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Abstract

Large-scale pre-trained sequence-to-sequence
models like BART and T5 achieve state-of-
the-art performance on many generative NLP
tasks. However, such models pose a great
challenge in resource-constrained scenarios ow-
ing to their large memory requirements and
high latency. To alleviate this issue, we pro-
pose to jointly distill and quantize the model,
where knowledge is transferred from the full-
precision teacher model to the quantized and
distilled low-precision student model. Empir-
ical analyses show that, despite the challeng-
ing nature of generative tasks, we were able
to achieve a 16.5x model footprint compres-
sion ratio with little performance drop relative
to the full-precision counterparts on multiple
summarization and QA datasets. We further
pushed the limit of compression ratio to 27.7x
and presented the performance-efficiency trade-
off for generative tasks using pre-trained mod-
els. To the best of our knowledge, this is the
first work aiming to effectively distill and quan-
tize sequence-to-sequence pre-trained models
for language generation tasks.

1 Introduction

Pretrained sequence-to-sequence (seq2seq) mod-
els such as BART (Lewis et al., 2020; Liu et al.,
2020) and T5 (Raffel et al., 2020; Xue et al., 2021)
have shown great success in various natural lan-
guage processing (NLP) tasks, such as text sum-
marization (Nallapati et al., 2016; See et al., 2017;
Narayan et al., 2018), machine translation, ques-
tion answering (Fan et al., 2019) and information
extraction (Zhou et al., 2021). However, such
large-scale pre-trained language models come with
hundreds of millions of parameters: Lewis et al.

†Work done during an internship at AWS AI Labs.
§Equal contribution.

(2020) trained a BART model with 400M parame-
ters, while Raffel et al. (2020) pushed the limit to
11 billion parameters in T5.

The continual growth in model sizes leads to sig-
nificant demand in both computation and memory
resources during inference, and poses a huge chal-
lenge on deployment, especially in real-time and/or
resource-constrained scenarios. This motivates re-
searchers to compress large pre-trained models to
be smaller and faster while retaining strong perfor-
mance. Among existing compression approaches
such as weight-sharing (Dehghani et al., 2019; Lan
et al., 2020), low-rank approximation (Ma et al.,
2019; Lan et al., 2020), and pruning (Michel et al.,
2019), quantization approaches have received at-
tention recently since they reduce model footprints
using lower bits for the weight values without
changing the carefully-designed model architec-
ture. Most prior work on transformer quantization
focused on BERT-based transformers (Zhang et al.,
2020; Zafrir et al., 2019; Bai et al., 2021). How-
ever, efficient quantization on the encoder-decoder
transformers is insufficiently studied. Prato et al.
(2020) achieve 8-bit quantization for a seq2seq
transformer without significant loss of performance
but low-bit quantization proved to be difficult for
this model (4-bit performance in Table 2 in their
work) due to the accumulation of quantization er-
rors in seq2seq models. Moreover, their work did
not target quantizing large-scale pre-trained lan-
guage models, nor could it be applied to other
NLP tasks besides machine translation. Meanwhile,
model distillation which transfers knowledge from
a large teacher model to a smaller student model
has been widely investigated for BERT compres-
sion (Sanh et al., 2019; Jiao et al., 2020).

Recently, Shleifer and Rush (2020) applied
“shrink and fine-tune” distillation method on BART
for text summarization, yet their work focuses more
on the methodology for distilling text summariza-
tion only. Besides, their work did not yield a sig-
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nificant model footprint reduction, one of the most
challenging issues in the deployment of large mod-
els in resource-constrained scenarios.

In this work, we try to address the challenge
of building a more efficient seq2seq model by an-
swering two research questions: first, how well
does the quantized seq2seq model perform on var-
ious tasks? Second, how do we combine quan-
tization and distillation to push the limit of com-
pressing the seq2seq model without significant per-
formance losses in challenging tasks like summa-
rization and question answering? To this end, we
proposed a joint distillation and quantization frame-
work, which efficiently transfers the knowledge
from a full-precision teacher seq2seq model to its
student with fewer layers and ultra-low bits for
encoding its parameters. Experimental results on
BART show that the proposed models reduce the
model footprint by 16.5x while preserving competi-
tive performances on multiple language generation
benchmarks, and further illustrate the performance-
efficiency trade-off of compressing seq2seq models
up to 27.7x smaller. To the best of our knowledge,
this is the first work aiming to effectively distill and
quantize seq2seq pre-trained models for language
generation tasks.

2 Distilling and Quantizing BART

In this section, we consider two directions for re-
ducing the size of our generative language model:
quantization (§2.1) and distillation (§2.2). We ap-
ply distillation-aware training (§2.3) to train a quan-
tized and distilled low-precision model as a student
model to emulate the full-precision teacher model.

2.1 Quantization
Quantization refers to the operation of mapping a
real (high-precision) number to its low-precision
counterpart in order to achieve model footprint re-
duction. There has been extensive study on ap-
plying quantization to training neural networks.
Different quantization schemes include, e.g., lin-
ear quantization (e.g., Hubara et al., 2016, 2017;
Jacob et al., 2018), non-linear quantization (Li
and Sa, 2019), approximation-based quantization
method (Lin et al., 2016), and loss-aware quanti-
zation (Hou and Kwok, 2018). In our work, we
used the approximation-based method with linear
quantization following Zhang et al. (2020).

Quantizing BART We applied quantization to
the weights of all the hidden layers and most of

the embeddings. Following previous work (Zhang
et al., 2020), we did not quantize positional embed-
dings and quantized activations only to 8 bits.

Weight Quantization We dive into the mathe-
matical details of how to quantize the weights in
BART models. Let us denote wt ∈ Rnt as the
vector obtained by stacking all the columns of the
full-precision weight matrix Wt that we wish to
quantize at iteration t. By quantizing wt, we are
looking for a scaling factor (also known as quanti-
zation step) αt and a low-precision number bt, to
replace full precision weight wt with αtbt. When
quantizing with more than 2 bits, we are applying
the commonly used symmetric linear quantization,
with

αt = max
i

|wt
i | / th

bt ∈ {−th, · · · ,−1, 0, 1, · · · , th}nt

where th = 2nb−1 − 1 and nb is the number of
bits we use for quantization. Then bt can be ob-
tained by bt = round(wt/αt). When quantizing
with 2 bits, we use the approximation based TWN
method (Li et al., 2016). The mathematical details
are provided in Appendix A.

2.2 Distillation
The second task we consider is knowledge dis-
tillation, where we train a smaller student model
to mimic the behavior of a larger teacher model;
specifically, we want to reproduce the output logits,
attentions, and hidden states of the teacher model.
Following Shleifer and Rush (2020), we initialize
the student model by copying the weights from
maximally spaced layers of the teacher model, e.g.,
when initializing a 3-layer student encoder (de-
coder) from a 6-layer teacher encoder (decoder),
we copy the 0th, 3th and 5th layers from the teacher
to the student. When copying only 1 layer, we
choose the last instead of the first, which has been
shown empirically to yield better performance. Dif-
ferent than Shleifer and Rush (2020) who only dis-
till the decoder, we distill both the encoder and
the decoder. After initialization, we fine-tune the
student model with the combined objective of task
loss and distillation loss, i.e. Ldata + Ldist, with

Ldist = Llogits + Latt + Lhid

where the RHS are MSE losses measuring the dif-
ference between the student and teacher with re-
gard to output logits, attention scores (including
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Model
W-E-A (#bits) E-D (#layers)

Size (MB)
Summarization Long-form QA

CNN/DailyMail XSUM ELI5
R1 R2 RL R1 R2 RL R1 R2 RL

32-32-32 6-6 531 (1x) 44.90 22.25 42.09 43.84 20.79 35.71 26.02 5.11 15.36
8-8-8 6-6 (direct quant.) 137 (3.9x) 11.36 1.01 11.01 22.74 5.69 17.81 6.72 0.43 4.89

Distillation-Aware Quantization

8-8-8 6-6 137 (3.9x) 44.66 21.92 41.86 42.51 19.61 34.61 27.10 5.15 16.23
2-2-8 6-6 39 (13.6x) 42.94 20.07 40.13 40.06 17.34 32.46 26.33 4.97 16.15

Distillation-Aware Quantization + Distillation

8-8-8 6-3 110 (4.8x) 43.99 21.25 41.24 41.94 19.21 34.21 26.38 5.13 16.27
8-8-8 6-1 92 (5.8x) 42.52 20.04 40.05 39.42 17.70 32.69 24.27 4.74 15.71
8-8-8 3-1 72 (7.4x) 41.18 18.75 38.58 36.39 15.29 29.91 23.69 453 15.51
2-2-8 6-3 32 (16.5x) 42.49 19.71 39.70 39.66 17.26 32.33 25.41 4.83 15.94
2-2-8 6-1 27 (19.2x) 41.14 18.72 38.66 36.61 15.33 30.22 23.34 4.31 15.20
2-2-8 3-1 22 (23.5x) 40.14 17.75 37.60 33.56 13.05 27.48 22.60 3.99 14.95
2-2-8 1-1 19 (27.7x) 39.00 16.73 36.42 29.04 9.56 23.47 21.51 3.44 14.30

Table 1: Distillation and quantization results on BART for text summarization on CNN/DailyMail and XSUM
benchmarks and long-form question answering on the ELI5 benchmark. We abbreviate the number of bits for
weights, word embedding and activations as “W-E-A (#bits)”, followed by the number of encoder and decoder layers
as “E-D (#layers)”. We use the rouge-{1,2,L} as evaluation metrics (Lin, 2004). We found that distillation-aware
quantized models achieves comparable or even better performance compared with the full precision models, and
combining quantization and distillation, e.g., from “2-2-8 6-6” to “2-2-8 6-3”, gives us a further boost in model
footprint compression ratio without significant sacrifice in performance. See §3.2 for details.

encoder attention, decoder attention and cross at-
tention), and hidden states (including all encoder
and decoder layers).1 We include the details of the
loss in Appendix B for completeness.

2.3 Distillation-aware quantization

To fine-tune our quantized and distilled model, we
use the technique of distillation-aware quantization
with a teacher-student architecture from (Zhang
et al., 2020)2. We treat the quantized and distilled
low-precision model as a student model trained to
emulate the full precision model, which in this case
is the teacher model. Meanwhile, we also keep the
full-precision distilled counterpart of the student
model for parameter update. At each iteration, we
first quantize the full precision student model to
get its quantized version, then do the forward pass
with the low-precision student model and get the
task loss as well as the distillation losses discussed
in §2.2. Finally, we use these losses to update the
parameters in the full-precision student model.

1Based on an initial small-scale study, we didn’t find a sig-
nificant difference between weighted and unweighted losses
in our setting. For simplicity, we use unweighted loss here
and leave the tuning of weights for future work.

2Note that in this work we jointly distill and quantize
encoder-decoder models, while Zhang et al. (2020) used a
similar technique but 1) for quantizing encoder-only models
and 2) without the actual model distillation.

3 Experiments and Discussions

In this section, we evaluate the efficacy of jointly
Distilling and Quantizing BART (hereinafter, DQ-
BART) on text summarization and long-form ques-
tion answering using three benchmarks: CNN/Dai-
lyMail (See et al., 2017), XSUM (Narayan et al.,
2018), and ELI5 (Fan et al., 2019). We additionally
study machine translation with mBART on WMT
English-Romanian (En-Ro) (Bojar et al., 2016).

3.1 Experimental Setup
We followed the standard splits of these datasets.
The statistics could be found in Appendix C. For
ELI5, we reproduced the author’s implementation
to train a dense retriever that retrieves 10 support-
ing documents from Wikipedia for each question.
Additional details could be found in Appendix D.

As our target is achieving efficient seq2seq gener-
ative models, we used base-sized BART for summa-
rization and question answering tasks. For machine
translation, we used mBART-large due to the lack
of pretrained base-sized multilingual BART mod-
els. We reused existing models3, and finetuned our
own models on end tasks when no open-sourced
model is available. We trained our quantized-only
models for 10 epochs and distilled-and-quantized

3
https://huggingface.co/ainize/bart-base-cnn;

https://huggingface.co/facebook/mbart-large-en-ro
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models for 20 epochs. We used a batch size of
128, a learning rate of 3 × 10−5 with 5% linear
warmup, and selected the best model based on
rouge-L scores on the development set. We set gen-
erative hyperparameters following previous work
(Lewis et al., 2020). All experiments were per-
formed on A100 GPUs.

3.2 DQ-BART Results and Discussions
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Figure 1: Visualization of performance v.s. model foot-
print compression ratio on CNN/DailyMail based on
Table 1. Green dots are for quantization only, and pur-
ple dots are for distillation + quantization. We found
that the performance degradation is minimal as the com-
pression ratio grows, especially before 20x.

We summarized the main results in Table 1 and
visualized the performance on text summarization
on the CNN/DailyMail dataset in Figure 1. Addi-
tional visualizations are in Appendix E. We found
that:

1. Direct quantization performs poorly in genera-
tion tasks. The rouge-L score drops ∼50-75%
relatively compared with the baseline.

2. The performance of 8-bit distillation-aware
quantized models (“8-8-8 6-6”) achieves com-
parable or even better performance compared
with the full precision models across all tasks,
signaling that 8-bit is not too challenging for
generative models like BART, similar to the
findings for BERT (Zhang et al., 2020).

3. We were able to achieve a 13.6x model size
compression ratio when using 2-bit quantiza-
tion with the trade-off of slight performance
drop for summarization tasks and even no per-
formance drop for the long-form QA task.

4. Combining quantization and distillation gives
us a further boost in model compression ratio
without significant further sacrifice in perfor-
mance. For example, when using 2-bit quan-
tization, by cutting the layers of the decoder

in half (from “2-2-8 6-6” to “2-2-8 6-3”), we
only saw < 0.5 rouge-L performance drop
across all tasks while getting another 2.9x
compression.

5. When pushing the compression rate to the
limit (“2-2-8 1-1”), we were able to achieve
a 27.7x compression ratio while still preserv-
ing reasonable performance. We observed
a rouge-L drop of 5.67 for CNN/DailyMail
(42.09 → 36.42), 12.24 for XSUM (35.71 →
23.47), and 1.06 for ELI5 (15.36 → 14.30).
Thus, for certain tasks a large model com-
pression ratio would not lead to a significant
performance drop while for others the drop
could be huge, suggesting that the specific
compression ratio to use should be decided
on a task-by-task basis with the trade-off of
performance and efficiency in mind.

3.3 DQ-mBART for Translation
We further extend our study to see how distilla-
tion and quantization work for mBART (Liu et al.,
2020), a deeper multilingual model. We experi-
mented mBART-large on WMT English-Romanian
translation task (Bojar et al., 2016). The results are
in Table 2.

Model Size BLEU

32-32-32 12-12 1x 26.82
8-8-8 12-12 (direct quant.) 4.0x 0.01

Distillation-Aware Quantization

8-8-8 12-12 4.0x 25.91
2-2-8 12-12 15.2x 23.48

Distillation-Aware Quantization + Distillation

8-8-8 12-6 4.7x 25.61
8-8-8 12-3 5.2x 24.22
8-8-8 12-1 5.6x 20.61
2-2-8 12-6 18.0x 17.66
2-2-8 12-3 19.9x 16.99
2-2-8 12-1 21.3x 12.81
2-2-8 1-1 30.6x 10.36

Table 2: Distillation and quantization results for transla-
tion on WMT16 En-Ro with mBART-large.

We found that distillation-aware quantization
yields reasonably good performance, similar to the
findings in DQ-BART (Table 1). However, the
performance drops substantially when performing
2-bit quantization with distillation, possibly due to
the accumulation of the distillation/quantization er-
ror becoming more significant with deeper models
and the challenging nature of machine translation.
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Future work may explore how to improve the per-
formance of joint distillation and quantization for
deep models under a low-bit setting.

3.4 Distillation and Quantization v.s.
Distillation Only

Model Size R1 R2 RL

CNN/DM
Distill + Quant 8-8-8 6-3 4.8x 43.99 21.25 41.24
Distill only 16-16-16 3-1 3.8x 41.17 18.72 38.62

XSUM
Distill + Quant 8-8-8 6-3 4.8x 41.94 19.21 34.21
Distill only 16-16-16 3-1 3.8x 36.60 15.46 30.07

ELI5
Distill + Quant 8-8-8 6-3 4.8x 26.38 5.13 16.27
Distill only 16-16-16 3-1 3.8x 23.80 4.54 15.40

Table 3: Comparisons between distillation-only and
joint distillation and quantization.

We want to understand how much gain there is
when doing joint distillation and quantization com-
pared with distillation-only method (Shleifer and
Rush, 2020). To do so, we trained distillation-only
models and compared them with DQ-BART with
a similar size. From Table 3, we found that joint
distillation and quantization performs much better
across all tasks, signaling the huge gain with joint
distillation and quantization. Additional ablation
study on “Shrink and Finetune” could be found in
Appendix F.

4 Conclusion

Transformer-based pre-trained seq2seq language
models like BART have greatly advanced the state
of the art in a range of NLP tasks. Yet, these
extremely large-scale models pose a challenge in
resource-constrained scenarios. To alleviate this is-
sue, we proposed DQ-BART, a jointly distilled and
quantized BART model. Empirical results show
that, despite the difficult nature of language gen-
eration tasks, we achieve a 16.5x model footprint
compression ratio with little performance drop on
three generative benchmarks, and further present
the performance-efficiency trade-off for seq2seq
models up to a 27.7x compression ratio. Addition-
ally, we studied distillation and quantization for
mBART on a machine translation task, and high-
lighted the challenge of joint low-bit quantization
with distillation for deeper models on cross-lingual
tasks. To the best of our knowledge, our method
is the first to apply joint quantization and distilla-
tion on pretrained language models, and this is the
first work aiming to effectively distill and quantize
seq2seq pretrained models for language generation

tasks. We hope this work could open doors for de-
veloping and applying efficient seq2seq language
models. We leave additional compression methods
like attention head pruning (Michel et al., 2019)
and sequence-level distillation (Kim and Rush,
2016), and the measurement of latency improve-
ments in various settings for future work. Our code
is available at https://www.github.com/
amazon-research/dq-bart/.
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A Details of TWN Quantization

When quantizing using 2 bits (which is also know
as ternarization), following Zhang et al. (2020),
we apply the TWN method (Li et al., 2016). To
quantize w, we are looking for scaling factor α > 0
and b ∈ {−1, 0, 1}n such that w ∼ αb where n is
the dimension of w. To minimize the quantization
error, we have the following optimization problem:

α∗,b∗ = argmax
α,b

||w − αb||2

where α > 0,b ∈ {−1, 0, 1}dim(w)

Denote ∆ as a threshold and I∆(x) be a function
such that

I∆(x) =


1, if x > ∆

0, if −∆ ≤ x ≤ ∆

−1, if x < −∆

and denote set J∆ = {i | I∆(wi) ̸= 0}, then ac-
cording to Hou and Kwok (2018), the solution to
the previous optimization problem can be reached
at

b∗ = I∆∗(w), α∗ =
||w ⊙ b∗||1

||b∗||1
,

with ∆∗ = argmax
∆

1

|J∆|

∑
i∈J∆

|wi|


where ⊙ is element-wise multiplication and || · ||1
is the l1-norm. To approximate this result, we set
∆∗ = 0.7||w||1/dim(w) then compute α∗ and b∗

accordingly.

B Details of Distillation Losses

The distillation losses is defined as the following:

Ldist = Llogits + Latt + Lhid

In this section we’ll go through each part of the
losses. We denote ϕenc(·), ϕdec(·) as the functions
that map the index of an encoder/decoder layer of
the student model to the index of the teacher model
layer that it is trained to emulate, the details of
which is discussed in §2.2, and we use lSenc, l

S
dec to

denote the number of encoder layers and decoder
layers of the student model. To illustrate, if lSenc =
3, lSdec = 2, we would have:

ϕenc(0, 1, 2) = 0, 3, 5, ϕdec(0, 1) = 0, 5

For simplicity, we use superscript ·S , ·T to dis-
tinguish counterparts from the student model and
teacher model respectively.

Next, we will explain the definition of each part
of the distillation losses.

Firstly, Llogits is the Mean Squared Error (MSE)
between the output logits of the student model and
that of the teacher model, i.e.

Llogits = MSE(logitsS , logitsT )

Secondly, Latt is the attention distillation loss,
which is the sum of distillation losses of encoder
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attentions (EA), decoder attentions (DA), and cross
attention (CA), i.e.

Latt = LEA + LDA + LCA

where

LEA =

lSenc∑
i=1

MSE(EAS
i , EAT

ϕenc(i)
)

LDA =

lSdec∑
i=1

MSE(DAS
i , DAT

ϕdec(i)
)

LCA =

lSdec∑
i=1

MSE(CAS
i , CAT

ϕdec(i)
)

with the subscripts i, ϕ(i) specifying the indices of
the layers.

Finally, Lhid is the distillation loss between
all the hidden states between student layers and
teacher layers, which include encoder hidden states
(EHS) and decoder hidden states (DHS):

Lhid = LEHS + LDHS

where

LEHS =

lSenc∑
i=1

MSE(EHSS
i , EHST

ϕenc(i)
)

LDHS =

lSdec∑
i=1

MSE(DHSS
i , DHST

ϕdec(i)
)

C Dataset Statistics

Dataset Dataset Split Count Mean Token Length
Train Valid. Test Source Target

CNN/DM 87,113 13,368 11,490 691 52
XSUM 204,045 11,332 11,334 374 21

ELI5 272,634 9,812 24,512 Q: 38 D: 1,672 111
WMT16 En-Ro 610,320 1,999 1,999 21 21

Table 4: Dataset Statistics.

D ELI5 Additional Details

In this section, we present additional details for the
ELI5 dataset.

D.1 Dense Retriever
We were not able to find a public version of sup-
porting documents for ELI5, and thus followed the
author’s implementation4 to train a dense retriever

4
https://yjernite.github.io/lfqa.html

that retrieves support documents from Wikipedia.
Our trained retriever achieves a similar perfor-
mance compared with the one reported in the au-
thor’s implementation (recall: ours 0.3273, re-
ported 0.3247).

D.2 Evaluating ELI5 Results
We use the ROUGE-SCORE package5 to calculate
rouge scores through the paper. However, as the
author of ELI5 pointed out4, the original rouge
implementation used in ELI5 and BART papers
performs additional normalization. For consistency,
we also reported results for ELI5 using the same
ROUGE-SCORE package, which differs from the
one used in ELI5/BART. Here we compared the
performance of our trained ELI5 baseline model
with the public one using the rouge implementation
used in ELI5/BART papers.

Model Rouge Setting R1 R2 RL

BART-base (ours)
rouge-score 26.02 5.11 15.36
BART/ELI5 29.19 5.59 25.88

BART-large reported (Lewis et al., 2020) BART/ELI5 30.60 6.20 24.30

Table 5: Comparison when using different rouge imple-
mentation.

Results in Table 5 shows that the performance of
our base-size model is close to the one with large-
size reported in Lewis et al. (2020). This signals
that our baseline model for ELI5 is well-trained.

E Visualizations of Experimental Results
on XSUM and ELI5 datasets
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Figure 2: Visualization of performance v.s. model foot-
print compression ratio on XSUM based on Table 1.

5
https://pypi.org/project/rouge-score/
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Figure 3: Visualization of performance v.s. model foot-
print compression ratio on ELI5 based on Table 1.

F Comparisons on “Shrink and
Finetune”

We benchmarked the performance of three ran-
domly picked models with the “Shrink and Fine-
tune” schema proposed in Shleifer and Rush (2020).
We ran the models using the same hyperparame-
ter settings we used in this paper. The results are
shown in Table 6.

We found that when using distillation losses be-
tween the teacher and the student, the performance
are slightly better than the “Shrink and Finetune”
method under our setting. This signals that having
guidance in weighting is important for a quantized
and distilled model to learn well.

Model Loss R1 R2 RL
CNN/DM
8-8-8 6-1

Ours 42.52 20.04 40.05
S&F 42.29 19.92 39.83

XSUM
2-2-8 6-6

Ours 40.06 17.34 32.46
S&F 39.69 17.27 32.27

ELI5
8-8-8 6-6

Ours 27.10 5.15 16.23
S&F 26.95 5.10 16.16

Table 6: Performance comparison between the loss used
in this paper and the “shrink and finetune” loss from
(Shleifer and Rush, 2020).
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