. Lake, Tal Linzen, and Marco Baroni. 2019.
Human few-shot learning of compositional instruc-
tions.

Yuanpeng Li, Liang Zhao, Jianyu Wang, and Joel Hest-
ness. 2019. Compositional generalization for primi-
tive substitutions. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4293–4302, Hong Kong, China. Association
for Computational Linguistics.

Santiago Ontañón, Joshua Ainslie, Vaclav Cvicek, and
Zachary Fisher. 2021. Making transformers solve
compositional tasks.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Jake Russin, Jason Jo, Randall C. O’Reilly, and Yoshua
Bengio. 2019. Compositional generalization in a
deep seq2seq model by separating syntax and seman-
tics.

Ning Shi, Boxin Wang, Wei Wang, Xiangyu Liu, Rong
Zhang, Hui Xue, Xinbing Wang, and Zhouhan Lin.
2021. From scan to real data: Systematic generaliza-
tion via meaningful learning.

429

https://openreview.net/forum?id=PS3IMnScugk
https://openreview.net/forum?id=PS3IMnScugk
https://doi.org/10.18653/v1/2021.acl-long.382
https://doi.org/10.18653/v1/2021.acl-long.382
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://proceedings.neurips.cc/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://aclanthology.org/2021.emnlp-main.49
https://aclanthology.org/2021.emnlp-main.49
http://arxiv.org/abs/2007.08970
http://arxiv.org/abs/2007.08970
http://arxiv.org/abs/2007.08970
https://openreview.net/forum?id=SylVNerFvr
https://openreview.net/forum?id=SylVNerFvr
https://doi.org/10.18653/v1/2020.emnlp-main.447
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.neurips.cc/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
http://arxiv.org/abs/1901.04587
http://arxiv.org/abs/1901.04587
https://doi.org/10.18653/v1/D19-1438
https://doi.org/10.18653/v1/D19-1438
http://arxiv.org/abs/2108.04378
http://arxiv.org/abs/2108.04378
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://arxiv.org/abs/1904.09708
http://arxiv.org/abs/1904.09708
http://arxiv.org/abs/1904.09708
http://arxiv.org/abs/2003.06658
http://arxiv.org/abs/2003.06658

A Implementation Details

We use 8 NVIDIA Tesla P100 GPUs each with 16
GB memory to run our experiments. All models
are implemented in PyTorch (Paszke et al., 2019).
We do not use any pretrained models and all em-
beddings are learnt from scratch. Parameters are
updated using Adam optimization. All results are
an average of 5 different runs with random seeds.
The dataset-specific hyperparameters used for each
model are shown in Table 1.

B Primitive Generalization Datasets

In this paper, we show results on three datasets that
evaluate primitive generalization.

SCAN (Lake and Baroni, 2018) is a super-
vised sequence-to-sequence semantic parsing task
wherein the natural language input command has
to be transformed to the corresponding set of ac-
tions. The complete dataset consists of all the com-
mands (a total of 20,910) generated by a phrase-
structure grammar and the corresponding sequence
of actions, produced according to a semantic inter-
pretation function. The benchmark consists of 4
splits: random, add jump, turn left and length. We
work on the ‘add jump’ split which was designed
to test primitive generalization. In this split, the
test set (size: 7706) is made up of all the composi-
tional sentences with the primitive ‘jump’ (which
we refer to as the isolated primitive). The train set
(size: 13,2049) has just one example of the isolated
primitive (i.e. the primitive definition ‘jump →
JUMP’) and other examples demonstrating the def-
initions and compositions of the three other primi-
tives (which we refer to as the example primitives).
Table 2 illustrates the task.

Colors (Lake et al., 2019) is a sequence-to-
sequence task that was designed to measure hu-
man inductive biases. Apart from the challenge of
primitive generalization, this dataset poses an addi-
tional challenge of low-resource learning for neural
sequence models. The train set has just 14 exam-
ples that are either primitive definitions of the four
primitives or examples with compositions of the
three example primitives and three operations (con-
catenation, repetition and wrapping). The test set
has 8 examples10 with compositions of the isolated

9The dataset released by (Lake and Baroni, 2018) is of size
14,670 which has many repetitions of the ‘jump → JUMP’
primitive definition. In this work, we remove all these repeti-
tions since they do not significantly help in generalization.

10The original dataset has two additional examples which

Figure 7: The primitive generalization task in Colors11.
Note that the test set does not contain the two length
generalization examples.

100 75 50 25 0
Percentage of Primitives kept

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Transformer

Figure 8: Decrease in generalization performance on
our COGS primitive generalization test set with a de-
crease in the percentage of example primitives and their
use cases present in the train set.

primitive (‘zup’). Fig. 7 illustrates the task.
COGS (Kim and Linzen, 2020) is a semantic

parsing task of mapping English natural language
sentences to their corresponding logical forms.
Apart from primitive generalization, COGS also
evaluates other types of systematic generalization
such generalizing to higher depths or generalizing
to novel syntactic structures. The size of the train
set is 24,155 and that of the test set is 21,000.

C Removing Primitives Hurts
Generalization on COGS

Unlike SCAN and Colors, both of which have a
single isolated primitive and only 3 example prim-
itives, COGS has 3 isolated primitives - a verb, a
common noun and a proper noun which are sup-
ported by 80 verbs, 40 common nouns and 20
proper nouns as example primitives. We hypoth-
esize that this high number of example primitives
might be one of the reasons behind the high perfor-
mance of Transformers on COGS (Csordás et al.,

evaluate length generalization. Since we focus only on primi-
tive generalization, we do not evaluate on these.

11Image taken from Akyurek and Andreas (2021).

430

SCAN COLORS COGS

Hyperparameters Transformer LSTM Transformer LSTM Transformer

Embedding Size [64, 128, 256] [64, 128, 256] [16, 32, 64] [16, 32, 64] [384, 512]
Hidden/FFN Size [256, 512] [64, 128] [16, 32, 64] [16, 32, 64] [512, 1024]
Heads [2, 4] N/A [4, 8] N/A [2, 4]
Number of Layers [2, 3] [1, 2] [2, 3] [1, 2] [2, 3]
Learning Rate [3e-4, 5e-4, 8e-4] [5e-3, 8e-3, 1e-2] [8e-4, 1e-3] [5e-3, 8e-3, 1e-2] [3e-4, 5e-4, 8e-4]
Batch Size [128, 256] [128, 256] [1, 2] [1, 2] [128, 256]
Dropout [0.1, 0.2] [0.1, 0.2] [0.1, 0.2] [0.1, 0.2] [0.1, 0.2]

Epochs 150 150 150 150 150
Avg Time/Epoch 30 40 2 3 60

Table 1: Different hyperparameters and the values considered for each of them in the models. The best hyperpa-
rameters for each model for all the datasets (with maximum number of primitives of all the settings studied in this
paper) are highlighted in bold. Average Time/Epoch is measured in seconds.

TRAIN:

jump JUMP
run after run left LTURN RUN RUN
run RUN
look left twice LTURN LOOK LTURN LOOK

TEST:

jump twice after look LOOK JUMP JUMP
turn left and jump LTURN JUMP
jump right twice RTURN JUMP RTURN JUMP

Table 2: An illustration of the primitive generalization
task in SCAN.

2021; Ontañón et al., 2021), as far as primitive
generalization is concerned.

To validate our hypothesis, we systematically
reduce the number of example primitives in COGS
and evaluate the model. The test set of COGS
focusing on primitive generalization consists of
5000 examples. If we directly start removing the
primitives from the train set, we risk having out-
of-vocabulary tokens in the test set. Hence we
select a portion of the test set of size 1218 which
exludes 129 example primitives. We will hold this
test set fixed and vary the percentage of the 129
example primitives to be inserted in the train set.
For each example primitive, samples are drawn
uniformly from the original COGS train set. Note
that even though the number of example primitives
and their use cases will vary in the train set, we
control the total train set size to be always 2500 for
fair evaluation.

The results of our experiment can be seen in
Fig. 8. We see a clear trend of decrease in gener-
alization performance as we decrease the number
of example primitives and their use cases. This
is in tandem with the results shown in Section 2
and further validates the idea that providing more
example primitives and their use cases helps neural

COMPLEXITY SENTENCE

1 jump twice
2 jump thrice and look
3 run twice after jump opposite left
4 jump around left and walk opposite left twice

Table 3: Sentences of varying complexities featuring
the isolated primitive ‘jump’.

sequence models generalize on the primitive gener-
alization task. Our results help explain that the gap
in performance of neural sequence models on prim-
itive generalization tasks in COGS and primitive
generalization tasks in SCAN or Colors is at least
partially caused by the difference in the number
of example primitives and their use cases in these
datasets.

D Implicit Word Learning

Drawing analogy from human vocabulary acquisi-
tion (Bloom, 2000), our primitive generalization
setting corresponds to the case when a child is
explicitly explained the meaning of a word. But
children can learn word meaning from implicit us-
age. In our setting this would translate to using
a primitive in a more complex construction, say
‘jump twice→ JUMP JUMP’ instead of the original
‘jump→ JUMP’. It would be interesting to evalu-
ate how well seq-to-seq models learn the meanings
of words from a single sentence and whether they
learn to use that word compositionally with other
words.

We consider the ‘add jump’ split in SCAN. In-
stead of providing the ‘jump→ JUMP’ primitive
definition in the train set, we provide one compo-
sitional sentence featuring ‘jump’. We vary the
complexity of this sentence as shown in Table 3.
Similar to the case of providing only the primitive
definition, we observe that models are unable to

431

600 400 200 0 200
600

400

200

0

200

400

600

(a) No extra primitives
400 200 0 200

200

0

200

400

600

(b) 10 extra primitives
500 400 300 200 100 0 100 200

200

0

200

400

600

(c) 20 extra primitives

Figure 9: Visualizing the t-SNE reduced embeddings of isolated primitive (), example primitives () and non-
primitives () from a learned LSTM model as we increase the number of example primitives in the Colors train set.

0 5 10 20
Number of Primitives

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

Di
st

an
ce

euclidean
Transformer
LSTM

manhattan
Transformer
LSTM

cosine
Transformer
LSTM

Figure 10: Measuring the similarity of the embedding
of isolated primitive with the embeddings of example
primitives for learned Transformer and LSTM models
as we increase the number of example primitives in the
Colors train set.

generalize and achieve near-zero accuracies.
We now wish to see whether the presence of

more number of primitives and their sentences in
the train set helps a model generalize in this sce-
nario (like it did for primitive definitions as shown
in Section 2). We consider the setup of having 100
primitives and their sentences in the train set (Sec-
tion 2) apart from the one compositional sentence
with the word ‘jump’. We find that models are able
to achieve near-perfect generalization accuracies.

This shows that our idea holds more generally:
Adding more primitives and their sentences helps a
model effectively learn the meaning of a new prim-
itive, whether specified explicitly via a primitive
definition or implicitly in a sentence.

E Details of Experimental Setups and
Other Results

E.1 Embedding of Isolated Primitive
We scale the embedding vectors to unit L2-norm
for calculating the euclidean distance and unit L1-
norm for calculating the manhattan distance. For
Colors dataset as well, we compare the average dis-
tance with other primitives before and after adding

3035404550 100 150
Number of Primitives

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Linear
Quadratic
Uniform-100
Skewed

(a) Other Distributions

20 50 100 200 500 1000
Number of Examples per Primitive

10

20

50

75

100

Nu
m

be
r o

f P
rim

iti
ve

s

0.0 0.0 0.8 1.1 1.8 4.2

0.7 1.3 9.9 11.3 12.8 35.6

7.6 15.3 27.4 45.9 73.2 84.1

21.0 41.7 53.6 74.8 79.6 85.9

43.6 65.4 88.8 90.3 92.1 93.7

(b) Uniform Distribution

Figure 11: Measuring the generalization performance
of LSTM on different types of train set distributions of
the SCAN dataset.

primitives to the training data. We again find that
as we increase the number of example primitives in
the training set, the embedding of the isolated prim-
itive (‘zup’) gets closer to the example primitives
(refer to Fig. 10) in terms of Euclidean, Manhattan
and Cosine Distances.

We additionally show the t-SNE plots of the
learned embeddings for the LSTM model on the
Colors dataset (Fig. 9).

E.2 Impact of Training Distributions
In Section 3.1, we showed results of the Trans-
former model on various train set distributions of
the SCAN dataset. We also experimented with the
LSTM model, the results of which can be found
in Fig. 11. We see the same trend as we saw for
Transformers.

432

6.7K 8.7K 24.1K 91.2K 118K 354K
LSTM Model Size (Number of Parameters)

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
20 primitives
10 primitives
5 primitives

Figure 12: Measuring the generalization performance
of an LSTM of varying capacity across increasing num-
ber of primitives in the Colors train set.

0 10 20 50 100
Number of Primitives

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Transformer
LSTM

Figure 13: Generalization performance on SCAN
across different runs with random seeds.

E.3 Impact of Model Capacity
In Section 3.2, we showed results of varying sizes
of Transformers trained on datasets with different
number of example primitives. We also experi-
mented with the LSTM model, the results of which
on the Colors dataset can be found in Fig. 12. We
see the same trend as we saw for Transformers.

E.4 Variance Across Different Runs
We plot the generalization accuracies of the Trans-
former and LSTM models on SCAN and Colors
datasets over 5 different runs with random seeds in
Fig. 13-14. Both models displayed a high degree
of variance in generalization performance on both
datasets. It is interesting to see that the variance
decreases with increasing number of primitives.

E.5 Evaluation on Multiple Isolated
Primitives

Our results are valid not just when there is a single
isolated primitive, but even when there are multiple
isolated primitives that are used compositionally at
test time. While we believe that this holds trivially
due to the symmetry of the setup, for completeness,
we provide empirical evidence. We consider the
setting on SCAN in which the train set has a total of

0 5 10 20
Number of Primitives

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Transformer
LSTM

Figure 14: Generalization performance on Colors
across different runs with random seeds.

100 example primitives uniformly distributed. To
this train set, in addition to the primitive definition
of ‘jump’ (i.e., ‘jump→ JUMP’), we add 9 other
primitive definitions of newly introduced isolated
primitives. Thus, while the size of the train set in
this setting was 13185, the size of the new train set
is 13194. We then extract templates from the origi-
nal SCAN test set and exhaustively populate these
templates with the 10 isolated primitives. Hence,
while the size of the original test set was 7706, the
size of the new test set is 77060.

We evaluated Transformers on this data. The
best model achieved 94.5% accuracy on the com-
plete test set, thereby showing that our method-
ology and results are valid even when there are
multiple isolated primitives in the dataset at the
same time.

F A Note on Other Data Augmentation
Methods

Applying data augmentation methods such as
GECA (Andreas, 2020) on SCAN will lead to
addition of training examples in which the input
sentences are compositions of the isolated primi-
tive ‘jump’. This breaks the systematicity of the
setup. While such automatic data augmentation ap-
proaches are important resources for enabling com-
positional generalization, a model that performs
well on this modified split cannot be considered to
be able to generalize compositionally.

Shi et al. (2021) proposed a data augmentation
method based on the theory of meaningful learn-
ing. Similar to our work, they also augment the
train set by adding more primitives (e.g. ‘jump_0’,
‘jump_1’, ..., ‘jump_n’). However, compared to our
work, their setup is completely different: The new
primitives that they add to the train set are all still
mapped to the output token of an example prim-

433

itive ‘jump’, which is ‘JUMP’ (i.e. ‘jump_0 →
JUMP’, ..., ‘jump_n→ JUMP’). Their train set has
examples showing compositions of ‘jump’ while
their test set evaluates for novel compositions of
the newly added primitives. We argue that their
setup cannot be considered one-shot primitive gen-
eralization since now the model can see the output
token ‘JUMP’ in composition with other words.
We claim that this familiarity with the output token
enables a model to generalize well on the test data
even if the newly added primitives are only pre-
sented one-shot in the train set. Indeed, Lake and
Baroni (2018) also suggested that the reason why
models are able to do well on the ‘turn left’ split
of SCAN is because the train set consists of many
examples that have the output token ‘LTURN’ used
compositionally.

To validate our claim, we propose a simple exper-
iment. In the original SCAN ‘add jump’ split, we
map ‘jump→WALK’ instead of ‘jump→ JUMP’
for all examples (primitive definition as well as
compositional sentences) in both the train and test
sets. In this setup, even though the input word
‘jump’ is seen only once at train time, it’s mapping
‘WALK’ is used compositionally in many examples.
On evaluating a Transformer model on this split,
we found that it achieves a near-perfect accuracy.
This shows that providing compositional examples
with the output token of the isolated primitive not
only breaks systematicity, but is the reason behind
the high performance of models in that setting.

434

